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An equilibrium chance-constrained multiobjective programming model with birandom parameters is proposed. A type of linear
model is converted into its crisp equivalent model. Then a birandom simulation technique is developed to tackle the general
birandom objective functions and birandom constraints. By embedding the birandom simulation technique, a modified genetic
algorithm is designed to solve the equilibrium chance-constrained multiobjective programming model. We apply the proposed
model and algorithm to a real-world inventory problem and show the effectiveness of the model and the solution method.

1. Introduction

As a key issue in supply chain management, inventory man-
agement plays an important role in controlling operation cost
and improving management efficiency. As a result, inventory
problemshave attractedmany researchers fromvarious fields.
Classical inventory problem research discussed single-item
cases [1–5]. However, multiitem inventory problems aremore
common in the real-world. In fact, for many enterprises,
especially supermarkets, it is necessary to prepare hundreds
of goods to meet the needs of different consumers.Therefore,
multiitem inventory problem research has become more
attractive for researchers [6–9].

Apart from the multiitem inventory, uncertainty is an-
other characteristic of inventory problems. For example, the
price of a product usually varies due to themarket fluctuation.
One kind of common uncertainty is randomness. Many
researchers have studied random inventory models. Baker
and Ehrhardt analyzed a periodic-review, random-demand
inventory model under the assumption that replenishment
quantities are random fractions of the amounts ordered [10].
Bera et al. dealt with a multiitemmixture inventory model in

which both demand and lead time are random [8]. Fuzziness
is another type of uncertainty in inventory problems.Wang et
al. [11] developed a novel joint replenishment problemmodel
with fuzzy minor replenishment cost and fuzzy inventory
holding cost. Roy et al. [12] considered an inventory model
for a deteriorating item (seasonal product) with linearly
displayed stock dependent demand in an imprecise envi-
ronment (involving both fuzzy and random parameters)
under inflation and the time value of money. M. K. Maiti
and M. Maiti [13] proposed a multiitem inventory model
with advertising costs, price, and displayed inventory level-
dependent demand in a fuzzy environment (purchase cost,
investment amount, and storehouse capacity were consid-
ered imprecise). Besides these, twofold uncertain inventory
models have also been studied as more complex; imprecise
information is considered. Dutta et al. [14] presented a single-
period inventory problem in an imprecise and uncertain
mixed environment, in which the demand is assumed as
a fuzzy random variable. Xu and Zhao [15, 16] formulated
inventory models under fuzzy rough environments.

However, an inventory model with twofold random phe-
nomenon is seldom discussed. In reality, inventory problems
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in the real-world may be subjected to twofold randomness
with incomplete or uncertain information. Consequently,
developing an inventory strategy in amore complete stochas-
tic environment takes place. As a case in point, it is widely
accepted that the price of a product is a normal distributed
variable, denoted by 𝑁(𝜇, 𝜎

2
) from the viewpoint of proba-

bility theory, but the values of 𝜇 and 𝜎 may be still uncertain
variables. If there is statistical information about 𝜇 and 𝜎,
it is possible to specify realistic distributions for 𝜇 and 𝜎

by utilizing statistical methods. When the values of 𝜇 and
𝜎 are provided as random variables, the price then is not
a conventional random variable but a so-called birandom
variable. A birandom variable, which plays a role analogous
to a random variable in probability theory, is appropriate
to describe this kind of twofold randomness. In this paper,
we discuss a class of multiobjective programming models
with birandom parameters. Chance-constrained program-
ming proposed by Charnes and Cooper [17] is an effective
technique to deal with uncertain optimization problem [18].
By using the equilibrium chance-constrained programming
technique, the initial model is meaningful mathematically.

The rest of the paper is organized as follows. Section 2
develops a general equilibrium chance-constrained program-
ming model with birandom parameters. A linear model is
converted into its crisp equivalent model. In order solve
a general model, the birandom simulation-based genetic
algorithm is deigned in Section 3. Section 4 applies the the-
oretical results into a real-world inventory problem. Further
discussions in Section 5 illustrate the effectiveness of the
proposed model and algorithm. Finally, concluding remarks
are outlined in Section 6.

2. Equilibrium Chance-Constrained
Multiobjective Programming Model with
Birandom Parameters

In order construct a general equilibrium chance-constrained
multiobjective programming model with birandom param-
eters, we first state some basic concepts and theorems on
birandom theory which is presented firstly.

2.1. Birandom Variable and Equilibrium Chance. Birandom
variable, which is proposed by Peng and Liu [19], is a mathe-
matical tool to describe twofold random phenomena. An n-
dimensional birandom vector 𝜉 is a map from the probability
space (Ω,A,Pr) to a collection of n-dimensional random
vectors such that Pr{𝜉(𝜔) ∈ B} is a measurable function
with respect to 𝜔 for any Borel set B of the real space R𝑛.
In particular, 𝜉 is called a birandom variable as 𝑛 = 1.

Example 1. A birandom variable 𝜉 is said to be uniform, if for
each 𝜔, 𝜉(𝜔) is a random variable with uniform distribution,
denoted by U[𝑎(𝜔), 𝑏(𝜔)], where 𝑎(𝜔) and 𝑏(𝜔) are random
variables defined on the probability space (Ω,A,Pr).

Example 2. A birandom variable 𝜉 is said to be normal, if for
each 𝜔, 𝜉(𝜔) is a random variable with normal distribution,
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Figure 1: A birandom variable.

denoted byN(𝜇(𝜔), 𝜎
2
(𝜔)), where𝜇(𝜔) and𝜎(𝜔) are random

variables defined on the probability space (Ω,A,Pr).

Example 3. A birandom variable 𝜉 is said to be exponential,
if for each 𝜔, 𝜉(𝜔) is a random variable with exponential
distribution, denoted by exp(𝜆(𝜔)), where 𝜆(𝜔) are random
variables defined on the probability space (Ω,A,Pr).

Example 4. Let (Ω,A,Pr) be a probability space. If Ω =

{𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
},

𝜉 (𝜔) =

{{{{{

{{{{{

{

𝜉
1
, 𝜔 = 𝜔

1

𝜉
2
, 𝜔 = 𝜔

2

...,
...,

𝜉
𝑛
, 𝜔 = 𝜔

𝑛
,

(1)

where 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
are random variables with density func-

tion 𝑝
1
(𝑥), 𝑝
1
(𝑥), . . . , 𝑝

𝑛
(𝑥), respectively. Birandom variable

𝜉 is illustrated by Figure 1.

By birandom event we mean that 𝑔(𝜉) ≤ 0. In order to
compare the degrees of occurrence of two birandom events,
quantitative measures of the chance of a birandom event are
necessary. In the literature, the first attempt to develop the
definition of the chance of a birandom event is primitive
chance, which is a function from [0, 1] to [0, 1].

Definition 5 (see [19]). Let 𝜉 = (𝜉
1
, 𝜉
2
, . . . 𝜉
𝑛
) be a birandom

vector defined on Ω, and 𝑔 : R𝑛 → R is Borel measurable
function. Then the primitive chance of a birandom event
characterized by 𝑔(𝜉) ≤ 0 is a function from [0, 1] to [0, 1],
defined as

Ch {𝑔 (𝜉) ≤ 0} (𝛼)

= sup
𝛼∈[0,1]

{𝛽 | Pr {𝜔 ∈ Ω | Pr {𝑔 (𝜉 (𝜔)) ≤ 0} ≥ 𝛽} ≥ 𝛼} ,

(2)
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where 𝛼 is a prescribed probability level. The value of primi-
tive chance at 𝛼 is called 𝛼-chance.

Remark 6. It should be noted that the symbol Pr appears
twice in the right side of (2). In fact, they represent different
meanings. In otherwords, the overloading allows us to use the
same symbol Pr for different probability measures, because
we can deduce the exact meaning in the context.

In the case of fuzzy random programming problems, the
equilibrium chance of a fuzzy random event was introduced
to measure the degree of the occurrence of a fuzzy random
event [20]. Rather than a function, the equilibrium chance is
a scalar value, like the probability of a random event and the
possibility of a fuzzy event. Thus it is easy for the decision
maker to rank the decisions via equilibrium chance using
the natural order of real numbers, rather than requiring a
preference order from the decision maker. Motivated by the
idea, we introduce the equilibrium chance of a birandom
event as follows.

