
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 376403, 9 pages
http://dx.doi.org/10.1155/2013/376403

Research Article
A Decomposition Method with Redistributed Subroutine for
Constrained Nonconvex Optimization

Yuan Lu,1 Wei Wang,2 Li-Ping Pang,3 and Dan Li3

1 School of Sciences, Shenyang University, Shenyang 110044, China
2 School of Mathematical, Liaoning Normal University, Dalian 116029, China
3 School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

Correspondence should be addressed to Wei Wang; wei 0713@sina.com

Received 6 September 2012; Revised 8 December 2012; Accepted 13 December 2012

Academic Editor: Jean M. Combes

Copyright © 2013 Yuan Lu et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A class of constrained nonsmooth nonconvex optimization problems, that is, piecewise 𝐶
2 objectives with smooth inequality

constraints are discussed in this paper. Based on theVU-theory, a superlinear convergentVU-algorithm, which uses a nonconvex
redistributed proximal bundle subroutine, is designed to solve these optimization problems. An illustrative example is given to show
how this convergent method works on a Second-Order Cone programming problem.

1. Introduction

Consider the following constrained nonsmooth convex pro-
gram:

min 𝑓 (𝑥)

s.t. 𝑔
𝑗
(𝑥) ≤ 0, 𝑗 ∈ 𝐽 = 𝑚 + 1, . . . , 𝑙,

(1)

where 𝑓 is convex and piecewise 𝐶
2 and 𝑔

𝑗
, 𝑗 ∈ 𝐽 are convex

of class 𝐶2.
Many approaches are proposed for solving this program.

For example, we have converted it into an unconstrained
nonsmooth convex program via the exact penalty function
in [1]. And we have showed that the objective function
of this unconstrained optimization problem is a particular
case of function with a primal-dual gradient structure, a
notion related to the VU-space decomposition. Based on
theVU-theory, we have designed an algorithm frame which
converges with local superlinear rate.

Yet, very little systematic research has been performed on
extending this convex program to a nonconvex framework.
The purpose of this paper is to study the following nonconvex

program:

min 𝑓 (𝑥)

s.t. 𝑔
𝑗
(𝑥) ≤ 0, 𝑗 ∈ 𝐽 = 𝑚 + 1, . . . , 𝑙,

(2)

where 𝑓 is piecewise 𝐶
2 and 𝑔

𝑗
, 𝑗 ∈ 𝐽 are of class 𝐶

2. Based
on the VU-decomposition theory, which is first introduced
in [2] for convex functions, and further studied in [3–13]. We
give a VU-algorithm using a redistributed proximal bundle
subroutine to generate a sequence of approximate proximal
points.When a primal-dual track exists, these points approxi-
mate the primal track points and give the algorithm’sV-steps.
And this subroutine also approximates dual track points that
areU-gradients needed for the algorithm’sU-Newton steps.
The interest in devising VU-algorithm for (2) lies on the
“smoothing” effect of U-subspace and its potential to speed
up the algorithm’s convergence under certain conditions.

The rest of the paper is organized as follows. Section 2
breaks into two subsections. In the first part, the nonconvex
program (2) is transformed into an unconstrained problem
by means of the exact penalty function. Based on the Clarke
subdifferential of the objective function of this unconstrained
problem, we obtain the VU-space decomposition. The sec-
ond part of Section 2 is devoted to deal with the primal-dual
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function and its second-order properties. Section 3 designs a
conceptual Algorithm 10 and gives its convergence theorem.
When a primal-dual track exists, we substitute the V-
step in Algorithm 10 with the redistributed proximal bundle
subroutine. In the final section, this algorithm is applied to
the Second-Order Cone programming problem to emphasis
the theoretical findings.

2. The VU-Decomposition Results

2.1. The VU-Space Decomposition. In program (2), 𝑓 is
piecewise 𝐶

2. Specifically, for all 𝑥 ∈ 𝑅
𝑛, 𝑓 is continuous and

there exists a finite collection of 𝐶2 functions 𝑓
𝑖
: 𝑅
𝑛

→ 𝑅,
𝑖 ∈ 𝐼 such that

𝑓 (𝑥) ∈ {𝑓
𝑖
(𝑥) | 𝑖 ∈ 𝐼 = {0, . . . , 𝑚}} . (3)

We refer to the function 𝑓
𝑖
, 𝑖 ∈ 𝐼, as structure functions.