Definition 7. Let 𝜉 = (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) be a birandom vector,

and 𝑔 : R𝑛 → R is a Borel measurable function. Then the
equilibrium chance of birandom event 𝑔(𝜉) ≤ 0 is defined as

Ch𝑒 {𝑔 (𝜉) ≤ 0}

= sup
𝛼∈[0,1]

{𝛼 ∧ Pr {𝜔 ∈ Ω | Pr {𝑔 (𝜉 (𝜔)) ≤ 0} ≥ 𝛼}} .
(3)

Remark 8. Peng and Liu [19] introduced the equilibrium
chance of a birandom event as

Ch𝑒 {𝑔 (𝜉) ≤ 0} = sup
𝛼∈[0,1]

{𝛼 | Ch {𝑔 (𝜉) ≤ 0} (𝛼) ≥ 𝛼} , (4)

where Ch is the primitive chance. It is easy to verify the forms
(3) and (4) are equivalent.

Remark 9. If 𝜉 degenerates to a random vector, Pr{𝜔 ∈ Ω |

Pr{𝑔(𝜉(𝜔)) ≤ 0} ≥ 𝛼} implies Pr{𝑔(𝜉(𝜔)) ≤ 0} ≥ 𝛼, and then
(3) is equivalent to Pr{𝑔(𝜉(𝜔)) ≤ 0}, which is the probability
measure.

For any 𝛼 ∈ [0, 1], denote

𝐹 (𝛼) = Pr {𝜔 ∈ Ω | Pr {𝑔 (𝜉 (𝜔)) ≤ 0} ≥ 𝛼} ,

𝐹 (𝛼+) = Pr {𝜔 ∈ Ω | Pr {𝑔 (𝜉 (𝜔)) ≤ 0} > 𝛼} .

(5)

It follows from the definition of birandom variable that
Pr{(𝜉(𝜔)) ≤ 0} is a random variable. Then 𝐹(𝛼) is a left-
continuous andnonincreasing functionwith respect to𝛼, and
for any given 𝛼, 𝐹(𝛼) represents the following random event
occurring:

{𝜔 ∈ Ω | Pr {𝑔 (𝜉 (𝜔)) ≤ 0} ≥ 𝛼} . (6)

Therefore, the equilibrium chances defined above measure
the twofold maximum probability simultaneously.

Generally, if

𝐹 (𝛼) ≤ 𝛼 ≤ 𝐹 (𝛼+) , (7)

then 𝛼 is just the value of the equilibrium chance. As
Pr{𝑔(𝜉(𝜔)) ≤ 0} is a continuous random variable, the left side
and right side of relation (7) are equal. Thus the equilibrium
chance is available at the fixed point of 𝐹; that is, 𝐹(𝛼) = 𝛼.

It follows from the definitions of equilibrium chance and
primitive chance of a birandom event that they have the
following differences.

(i) The equilibrium chance of a birandom chance of
a birandom event is a scalar value, just like the
probability of a random event and the possibility of a
fuzzy event, while the primitive chance of a birandom
event is a function from [0, 1] to [0, 1].

(ii) The equilibrium chance measures the twofold prob-
abilities at the same time, while the value of the
primitive chance at 𝛼 measures the single maximum
probability of a birandom event occurring under the
given value of the other probability.

However, the connections of the equilibrium chance and
the primitive chance can be summarized as follows.

(i) Equilibrium chance (3) can be represented as

Ch𝑒 {𝑔 (𝜉) ≤ 0} = sup
𝛼∈[0,1]

{𝛼 ∧ Ch {𝑔
𝑟
(𝜉 (𝜔)) ≤ 0} (𝛼)} , (8)

where Ch{𝑔(𝜉(𝜔)) ≤ 0}(𝛼) is the value of primitive
chance at 𝛼.

(ii) The primitive chance of a birandom event is the
pseudo-inverse function of the function 𝐹(𝛼).

In order to generate the notation of the equilibrium
chance of a birandom event defined by (3), we give another
equivalent form as follows:

Ch𝑒 {𝑔 (𝜉) ≤ 0}

= sup
(𝛼,𝛽)∈[0,1]

2

{𝛼 ∧ 𝛽 | Pr {𝜔 ∈ Ω | Pr {𝑔 (𝜉 (𝜔)) ≤ 0}

≥ 𝛼} ≥ 𝛽} ,

(9)

where the parameters 𝛼 and 𝛽 represent two kinds of
probability. It is easy to see from (3) that we use the min/max
operator, which is a special triangular norm, to define the
equilibrium chance of a birandom event. In fact, by using a
common triangular norm 𝑇, the equilibrium chance can be
extended as

Ch𝑒
𝑇
{𝑔 (𝜉) ≤ 0}

= sup
(𝛼,𝛽)∈[0,1]

2

{𝑇 (𝛼, 𝛽) |

Pr {𝜔 ∈ Ω | Pr {𝑓
𝑗
(𝜉 (𝜔)) ≤ 0} ≥ 𝛼} ≥ 𝛽} ,

(10)

where 𝑇 : [0, 1] → [0, 1] is a triangular norm. In practice, we
may also use various triangular norms such as 𝑇

1
(𝛼, 𝛽) = 𝛼𝛽,

𝑇
2
(𝛼, 𝛽) = 𝛼𝛽/[1+(1−𝛼)(1−𝛽)], 𝑇

3
(𝛼, 𝛽) = 𝛼𝛽/(𝛼+𝛽−𝛼𝛽),
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or 𝑇
4

= max{0, 𝛼 + 𝛽 + 1} according to a decision maker’s
philosophy of modeling uncertainty.

The following theorem implies a basic property of the
equilibrium chance.

Theorem 10. Let 𝜉 = (𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
) be a birandom vector, and

let 𝑔 : R𝑛 → R be Borel measurable function, and 𝛼 ∈ [0, 1].
Then

Ch𝑒 {𝑔 (𝜉) ≤ 0}

≥ 𝛼 ⇐⇒ Pr{𝜔 ∈ Ω | Pr{𝑔 (𝜉 (𝜔)) ≤ 0} ≥ 𝛼} ≥ 𝛼.

(11)

Proof. “⇒” Assume that Ch𝑒{𝑔(𝜉) ≤ 0} ≥ 𝛼. It follows from
the definition of Ch𝑒{⋅} that there exists a real number 𝛼

0
∈

[0, 1] such that

𝛼
0
∧ Pr {𝜔 ∈ Ω | Pr {𝑔 (𝜉 (𝜔)) ≤ 0} ≥ 𝛼

0
} ≥ 𝛼. (12)

Thus we have
𝛼
0
≥ 𝛼,

Pr {𝑔 (𝜉 (𝜔)) ≤ 0} ≥ 𝛼
0
≥ 𝛼.

(13)

So we get that

{𝜔 ∈ Ω | Pr {𝑔 (𝜉 (𝜔)) ≤ 0} ≥ 𝛼}

⊇ {𝜔 ∈ Ω | Pr {𝑔 (𝜉 (𝜔)) ≤ 0} ≥ 𝛼
0
} .

(14)

It follows that
Pr {𝜔 ∈ Ω {𝑔 (𝜉 (𝜔)) ≤ 0} ≥ 𝛼}

≥ Pr {𝜔 ∈ Ω {𝑔 (𝜉 (𝜔)) ≤ 0} ≥ 𝛼
0
} ≥ 𝛼.

(15)

“⇐” If Pr{𝜔 ∈ Ω | Pr{𝑔(𝜉(𝜔)) ≤ 0} ≥ 𝛼} ≥ 𝛼, then we have

𝛼 = 𝛼 ∧ Pr {𝜔 ∈ Ω | Pr {𝑔 (𝜉 (𝜔)) ≤ 0}}

≤ sup
𝛽∈[0,1]

{𝛽 ∧ Pr {𝜔 ∈ Ω | Pr {𝑔 (𝜉 (𝜔)) ≤ 0} ≥ 𝛽}}

= Ch𝑒 {𝑔 (𝜉 (𝜔)) ≤ 0} .

(16)

The theorem is proved.

The independence of birandom variables is defined as
follows.

Definition 11. Birandom variables 𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
, which are

defined on the probability space (Ω,A,Pr), are said to be
independent if and only if 𝜉

1
(𝜔), 𝜉
2
(𝜔), . . . , 𝜉

𝑛
(𝜔) are inde-

pendent random variables for all 𝜔 ∈ Ω.

2.2. Model Formulation. A general equilibrium chance-con-
strained multiobjective programming model with birandom
parameters is formulated as

max {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
}

s.t. Ch𝑒 {𝑓
𝑖
(𝑥, 𝜉) ≥ 𝑓

𝑖
} ≥ 𝛼
𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

Ch𝑒 {𝑔
𝑟
(𝑥, 𝜉) ≤ 0} ≥ 𝛽

𝑟
, 𝑟 = 1, 2, . . . , 𝑝,

𝑥 ∈ 𝐷,

(17)

where 𝑥 is an 𝑛-ary decision vector, 𝜉 𝑚-ary is a birandom
vector, 𝐷 is a fixed set that is usually determined by a finite
number of inequalities involving functions of 𝑥, 𝑓

𝑖
and 𝑔

𝑟

are (𝑚 + 𝑛)-ary real-valued continuous functions, and 𝛼
𝑖
and

𝛽
𝑟
are predetermined confidence levels, 𝑖 = 1, 2, . . . , 𝑚, 𝑟 =

1, 2, . . . , 𝑝.
It follows from Remark 9 that if 𝜉 degenerates to random

vector, then model (17) degenerates to

max {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
}

s.t. Pr {𝑓
𝑖
(𝑥, 𝜉) ≥ 𝑓

𝑖
} ≥ 𝛼
𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

Pr {𝑔
𝑟
(𝑥, 𝜉) ≤ 0} ≥ 𝛽

𝑟
, 𝑟 = 1, 2, . . . , 𝑝,

𝑥 ∈ 𝐷,

(18)

which is a stochastic chance-constrained programming
model.

Definition 12 (birandom efficient solution at 𝛼
𝑖
-levels). Sup-

pose a feasible solution 𝑥
∗ of problem (17) satisfies

Ch𝑒 {𝑓
𝑖
(𝑥
∗
, 𝜉) ≥ 𝑓

𝑖
(𝑥
∗
)} ≥ 𝛼

𝑖
, 𝑖 = 1, 2, . . . , 𝑚, (19)

where confidence levels 𝛼
𝑖
∈ [0, 1]. 𝑥∗ is said to be a biran-

dom efficient solution at 𝛼
𝑖
-levels to problem (17) if and only

if there exists no other feasible solution 𝑥 such that

Ch𝑒 {𝑓
𝑖
(𝑥, 𝜉) ≥ 𝑓

𝑖
(𝑥)} ≥ 𝛼

𝑖
, 𝑖 = 1, 2, . . . , 𝑚, (20)

and 𝑓
𝑖
(𝑥) ≥ 𝑓

𝑖
(𝑥
∗
) for all 𝑖 and 𝑓

𝑖
0

(𝑥) > 𝑓
𝑖
0

(𝑥
∗
) for at least

one 𝑖
0
∈ {1, 2, . . . , 𝑚}.

Specially, we consider the linear form of model (17):

max {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
}

s. t. Ch𝑒 {̃̃𝑐
𝑇

𝑖
𝑥 ≥ 𝑓

𝑖
} ≥ 𝛼
𝑖
, 𝑖 = 1, 2, . . . , 𝑚,

Ch𝑒 {̃̃𝑎
𝑇

𝑟
𝑥 ≤

̃̃
𝑏
𝑟
} ≥ 𝛽

𝑟
, 𝑟 = 1, 2, . . . , 𝑝,

𝑥 ∈ 𝐷,

(21)

where ̃̃𝑐
𝑖
= (̃̃𝑐
𝑖1
, ̃̃𝑐
𝑖2
, . . . , ̃̃𝑐

𝑖𝑛
)
𝑇 and ̃̃𝑎

𝑟
= (̃̃𝑎
𝑟1
, ̃̃𝑎
𝑟2
, . . . , ̃̃𝑎

𝑟𝑛
)
𝑇 are

birandom vectors, and ̃̃
𝑏
𝑟
are birandom variables, 𝑖 = 1, 2,

. . . , 𝑚, 𝑟 = 1, 2, . . . , 𝑝.
It follows from Theorem 10 that model (21) can be

rewritten as

max {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
}

s.t. Pr {𝜔 ∈ Ω | Pr {̃̃𝑐
𝑇

𝑖
(𝜔) 𝑥 ≥ 𝑓

𝑖
} ≥ 𝛼
𝑖
} ≥ 𝛼
𝑖
,

𝑖 = 1, 2, . . . , 𝑚,

Pr {𝜔 ∈ Ω | Pr {̃̃𝑎
𝑇

𝑟
(𝜔) 𝑥 ≥

̃̃
𝑏
𝑟
} ≥ 𝛽

𝑟
} ≥ 𝛽

𝑟
,

𝑟 = 1, 2, . . . , 𝑝,

𝑥 ∈ 𝐷.

(22)
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Lemma 13. Assume that birandom vector ̃̃𝑐
𝑖
(𝜔) = (̃̃𝑐

𝑖1
(𝜔),

̃̃𝑐
𝑖2
(𝜔), . . . , ̃̃𝑐

𝑖𝑛
(𝜔))
𝑇 follows normal distribution with mean

vector 𝑐
𝑖
(𝜔) and positive definite covariancematrix𝑉

𝑐

𝑖
, denoted

by ̃̃𝑐
𝑖
(𝜔) ∼ N(𝑐

𝑖
(𝜔), 𝑉

𝑐

𝑖
). 𝑐
𝑖
(𝜔) is a normal random vector with

mean vector 𝜇
𝑐

𝑖
and positive definite covariance matrix 𝑉

𝑐

𝑖
,

written as 𝑐
𝑖
(𝜔) ∼ N(𝜇

𝑐

𝑖
, 𝑉
𝑐

𝑖
). If ̃̃𝑐
𝑖1
(𝜔), ̃̃𝑐
𝑖2
(𝜔), . . . , ̃̃𝑐

𝑖𝑛
(𝜔) are

independent birandom variables, then Pr{𝜔 | Pr(̃̃𝑐
𝑖
(𝜔)
𝑇
𝑥 ≥

𝑓
𝑖
) ≥ 𝛼
𝑖
} ≥ 𝛼
𝑖
holds if and only if

𝜇
𝑐𝑇

𝑖
𝑥 + Φ

−1
(1 − 𝛼

𝑖
)√𝑥𝑇𝑉

𝑐

𝑖
𝑥 + Φ

−1
(1 − 𝛼

𝑖
)√𝑥𝑇𝑉

𝑐


𝑖
𝑥 ≥ 𝑓

𝑖
,

(23)

where Φ is the standardized normal distribution.

Proof. Let 𝑦
𝑖

= ̃̃𝑐
𝑇

𝑖
(𝜔)𝑥 − 𝑓

𝑖
; then 𝑦

𝑖
follows normal

distribution with the following expected value and variance:

𝐸 [𝑦
𝑖
] = 𝑐
𝑖
(𝜔)
𝑇
𝑥 − 𝑓
𝑖
, Var [𝑦

𝑖
] = 𝑥
𝑇
𝑉
𝑐

𝑖
𝑥, (24)

where 𝑐
𝑖
(𝜔) = (𝑐

𝑖1
(𝜔), 𝑐
𝑖2
(𝜔), . . . , 𝑐

𝑖𝑛
(𝜔))
𝑇. We note that

(̃̃𝑐
𝑖
(𝜔)
𝑇
𝑥 − 𝑓
𝑖
) − (𝑐
𝑖
(𝜔)
𝑇
𝑥 − 𝑓
𝑖
)

√𝑥𝑇𝑉
𝑐

𝑖
𝑥

(25)

must be standardized normally distributed. The inequality
̃̃𝑐
𝑖
(𝜔)
𝑇
𝑥 ≥ 𝑓

𝑖
is equivalent to

(̃̃𝑐
𝑖
(𝜔)
𝑇
𝑥 − 𝑓
𝑖
) − (𝑐
𝑖
(𝜔)
𝑇
𝑥 − 𝑓
𝑖
)

√𝑥𝑇𝑉
𝑐

𝑖
𝑥

≥ −
𝑐
𝑖
(𝜔)
𝑇
𝑥 − 𝑓
𝑖

√𝑥𝑇𝑉
𝑐

𝑖
𝑥

. (26)

Let 𝜂 = ((̃̃𝑐
𝑖
(𝜔)
𝑇
𝑥 − 𝑓

𝑖
) − (𝑐
𝑖
(𝜔)
𝑇
𝑥 − 𝑓

𝑖
))/√𝑥𝑇𝑉

𝑐

𝑖
𝑥, which is

standardized normally distributed. Then we have

Pr {̃̃𝑐
𝑖𝑗
(𝜔)
𝑇
𝑥 ≥ 𝑓

𝑖
} ≥ 𝛼
𝑖

⇐⇒ Pr
{{

{{

{

𝜂 ≥
𝑓
𝑖
− 𝑐
𝑖
(𝜔)
𝑇
𝑥

√𝑥𝑇𝑉
𝑐

𝑖
𝑥

}}

}}

}

≥ 𝛼
𝑖

⇐⇒ 1 − Pr
{{

{{

{

𝜂 ≤
𝑓
𝑖
− 𝑐
𝑖
(𝜔)
𝑇
𝑥

√𝑥𝑇𝑉
𝑐

𝑖
𝑥

}}

}}

}

≥ 𝛼
𝑖

⇐⇒ Pr
{{

{{

{

𝜂 ≤
𝑓
𝑖
− 𝑐
𝑖
(𝜔)
𝑇
𝑥

√𝑥𝑇𝑉
𝑐

𝑖
𝑥

}}

}}

}

≤ 1 − 𝛼
𝑖

⇐⇒ Φ(
𝑓
𝑖
− 𝑐
𝑖
(𝜔)
𝑇
𝑥

√𝑥𝑇𝑉
𝑐

𝑖
𝑥

) ≤ 1 − 𝛼
𝑖

⇐⇒
𝑓
𝑖
− 𝑐
𝑖
(𝜔)
𝑇
𝑥

√𝑥𝑇𝑉
𝑖
𝑥

≤ Φ
−1

(1 − 𝛼
𝑖
)

⇐⇒ 𝑐
𝑖
(𝜔)
𝑇
𝑥 + Φ

−1
(1 − 𝛼

𝑖
)√𝑥𝑇𝑉

𝑐

𝑖
𝑥 ≥ 𝑓

𝑖
.