The Clarke subdifferential of 𝑓 at a point 𝑥 ∈ 𝑅
𝑛, denoted

by 𝜕𝑓(𝑥), can be computed in terms of the gradients of the
structure functions that are active at 𝑥; see [14, Lemma 1].
More precisely,

𝜕𝑓 (𝑥) = conv{𝑔 ∈ 𝑅
𝑛
| 𝑔 = ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
∇𝑓
𝑖
(𝑥) , 𝛼 ∈ Δ

|𝐼(𝑥)|
} ,

(4)

where

𝐼 (𝑥) = {𝑖 ∈ 𝐼 | 𝑓 (𝑥) = 𝑓
𝑖
(𝑥)} (5)

is the set of active indices at 𝑥 and

Δ
𝑠
= {𝛼 ∈ 𝑅

𝑠
| 𝛼
𝑖
≥ 0,

𝑠

∑

𝑖=1

𝛼
𝑖
= 1} . (6)

Let 𝑥 ∈ 𝑅
𝑛 be a solution of (2). By continuity of the

structure functions, there exists a ball 𝐵
𝜀
(𝑥) ⊆ 𝑅

𝑛 such that

∀𝑥 ∈ 𝐵
𝜀
(𝑥) , 𝐼 (𝑥) ⊆ 𝐼 (𝑥) . (7)

For convenience, we assume that the cardinality of 𝐼(𝑥) is𝑚
1
+

1 and reorder the structure functions, so that

𝐼 (𝑥) = {0, . . . , 𝑚
1
} . (8)

From now on, we consider that

∀𝑥 ∈ 𝐵
𝜀
(𝑥) , 𝑓 (𝑥) ∈ {𝑓

𝑖
(𝑥) | 𝑖 ∈ 𝐼 (𝑥)} . (9)

Let 𝐹(𝑥, 𝜌) denote the exact penalty function of (2) with
𝑔
0
(𝑥) = 0 and∇𝑔

0
(𝑥) = 0, where𝜌 > 0 is a penalty parameter.

More precisely,

𝐹 (𝑥, 𝜌) = 𝑓 (𝑥) + 𝜌𝐺 (𝑥) , (10)

where

𝐺 (𝑥) = max {𝑔
0
(𝑥) , 𝑔

𝑚+1
(𝑥) , . . . , 𝑔

𝑙
(𝑥)} . (11)

Call

𝐽 (𝑥) = {𝑗 ∈ 𝐽 | 𝐹 (𝑥, 𝜌) = 𝑓 (𝑥) + 𝜌𝑔
𝑗
(𝑥)} (12)

the set of indices realizing the max at 𝑥.
The following assumptions and definitions will be used in

the rest of this paper.

Assumption 1. The set

{∇𝑓
𝑖
(𝑥) − ∇𝑓

0
(𝑥)}
0 ̸= 𝑖∈𝐼(𝑥)

∪ {∇𝑔
𝑗
(𝑥)}
𝑗∈𝐽(𝑥)

(13)

is linearly independent.

Assumption 2. Given 𝑥
0

∈ 𝑅
𝑁 and 𝑀

0
≥ 0 there exists an

open bounded set O and a function 𝐻 such that,L
0
:= {𝑥 ∈

𝑅
𝑛
| 𝑓(𝑥) ≤ 𝑓(𝑥

0
) + 𝑀

0
} ⊂ O, 𝐻 is lower-𝐶2 on O satisfying

𝐻 ≡ 𝑓 onL
0
.

Definition 1 (see [15, Definition 10.29]). The function 𝑓 is
lower-C2 on an open set 𝑉 if for each 𝑥 ∈ 𝑉 there is a
neighbourhood 𝑉 of 𝑥 upon which a representation 𝑓(𝑥) =

max
𝑡∈𝑇

𝑓
𝑡
(𝑥)holds, where𝑇 is a compact set and the functions

𝑓
𝑡
are of class C2 on 𝑉 such that 𝑓

𝑡
, ∇𝑓
𝑡
, and ∇

2
𝑓
𝑡
depend

continuously not just on 𝑥 ∈ 𝑉 but jointly on (𝑡, 𝑥) ∈ 𝑇 × 𝑉.

Lemma 2 (see [19, Proposition 1]). If Assumption 2 holds,
then 𝑓 is bounded below and prox-bounded.