(27)

Thus

Pr {𝜔 | Pr {̃̃𝑐
𝑖𝑗
(𝜔)
𝑇
𝑥 ≥ 𝑓

𝑖
} ≥ 𝛼
𝑖
} ≥ 𝛼
𝑖

⇐⇒ Pr {𝑐
𝑖
(𝜔)
𝑇
𝑥 + Φ

−1
(1 − 𝛼

𝑖
)√𝑥𝑇𝑉

𝑐

𝑖
𝑥 ≥ 𝑓

𝑖
} ≥ 𝛼
𝑖

⇐⇒ Pr
{{

{{

{

((𝑐
𝑖
(𝜔)
𝑇
𝑥 + Φ

−1
(1 − 𝛼

𝑖
)√𝑥𝑇𝑉

𝑐

𝑖
𝑥 − 𝑓
𝑖
)

−(𝜇
𝑐𝑇

𝑖
𝑥 + Φ

−1
(1 − 𝛼

𝑖
)√𝑥𝑇𝑉

𝑐

𝑖
𝑥 − 𝑓
𝑖
))

× (√𝑥𝑐𝑇𝑉
𝑐


𝑖
𝑥)

−1

≥ −

𝜇
𝑐𝑇

𝑖
𝑥 + Φ

−1
(1 − 𝛼

𝑖
)√𝑥𝑇𝑉

𝑐

𝑖
𝑥 − 𝑓
𝑖

√𝑥𝑇𝑉
𝑐


𝑖
𝑥

}}

}}

}

≥ 𝛼
𝑖

⇐⇒ 𝜇
𝑐𝑇

𝑖
𝑥 + Φ

−1
(1 − 𝛼

𝑖
)√𝑥𝑇𝑉

𝑐

𝑖
𝑥 + Φ

−1
(1 − 𝛼

𝑖
)

× √𝑥𝑇𝑉
𝑐


𝑖
𝑥 ≥ 𝑓

𝑖
.

(28)

This completes the proof.

Lemma 14 (see [21]). Assume that birandom vector ̃̃𝑎
𝑟
(𝜔) =

(̃̃𝑎
𝑟1
(𝜔), ̃̃𝑎
𝑟2
(𝜔), . . . , ̃̃𝑎

𝑖𝑛
(𝜔))
𝑇 follows normal distribution with

mean vector 𝑎
𝑟
(𝜔) and positive definite covariance matrix

𝑉
𝑎

𝑟
, written as ̃̃𝑎

𝑟
(𝜔) ∼ N(𝑎

𝑟
(𝜔), 𝑉

𝑎

𝑟
). 𝑎
𝑟
(𝜔) is a nor-

mally distributed random variable, written as 𝑎
𝑟
(𝜔) ∼

N(𝜇
𝑎

𝑟
, 𝑉
𝑎

𝑟
). Birandom variable ̃̃

𝑏
𝑟
(𝜔) follows normal distri-

bution with mean value �̃�
𝑟
(𝜔) and variance (𝜎

𝑏

𝑟
)
2, denoted

by ̃̃
𝑏
𝑟
(𝜔) ∼ N(�̃�

𝑟
(𝜔), (𝜎

𝑏

𝑟
)
2
). �̃�
𝑟
(𝜔) is a normally distributed

random variable, written as �̃�
𝑟
(𝜔) ∼ N(𝜇

𝑏

𝑟
, (𝜎
𝑏

𝑟
)
2
). If

̃̃𝑎
𝑟1
(𝜔), ̃̃𝑎
𝑟2
(𝜔), . . . , ̃̃𝑎

𝑟𝑛
(𝜔),

̃̃
𝑏
𝑟
(𝜔) are independent birandom

variables, then Ch𝑒{̃̃𝑎
𝑇

𝑟
𝑥 ≤

̃̃
𝑏
𝑟
} ≥ 𝛽
𝑟
holds if and only if

𝑢
𝑎𝑇

𝑟
𝑥 + Φ

−1
(𝛽
𝑟
)√𝑥𝑇𝑉𝑎

𝑟
𝑥 + (𝜎𝑏

𝑟
)
2

+ Φ
−1

(𝛽
𝑟
)√𝑥𝑇𝑉𝑎



𝑟
𝑥 + (𝜎𝑏



𝑟
)
2

≤ 𝜇
𝑏

𝑟
, 𝑟 = 1, 2, . . . , 𝑝,

(29)

where 𝛽
𝑟
are predetermined confidence levels, 𝑟 = 1, 2, . . . , 𝑝.

It follows from Lemmas 13 and 14 that model (21) is
equivalent to the following crisp multiobjective program-
ming model:
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max {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
}

s.t. 𝑓
𝑖
≤ 𝜇
𝑐𝑇

𝑖
𝑥 + Φ

−1
(1 − 𝛼

𝑖
)√𝑥𝑇𝑉

𝑐

𝑖
𝑥

+ Φ
−1

(1 − 𝛼
𝑖
)√𝑥𝑇𝑉

𝑐


𝑖
𝑥, 𝑖 = 1, 2, . . . , 𝑚,

𝑥 ∈ 𝑋,

(30)

or equivalently

max
𝑥∈𝑋

{𝐹
1
(𝑥) , 𝐹

2
(𝑥) , . . . , 𝐹

𝑚
(𝑥)} , (31)

where 𝐹
𝑖
(𝑥) := 𝜇

𝑐𝑇

𝑖
𝑥 + Φ

−1
(1 − 𝛼

𝑖
)√𝑥𝑇𝑉

𝑐

𝑖
𝑥 + Φ

−1
(1 −

𝛼
𝑖
)√𝑥𝑇𝑉

𝑐


𝑖
𝑥, 𝑖 = 1, 2, . . . , 𝑚, and 𝑋 := {𝑥 | 𝑢

𝑎𝑇

𝑟
𝑥 +

Φ
−1

(𝛽
𝑟
)√𝑥𝑇𝑉𝑎

𝑟
𝑥 + (𝜎𝑏

𝑟
)
2
+ Φ
−1

(𝛽
𝑟
)√𝑥𝑇𝑉𝑎



𝑟
𝑥 + (𝜎𝑏



𝑟
)
2

≤ 𝜇
𝑏

𝑟
,

𝑥 ∈ 𝐷, 𝑟 = 1, 2, . . . , 𝑝}.

3. Solution Method

If model (17) satisfies the conditions for Lemmas 13 and 14,
then model (17) can be converted into a crisp multiobjective
programming model. Many classical methods, such as the
goal programming method, the interactive method, and the
weighted summethod, can be used to solve it. However, for a
general case, it is a difficult to convert the general model into
its deterministic equivalent for the predetermined confidence
levels. In order to handle the birandom objective functions
and to check the birandom equilibrium chance constraints,
we used a birandom simulation technique as this method is
similar to a stochastic simulation but more complicated and
time consuming.

For the following constraints,

Pr {𝜔 ∈ Ω | Pr {̃̃𝑐
𝑖
(𝜔)
𝑇
𝑥 ≥ 𝑓

𝑖
} ≥ 𝛼
𝑖
} ≥ 𝛼
𝑖
, 𝑖 = 1, 2, . . . , 𝑚;

(32)

in view of the purpose of maximizing 𝑓
𝑖
, we should find the

maximal 𝑓
𝑖
such that (32) holds for a given 𝑥. It suffices to

estimate the maximal value of 𝑓
𝑖
such that the probability of

the following random event

{𝜔 ∈ Ω | Pr {̃̃𝑐
𝑖
(𝜔)
𝑇
𝑥 ≥ 𝑓

𝑖
} ≥ 𝛼
𝑖
} (33)

is not less than 𝛼
𝑖
.

First, we generate 𝑁 independent vectors 𝜔
𝑘

= (𝜔
𝑘

1
,

𝜔
𝑘

2
, . . . , 𝜔

𝑘

𝑛
) from Ω according to distribution function. Then

̃̃𝑐
𝑖
(𝜔
𝑘
) are random vectors, 𝑘 = 1, 2, . . . , 𝑁. So we can apply

the stochastic simulation to handle

Pr {̃̃𝑐
𝑖
(𝜔
𝑘
)
𝑇

𝑥} ≥ 𝑓
𝑖
, 𝑖 = 1, 2, . . . , 𝑚. (34)

We define

ℎ (𝑥, ̃̃𝑐
𝑖
(𝜔
𝑘
)) = {

1, if ̃̃𝑐
𝑖
(𝜔
𝑘
)
𝑇

𝑥 ≥ 𝑓
𝑖
,

0, otherwise,
(35)

for 𝑘 = 1, 2, . . . , 𝑁, which are random variables, and the
expected value 𝐸[ℎ(𝑥, ̃̃𝑐

𝑖
(𝜔
𝑘
))] = 𝛼

𝑖
for all 𝑘. By the strong

law of large numbers, we obtain

∑
𝑁

𝑘=1
ℎ (𝑥, ̃̃𝑐

𝑖
(𝜔
𝑘
))

𝑁
→ 𝛼
𝑖

(36)

as 𝑁 → ∞. Note that ∑𝑁
𝑘=1

ℎ(𝑥, ̃̃𝑐
𝑖
(𝜔
𝑘
)) is just the number

of ̃̃𝑐
𝑖
(𝜔
𝑘
) satisfying ̃̃𝑐

𝑖
(𝜔
𝑘
)
𝑇
𝑥 ≥ 𝑓

𝑖
for 𝑖 = 1, 2, . . . , 𝑁.

Thus 𝑓
𝑖
is just the 𝑁

th largest element in the sequence
{�̃�
𝑖
(𝜔
1
)
𝑇
𝑥, ̃̃𝑐
𝑖
(𝜔
2
)
𝑇
𝑥, . . . , ̃̃𝑐

𝑖
(𝜔
𝑁
)
𝑇
𝑥}, where 𝑁

 is the integer
part of 𝛼

𝑖
𝑁.The process to estimate the maximal 𝑓

𝑖
such that

(32) holds is summarized as follows.

Step 1. Sample 𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑁 from Ω according to distribu-
tion function.

Step 2. Find the maximal values 𝑓
𝑖𝑛
such that Pr{̃̃𝑐

𝑇

𝑖
(𝜔
𝑘
)𝑥 ≥

𝑓
𝑖𝑛
} ≥ 𝛼

𝑖
for 𝑛 = 1, 2, . . . , 𝑁, respectively, by stochastic

simulation.

Step 3. Set 𝑁 as the integer part of 𝛼
𝑖
𝑁.

Step 4. Return the 𝑁
th largest element in {𝑓

𝑖1
, 𝑓
𝑖2
, . . . , 𝑓

𝑖𝑁
}

as 𝑓
𝑖
, 𝑖 = 1, 2, . . . , 𝑚.

For a fixed 𝑥, we check whether the constraint

Pr {𝜔 | Pr {̃̃𝑎
𝑟
(𝜔)
𝑇
𝑥 ≤

̃̃
𝑏
𝑟
(𝜔)} ≥ 𝛽

𝑟
} ≥ 𝛽

𝑟
, 𝑟 = 1, 2, . . . , 𝑝,

(37)

holds by following process.

Step 1. Set 𝑁 = 0.

Step 2. Generate 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 from Ω according to

distribution function.

Step 3. Calculate Pr{̃̃𝑎
𝑟
(𝜔)
𝑇
𝑥 ≤

̃̃
𝑏
𝑟
(𝜔)} by stochastic simula-

tion.

Step 4. If Pr{̃̃𝑎
𝑟
(𝜔)
𝑇
𝑥 ≤

̃̃
𝑏
𝑟
(𝜔)} ≥ 𝛽

𝑟
, then 𝑁


= 𝑁

+ 1.

Step 5. Repeat Step 2 to Step 4𝑁 times.

Step 6. If 𝑁


𝑟
/𝑁 ≥ 𝛽

𝑟
, return 𝑥 is feasible, or else 𝑥 is

infeasible.

Genetic algorithms (GAs) are stochastic search methods
for optimization problems based on the mechanics of natural
selection and natural genetics. They have been applied to dif-
ferent sectors for both technical and management problems
and have shown good performance [22–26]. In this paper,
the birandom simulation technique is embedded into a GA
to develop the birandom simulation-based GA. The overall
procedure of the birandom simulation-based GA for solving
the birandom programming models is shown in Figure 2.
The main parts of the algorithm are stated in more detail as
follows.
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Input genetic parameters
Pc, Pm , etc.

Generate initial
chromosomes

Yes

Yes

No

No

Feasible?

Crossover

Birandom simulation

Mutation

Evaluation

Selection

Cycles end?

Output

Figure 2: The flowchart of the birandom simulation-based GA.

(1) Representation: a vector 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is chosen

as a chromosome to represent a solution to the optimization
problem.

(2)Handling the constraints: to ensure the chromosomes
generated by genetic operators are feasible, we can use the
technique of birandom simulation to check them.

(3) Initializing process: suppose that the decision maker
is able to predetermine a region which contains the feasible
set. Randomly generate a vector 𝑥 from this region until a
feasible one is accepted as a chromosome. Repeat the above
process 𝑁pop-size times; then we have 𝑁pop-size initial feasible
chromosomes 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁pop-size . In general, the larger the
number of population size 𝑁pop-size is, the better the result
is. However, the computation time will increase with𝑁pop-size
increasing. In the paper, we set 𝑁pop-size from 20 to 40.

(4) Evaluation function: let eval(𝑥) equal weighted sum of
all objectives; that is,

eval (𝑥) =

𝑚

∑

𝑖=1

𝑤
𝑖
𝑓
𝑖
, (38)

where 𝑤
𝑖
are random numbers in [0, 1], representing the

weight for objective 𝑓
𝑖
, 𝑖 = 1, 2, . . . , 𝑚. The random weight-

sum approach explores the entire solution space in order to
avoid local optima and thus gives a uniform chance to search
all the possible solutions. All chromosomes are arranged from
large to small according to their objective function values. In
other words, after rearrangement, 𝑥1 is the best chromosome,
and 𝑥

𝑁pop-size is the worst one.

(5) Selection process: the selection process is based on
spinning the roulette wheel 𝑁pop-size times. Each time a
single chromosome for a new population is selected in the
followingway: calculate the cumulative probability 𝑞

𝑖
for each

chromosome 𝑥
𝑖:

𝑞
0
= 0, 𝑞

𝑖
=

𝑖

∑

𝑗=1

eval (𝑥𝑗) , 𝑖 = 1, 2, . . . , 𝑁pop-size. (39)

Generate a random number 𝑟 in [0, 𝑞
𝑁pop-size

] and select the
𝑖th chromosome 𝑥

𝑖
such that 𝑞

𝑖−1
< 𝑟 ≤ 𝑞

𝑖
, 1 ≤ 𝑖 ≤

𝑁pop-size. Repeat the above process 𝑁pop-size times and we
obtain 𝑁pop-size copies of chromosomes.

(6) Crossover operation: generate a random number 𝑐

from the open interval (0, 1) and the chromosome 𝑥
𝑖 is

selected as a parent provided that 𝑐 < 𝑃
𝑐
, where parameter 𝑃

𝑐

is the probability of crossover operation. Repeat this process
𝑁pop-size times and 𝑃

𝑐
⋅𝑁pop-size chromosomes are expected to

be selected to undergo the crossover operation.The crossover
operator on 𝑥

1 and 𝑥
2 will produce two children 𝑦

1 and 𝑦
2 as

follows:

𝑦
1
= 𝑐𝑥
1
+ (1 − 𝑐) 𝑥

2
, 𝑦

2
= 𝑐𝑥
2
+ (1 − 𝑐) 𝑥

2
. (40)

If both children are feasible, then we replace the parents with
them, or else we keep the feasible one if it exists. Repeat the
above operation until two feasible children are obtained or a
given number of cycles is finished.

Let us consider the setting of probability of crossover𝑃
𝑐
. It

is obvious that larger crossover probability results in reaching
larger solution space, and then it helps reduce the chance of
stopping at nonoptimal solution. However, too large 𝑃

𝑐
will

result in considerable time consuming because of too much
searching in unnecessary solution space. In the paper, we set
𝑃
𝑐
from 0.2 to 0.4.
(7) Mutation operation: similar to the crossover process,

the chromosome 𝑥
𝑖 is selected as a parent to undergo the

mutation operation provided that random number 𝑚 < 𝑃
𝑚
,

where parameter 𝑃
𝑚
is the probability of mutation operation.

𝑃
𝜆
𝑖

⋅ 𝑁pop-size are expected to be selected after repeating the
process𝑁pop-size times. Suppose that 𝑥1 is chosen as a parent.
Choose a mutation direction d ∈ Rn randomly. Replace 𝑥

with 𝑥 + 𝑀 ⋅ d if 𝑥 + 𝑀 ⋅ d is feasible; otherwise we set 𝑀
as a random number between 0 and𝑀 until it is feasible or a
given number of cycles are finished. Here, 𝑀 is a sufficiently
large positive number.

𝑃
𝑚
controls the proportion of new genes generating in

population. If 𝑃
𝑚
is too small, it will be difficult for some

effective genes to be selected. On the contrary, if 𝑃
𝑚
is too

large, that is, there exists too much random change, then
offsprings may lose good characteristics inherited from their
parents.Thus, the algorithmwill lose the learning ability from
the past searching. In the paper, we set 𝑃

𝑚
from 0.2 to 0.4.

After running a given number of cycles of above biran-
dom simulation-based genetic algorithm, the best chromo-
some can be regarded as the optimal solution.
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Figure 3: The inventory system of H Chain Co., Ltd.

4. Practical Application for H Chain Co., Ltd.

A real-world inventory problem is discussed in this section
to illustrate the effectiveness of the theoretical results in this
paper.

4.1. Key Problem Statement and Model Formulation. The
problem is from H Chain Co., Ltd., which is one of largest
chain enterprises in southwest of China. It operates a variety
of products, such as eggs, grains, milk, and meat. Inventory
management is an important part of company management.
The inventory system of H Chain Co., Ltd. is illustrated by
Figure 3.

A new executive is assigned to the management of
four product items: eggs, dairy products, grains, and meat
products. The executive needs to make an effective inventory
strategy to reduce costs and increase profit.

4.1.1. Assumptions. In order to develop the mathematical
model for the inventory problem, there are some assumptions
made, which are as follows. (1) This is an inventory model
with a finite time horizon. (2)There are multiple items in this
inventory system. (3) Average demand rates are continuous
and constant. (4) Deterioration rates are constant. (5) Short-
age is allowed. (6) Initial inventory quantities are not zeros;
(7) The inventory system uses a continuous review fixed-
order-quantity strategy. (8) The lead time is proportional to
the order quantity. (9) Fixed-ordering costs are constant. (10)
Unit price, unit acquisition cost, holding cost per unit per unit
time and shortage cost per unit per unit time are birandom
variables. (11) Available total storage space is limited. (12)
Available total budget is limited. (13) The inventory system
uses nonintegrated management.

4.1.2. Notations. The following notations are used to describe
this inventory model:

𝑛 is the number of items;
𝑊
𝑖
is the available storage space of warehouse of

product 𝑖, 𝑖 = 1, 2, . . . , 𝑛;
𝐵 is the available total budgetary cost;
𝐾
𝑖
is the required storage area per unit quantity 𝑖, 𝑖 =

1, 2, . . . , 𝑛;
𝐴
𝑖
is the fixed-ordering cost of product 𝑖, 𝑖 =

1, 2, . . . , 𝑛;

Ii

Qi si

0
t

ti1 ti2 ti3 ti4

qi(t)

Figure 4: Inventory level of product 𝑖 at time 𝑡.

𝐷
𝑖
is the average demand rate of product 𝑖, 𝑖 =

1, 2, . . . , 𝑛;

𝐼
𝑖
is the initial demand rate of product 𝑖, 𝑖 = 1, 2, . . . , 𝑛;

𝑎
𝑖
is the average deteriorating rate of product 𝑖, 𝑖 =

1, 2, . . . , 𝑛;

𝑙
𝑖
is the lead time for unit product 𝑖, 𝑖 = 1, 2, . . . , 𝑛;

̃̃
𝑝
𝑖
is the unit selling price of product 𝑖 (birandom

variable), 𝑖 = 1, 2, . . . , 𝑛;

̃̃𝑐
𝑖1
is the unit acquisition cost of product 𝑖 (birandom

variable), 𝑖 = 1, 2, . . . , 𝑛;

̃̃𝑐
𝑖2
is the unit shortage cost of product 𝑖 (birandom

variable), 𝑖 = 1, 2, . . . , 𝑛;

𝑠
𝑖
is the reorder point of product 𝑖 (decision variable),

𝑖 = 1, 2, . . . , 𝑛;

𝑄
𝑖
is the order quantity of product 𝑖 (decision vari-

able), 𝑖 = 1, 2, . . . , 𝑛;

̃̃
𝑁
𝑖
is the net revenue of product 𝑖, 𝑖 = 1, 2, . . . , 𝑛;

̃̃
𝐶
𝑖1
is the accquisition cost of product 𝑖, 𝑖 = 1, 2, . . . , 𝑛;

̃̃
𝐶
𝑖2
is the holding cost of product 𝑖, 𝑖 = 1, 2, . . . , 𝑛;

̃̃
𝐶
𝑖3
is the shortage cost of product 𝑖, 𝑖 = 1, 2, . . . , 𝑛;

̃̃
𝑇𝑃
𝑖
is the average profit of product 𝑖, 𝑖 = 1, 2, . . . , 𝑛.

4.2. Model Formulation. It follows from the assumptions
above that the inventory level 𝑞

𝑖
(𝑡) of product 𝑖 at time 𝑡 can

be illustrated by Figure 4.
In Figure 4, 𝑡

𝑖1
is the time of order point for product 𝑖; 𝑡

𝑖2

is the time when inventory level of product 𝑖 reduces to zero;
𝑡
𝑖3
is the time when replenishment of product 𝑖 arrives; 𝑡

𝑖4
is

the time when inventory level of product 𝑖 reduces to reorder
point.
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From Figure 4, we have

𝑡
𝑖1

=
𝐼
𝑖
− 𝑠
𝑖

𝐷
𝑖
+ 𝑎
𝑖

,

𝑡
𝑖2

=
𝐼
𝑖

𝐷
𝑖
+ 𝑎
𝑖

,

𝑡
𝑖3

= 𝑡
𝑖1

+ 𝑙
𝑖
𝑄
𝑖
=

𝐼
𝑖
− 𝑠
𝑖

𝐷
𝑖
+ 𝑎
𝑖

+ 𝑙
𝑖
𝑄
𝑖
,

𝑡
𝑖4

= 𝑡
𝑖3

+
𝑄
𝑖
− 𝑠
𝑖
− (𝑡
𝑖3

− 𝑡
𝑖2
)𝐷
𝑖

𝐷
𝑖
+ 𝑎
𝑖

=
𝐼
𝑖
− 𝑠
𝑖

𝐷
𝑖
+ 𝑎
𝑖

+ 𝑙
𝑖
𝑄
𝑖
+

𝑄
𝑖
− 𝑠
𝑖
− (−𝑠
𝑖
/ (𝐷
𝑖
+ 𝑎
𝑖
) + 𝑙
𝑖
𝑄
𝑖
)𝐷
𝑖

𝐷
𝑖
+ 𝑎
𝑖

=
𝐼
𝑖
+ 𝑄
𝑖
− 2𝑠
𝑖
− (−𝑠
𝑖
/ (𝐷
𝑖
+ 𝑎
𝑖
) + 𝑙
𝑖
𝑄
𝑖
)𝐷
𝑖

𝐷
𝑖
+ 𝑎
𝑖

+ 𝑙
𝑖
𝑄
𝑖
.

(41)

For product 𝑖, the total profit from initial time 0 to 𝑡
𝑖4

equals the net revenue minus total cost, including fixed-
ordering cost, acquisition cost, holding cost, and shortage
cost. The net revenue is equal to unit price multiplied by sale
quantity, that is,

̃̃
𝑁
𝑖
=

̃̃
𝑝
𝑖
(𝑡
𝑖2

+ 𝑡
𝑖4

− 𝑡
𝑖3
)𝐷
𝑖
=

̃̃
𝑝
𝑖
(
𝐼
𝑖
+ 𝑄
𝑖
− 𝑠
𝑖
− 𝑙
𝑖
𝑄
𝑖
𝐷
𝑖

𝐷
𝑖
+ 𝑎
𝑖

)𝐷
𝑖
.

(42)

The acquisition cost is equal to unit acquisition cost
multiplied ordering quantity; that is,

̃̃
𝐶
𝑖1

= ̃̃𝑐
𝑖1
𝑄
𝑖
. (43)

The total holding cost consists of holding cost from 0 to
𝑡
𝑖2
and holding cost from 𝑡

𝑖3
to 𝑡
𝑖4
; that is,

̃̃
𝐶
𝑖2

= ̃̃𝑐
𝑖2
(∫

𝑡
𝑖2

0

𝑞
𝑖
(𝑡) 𝑑𝑡 + ∫

𝑡
𝑖4

𝑡
𝑖3

𝑞
𝑖
(𝑡) 𝑑𝑡)

= ̃̃𝑐
𝑖2
(

𝐼
𝑖

2
𝑡
𝑖2

+
𝑄
𝑖
− (𝑡
𝑖3

− 𝑡
𝑖2
)𝐷
𝑖
+ 𝑠
𝑖

2
(𝑡
𝑖4

− 𝑡
𝑖3
))

= ̃̃𝑐
𝑖2
(

𝐼
2

𝑖
+ (𝑄
𝑖
− 𝑙
𝑖
𝑄
𝑖
𝐷
𝑖
)
2

− 𝑠
2

𝑖

2 (𝐷
𝑖
+ 𝑎
𝑖
)

) .

(44)

The shortage cost occurs from 𝑡
𝑖2
to 𝑡
𝑖3
; that is,

̃̃
𝐶
𝑖3

= ̃̃𝑐
𝑖3
∫

𝑡
𝑖3

𝑡
𝑖3

𝐷
𝑖
𝑑𝑡 = ̃̃𝑐

𝑖3

(𝑡
𝑖3

− 𝑡
𝑖2
)𝐷
𝑖

2
=

̃̃𝑐
𝑖3
𝑙
𝑖
𝑄
𝑖
𝐷
𝑖

2
. (45)

The total profit of product 𝑖 from 𝑡
𝑖2
to 𝑡
𝑖4
is ̃̃

𝑁
𝑖0

− 𝐴
𝑖
−

̃̃
𝐶
𝑖1

−
̃̃
𝐶
𝑖2

−
̃̃
𝐶
𝑖3
. Then the average total profit of product 𝑖 is

formulated as

̃̃
𝑇𝑃
𝑖
=

̃̃
𝑁
𝑖
− 𝐴
𝑖
−

̃̃
𝐶
𝑖1

−
̃̃
𝐶
𝑖2

−
̃̃
𝐶
𝑖3

𝑡
𝑖4

. (46)

It is noted that ̃̃
𝑇𝑃
𝑖
can not be maximized due to

birandomness. By utilizing the idea of Charnes and Cooper
[17], 𝑓

𝑖
is maximized which satisfies

Ch𝑒 {̃̃
𝑇𝑃
𝑖
≥ 𝑓
𝑖
} ≥ 𝛼
𝑖
, (47)

where Ch𝑒{⋅} is the equilibrium chance and 𝛼
𝑖
is given

confidence level.
The space of product 𝑖 ordered should not exceed the

available storage space of warehouse; that is,

𝐾
𝑖
𝑄
𝑖
≤ 𝑊
𝑖
. (48)

All the costs should not exceed the available total bud-
getary cost; that is,∑𝑚

𝑖=1
(
̃̃
𝐶
𝑖1

+
̃̃
𝐶
𝑖2

+
̃̃
𝐶
𝑖3

+
̃̃
𝐶
𝑖4
) ≤ 𝐵. It is noted

that the constraint is meaningless mathematically due to the
existence of birandom variable. We use equilibrium chance-
constrained technique tomake itmeaningfulmathematically,
that is,

Ch𝑒 {
𝑛

∑

𝑖=1

(𝐴
𝑖
+

̃̃
𝐶
𝑖1

+
̃̃
𝐶
𝑖2

+
̃̃
𝐶
𝑖3
) ≤ 𝐵} ≤ 𝛽, (49)

where𝛽 is the confidence level predetermined by the decision
maker.

Since shortage is allowed, the order quantity of product 𝑖
should not be less than reorder point 𝑠

𝑖
; that is,

𝑄
𝑖
≥ 𝑠
𝑖
. (50)

In addition, It is natural to require the nonnegativity of
decision variable; that is,

𝑄
𝑖
≥ 0, 𝑠

𝑖
≥ 0. (51)

By integration of (47)–(51), we can formulate the pro-
gramming model of the inventory problem as

max {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
}

s.t. Ch𝑒 {̃̃
𝑇𝐶
𝑖
≥ 𝑓
𝑖
} ≥ 𝛼
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝐾
𝑖
𝑄
𝑖
≤ 𝑊
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑄
𝑖
≥ 𝑠
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

Ch𝑒 {
𝑛

∑

𝑖=1

(𝐴
𝑖
+

̃̃
𝐶
𝑖1

+
̃̃
𝐶
𝑖2

+
̃̃
𝐶
𝑖3
) ≤ 𝐵} ≤ 𝛽,

𝑄
𝑖
≥ 0, 𝑠

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(52)

4.3. Data and Compaction Result. All the data are from the
marketing section of H Chain Co., Ltd. These data can be
divided into two different groups: determined parameters
and birandom parameters. Determined parameters include
𝑊
𝑖
, 𝐵, 𝐾

𝑖
, 𝐴
𝑖
, 𝐷
𝑖
, 𝐼
𝑖
, 𝑎
𝑖
, and 𝑙

𝑖
. The available total budgetary

cost 𝐵 = 250000 yuan. Except for 𝐵, all determined
parameters are listed in Table 1. Birandomvariables including
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Table 1: Determined parameters.

𝑊
𝑖
(m3) 𝐾

𝑖
(m3/kg) 𝐴

𝑖
(yuan) 𝐷

𝑖
(kg/day) 𝐼

𝑖
(kg) 𝑎

𝑖
(kg/day) 𝑙

𝑖
(day/kg)

Eggs 5.00 0.50 × 10
−3 500 500 1200 10 1 × 10

−3

Dairy products 5.00 0.80 × 10
−3 1000 500 2000 20 2 × 10

−3

Grains 20.00 0.40 × 10
−3 2000 1000 3000 10 2 × 10

−3

Meat products 10.00 0.50 × 10
−3 1000 1000 2000 50 4 × 10

−3

Table 2: Birandom variables.
̃̃
𝑝
𝑖
(yuan/kg) ̃̃𝑐

𝑖1
(yuan/kg) ̃̃𝑐

𝑖2
(yuan/kg) ̃̃𝑐

𝑖3
(yuan/kg)

Eggs N(𝜇, 1), 𝜇 ∼ N(16, 1) N(𝜇, 1), 𝜇 ∼ N(12, 1) N(𝜇, 0.01), 𝜇 ∼ N(0.10, 0.01) N(𝜇, 1), 𝜇 ∼ N(15, 1)

Dairy products N(𝜇, 1), 𝜇 ∼ N(20, 1) N(𝜇, 1), 𝜇 ∼ N(16, 1) N(𝜇, 0.01), 𝜇 ∼ N(0.10, 0.01) N(𝜇, 1), 𝜇 ∼ N(18, 1)

Grains N(𝜇, 1), 𝜇 ∼ N(8, 1) N(𝜇, 1), 𝜇 ∼ N(4, 1) N(𝜇, 0.01), 𝜇 ∼ N(0.10, 0.01) N(𝜇, 1), 𝜇 ∼ N(6, 1)

Meat products N(𝜇, 1), 𝜇 ∼ N(40, 1) N(𝜇, 1), 𝜇 ∼ N(30, 1) N(𝜇, 0.01), 𝜇 ∼ N(0.10, 0.01) N(𝜇, 1), 𝜇 ∼ N(36, 1)

Table 3: Optimal order quantities and reorder points.

𝑄
𝑖

𝑠
𝑖

Eggs 2405.6 1288.0
Dairy products 3423.8 2288.0
Grains 5400.5 1288.0
Meat products 2436.9 1280.5

̃̃
𝑝
𝑖
(unit selling price of product 𝑖), ̃̃𝑐

𝑖1
(unit acquisition cost

of product 𝑖), and ̃̃𝑐
𝑖2
(unit shortage cost of product 𝑖). These

birandom variables are listed in Table 2. The decision maker
set confident levels 𝛼

1
= 𝛼
2
= 𝛼
3
= 𝛼
4
= 𝛽 = 0.8 and weighs

𝑤
1
= 𝑤
2
= 𝑤
3
= 𝑤
4
= 0.25.

We implement the birandom simulation-based genetic
algorithm in Matlab 7.0 (the population size 𝑁pop-size = 30,
the probability of crossover 𝑃

𝑐
= 0.3, and the probability of

mutation 𝑃
𝑚

= 0.2) and ran on a PC, 2.40GHz with 1024 MB
memory. After running 500 generations, the final solution is
listed in Table 3. In addition, the objective function values are
(𝑓
∗

1
, 𝑓
∗

2
, 𝑓
∗

3
, 𝑓
∗

4
) = (1878.8, 1256.6, 2890.3, 3097.4).

5. Further Discussions

To show the effectiveness of the model and algorithm better,
evaluation, analysis, and comparison fromvarious aspects are
presented.

5.1. Algorithm Evaluation. We evaluate the birandom simu-
lation-based algorithm from two aspects.

First, we will show that the birandom simulation-based
algorithm is robust to genetic parameters. We compare the
results by the algorithm with different parameters, including
population size 𝑁pop-size, probability of crossover 𝑃

𝑐
, prob-

ability of mutation 𝑃
𝑚
, cycles in birandom simulation, and

generations in GA. These results are listed in Table 4. It
appears that almost all the objective values differ little from
each other. In fact, each relative error does not exceed 3%

when different parameters are selected, which implies that the
proposed algorithm is robust to the parameters setting and
effective to solve the problem in this paper.

Second, since the functions in model (52) are linear,
by Lemmas 13 and 14, model (52) can be transformed into
its crisp equivalent model. Assume that all the parameters
are the same and the final objective function values are
(𝑓
∗

1
, 𝑓
∗

2
, 𝑓
∗

3
, 𝑓
∗

4
) = (1881.2, 1253.6, 2895.3, 3093.8) by using

the weighted sum method. The results obtained by the
birandom simulation genetic algorithm and by the traditional
weighted sum method are close to each other, which implies
the effectiveness of the birandom simulation-based genetic
algorithm proposed in this paper.

5.2. Sensitivity Analysis. However, under a different decision
making environment and different conditions, the decision
maker may alter the predetermined confidence levels. Then
the optimal solution will alter accordingly. In order to show
how the optimal solutions change along with the predeter-
mined confidence levels, we conducted a sensitivity analysis
as shown in Table 5. As shown from Table 5, a bigger 𝛽

induces a better result, because a bigger 𝛽 extends the feasible
region. Conversely, a bigger 𝛼

𝑖
induces a worse result since a

bigger 𝛼
𝑖
narrows the feasible region.

5.3. Model Comparison. Birandom system is a generation for
stochastic system. For illustrating the advantage of birandom
system, all the birandom variables in (52) are assumed to be
random variables, and other parameters keep original values.
Each birandom variable in (52) has the following form:

̃̃
𝜉 ∼ N (𝜉, 𝜎

2
) , 𝜉 ∼ N (𝜇, 𝜎

2
) . (53)

Replace 𝜉 with 𝜇, which is a constant. Then ̃̃
𝜉 degenerates

into a random variable. For example, we use 𝑝
11
(∼ N(16, 1))

to replace ̃̃
𝑝
11
. As all the birandom variables are replaced by
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Table 4: Comparison of the results obtained with different parameters.

𝑁pop-size 𝑃
𝑐

𝑃
𝑚

Cycles Generations (𝑓
∗

1
, 𝑓
∗

2
, 𝑓
∗

3
, 𝑓
∗

4
)

1 20 0.2 0.2 400 400 (1878.8, 1256.6, 2890.3, 3097.4)
2 30 0.3 0.3 400 400 (1865.9, 1259.8, 2887.2, 3104.5)
3 40 0.4 0.4 400 400 (1872.4, 1257.6, 2891.1, 3099.2)
4 20 0.2 0.2 500 500 (1873.8, 1257.2, 2891.3, 3099.4)
5 30 0.3 0.3 500 500 (1873.8, 1256.6, 2893.3, 3098.6)
6 40 0.4 0.4 500 500 (1877.5, 1256.8, 2891.6, 3099.7)
7 20 0.2 0.2 600 600 (1877.7, 1257.7, 2892.3, 3098.5)
8 30 0.3 0.3 600 600 (1876.8, 1259.6, 2888.3, 3099.4)
9 40 0.4 0.4 600 600 (1879.7, 1259.6, 2891.2, 3099.5)
10 20 0.2 0.2 700 700 (1880.8, 1257.6, 2891.3, 3096.4)
11 30 0.3 0.3 700 700 (1874.7, 1256.5, 2892.3, 3093.5)
12 40 0.4 0.4 700 700 (1874.8, 1254.6, 2890.9, 3097.2)
“Cycles” are the cycles in simulation. “Generations” are the generations in GA.

Table 5: Sensitivity analysis.

(𝑓
∗

1
, 𝑓
∗

2
, 𝑓
∗

3
, 𝑓
∗

4
)

𝛼
1
= 𝛼
2
= 𝛼
3
= 𝛼
4
= 0.8, 𝛽 = 0.75 (1873.8, 1250.1, 2878.2, 3067.2)

𝛼
1
= 𝛼
2
= 𝛼
3
= 𝛼
4
= 0.8, 𝛽 = 0.85 (1892.5, 1266.6, 2896.7, 3110.5)

𝛼
1
= 𝛼
2
= 𝛼
3
= 𝛼
4
= 0.75, 𝛽 = 0.80 (1885.8, 1258.4, 2882.1, 3097.6)

𝛼
1
= 𝛼
2
= 𝛼
3
= 𝛼
4
= 0.85, 𝛽 = 0.80 (1866.8, 1254.6, 2885.3, 3091.9)

random variables, equilibrium chance Ch𝑒 degenerates into
probability Pr. Then (52) can be written as

max {𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
}

s.t. Pr {𝑇𝐶
𝑖
≥ 𝑓
𝑖
} ≥ 𝛼
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝐾
𝑖
𝑄
𝑖
≤ 𝑊
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

𝑄
𝑖
≥ 𝑠
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

Pr{
𝑛

∑

𝑖=1

(𝐴
𝑖
+ 𝐶
𝑖1

+ 𝐶
𝑖2

+ 𝐶
𝑖3
) ≤ 𝐵} ≤ 𝛽,

𝑄
𝑖
≥ 0, 𝑠

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑛.

(54)

This stochastic system is a special case of a birandom system,
which can be solved using a stochastic simulation-based
GA. Similar to the birandom simulation-based GA, the
stochastic simulation-based GA is formed by embedding
stochastic simulation into a GA. The robustness of the
stochastic simulation-based GA can be verified as similar to
the birandom simulation-based GA.

In order to make a comparison with the birandom
system, we solve problem (54) with following parameter:
𝑁pop-size = 30, 𝑃

𝑐
= 0.3, and 𝑃

𝑚
= 0.2, 500 cycles in

stochastic simulation, 500 generations in GA.The final result
is (𝑓
∗

1
, 𝑓
∗

2
, 𝑓
∗

3
, 𝑓
∗

4
) = (1873.1, 1231.5, 2790.2, 3016.9), which

is worse than the result of the birandom system.Thus it shows
that birandom system ismore flexible and can generate better
objective values than the corresponding stochastic system.

5.4. Managerial Insight. Some managerial insights can be
derived from the above discussions. From the sensitivity
analysis, we can see the following. (1) A pessimistic decision
maker will set lower confidence levels to avoid higher risk. As
a result, the values for the objective functions are worse than
those at higher confidence levels. (2) An optimistic decision
maker will set higher confidence levels to obtain better values
for the objective functions. However, there will be the cost of
higher risk. To sum up, the values for the objective functions
depend on the attitude of the decision maker towards risk.
From a comparison between the stochastic model and the
birandom model, the decision maker can obtain more flex-
ible results if they can construct a birandom model rather
than a stochastic model in a complex stochastic decision
environment. However, depicting the complex stochastic
decision environment as birandom variables costs more, so
the decision maker must make a trade-off between the cost
and the benefit.

6. Conclusions

In this paper, we have formulated an equilibrium chance-
constrained multiobjective programming model with biran-
dom parameters, which extends the general multiobjective
programming model. We converted a special linear model
into a crisp multiobjective programming model which can
be solved using traditional techniques. A modified genetic
algorithm was designed by embedding the birandom simu-
lation technique to deal with the general model. By assuming
that some parameters (unit selling price, unit acquisition cost,
etc.) are birandom variables, we developed an equilibrium
chance-constrainedmultiobjective programmingmodel with
birandom parameters for an inventory problem and solved
it using the birandom simulation-based GA. Further dis-
cussions show the effectiveness of the proposed model and
algorithm. Some managerial insights may help decision
makers improve their decision making.

Though the inventory problem considered is specific, the
theoretical results can be extended to various inventory prob-
lems. In the future, detailed analysis, further research, and
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practical application of the model and algorithm proposed in
this paper will be considered.
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