Definition 3 (see [16, Definition 1]). Given a lower semicon-
tinuous function 𝑓, a point 𝑥 ∈ 𝑅

𝑛 where 𝑓(𝑥) is finite and
𝜕𝑓(𝑥) is nonempty, and an arbitrary subgradient 𝑔 ∈ 𝜕𝑓(𝑥),
the orthogonal subspaces

V := lin (𝜕𝑓 (𝑥) − 𝑔) , U := V
⊥ (14)

define theVU-space decomposition, and𝑅
𝑛
= U⊕V, where

⊕ is the direct sum of space decomposition.

Theorem 4. Suppose Assumption 1 holds. Then one has the
following results at 𝑥:

(i) the Clarke subdifferential of 𝐹(𝑥, 𝜌) has the following
expression:

𝜕𝐹 (𝑥, 𝜌) = ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
∇𝑓
𝑖
(𝑥) + ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
∇𝑔
𝑗
(𝑥) , (15)

where 𝛼 ∈ Δ
|𝐼(𝑥)|

; 𝛽
𝑗
≥ 0, 𝑗 ∈ 𝐽(𝑥) and ∑

𝑗∈𝐽(𝑥)
𝛽
𝑗
≤

𝜌;
(ii) let V denote the subspace generated by the Clarke

subdifferential 𝜕𝐹(𝑥, 𝜌). Then

V = lin {{∇𝑓
𝑖
(𝑥) − ∇𝑓

0
(𝑥)}
0 ̸= 𝑖∈𝐼(𝑥)

∪ {∇𝑔
𝑗
(𝑥)}
𝑗∈𝐽(𝑥)

} ,

U = { 𝑗 ∈ 𝐽𝑑 ∈ 𝑅
𝑛
| ⟨𝑑, ∇𝑓

𝑖
(𝑥) − ∇𝑓

0
(𝑥)⟩

= ⟨𝑑, ∇𝑔
𝑗
(𝑥)⟩ = 0, 0 ̸= 𝑖 ∈ 𝐼 (𝑥) , 𝑗 ∈ 𝐽 (𝑥)} .

(16)
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Proof. Since 𝑓(𝑥) defined in (2) belongs to the PDG-
structured family and by Lemma 2.1 in [16] the Clarke
subdifferential of 𝐹(𝑥, 𝜌) at 𝑥 can be formulated by

𝜕𝐹 (𝑥, 𝜌) = 𝜕𝑓 (𝑥) + 𝜌𝜕𝐺 (𝑥)

= 𝜕𝑓 (𝑥) + 𝜌 conv { ∇𝑔
𝑗
(𝑥) | 𝑗 ∈ 𝐽 (𝑥) ∪ {0}}

= ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
∇𝑓
𝑖
(𝑥) + 𝜌 ∑

𝑗∈𝐽(𝑥)∪{0}

𝜆
𝑗
∇𝑔
𝑗
(𝑥) ,

(17)

where𝛼 ∈ Δ
|𝐼(𝑥)|

; 𝜆
𝑗
≥ 0, 𝑗 ∈ 𝐽(𝑥)∪{0}, and∑

𝑗∈𝐽(𝑥)∪{0}
𝜆
𝑗
= 1.

Together with ∇𝑔
0
(𝑥) = 0, there exists

𝜕𝐹 (𝑥, 𝜌) = ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
∇𝑓
𝑖
(𝑥) + 𝜌[

[

𝜆
0
⋅ 0 + ∑

𝑗∈𝐽(𝑥)

𝜆
𝑗
∇𝑔
𝑗
(𝑥)]

]

= ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
∇𝑓
𝑖
(𝑥) + ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
∇𝑔
𝑗
(𝑥) ,

(18)

where𝛽
𝑗
= 𝜌𝜆
𝑗
≥ 0, 𝑗 ∈ 𝐽(𝑥)∪{0} and∑

𝑗∈𝐽(𝑥)
𝛽
𝑗
= 𝜌−𝛽

0
≤ 𝜌.

Letting 𝛼
0

= 1; 𝛼
𝑖
= 0, 0 ̸= 𝑖 ∈ 𝐼(𝑥) and 𝛽

0
= 𝜌; 𝛽

𝑗
= 0,

𝑗 ∈ 𝐽(𝑥), we have ∇𝑓
0
(𝑥) ∈ 𝜕𝐹(𝑥, 𝜌). Then it follows from the

definition of spaceV in Definition 3

V = lin (𝜕𝐹 (𝑥, 𝜌) − ∇𝑓
0
(𝑥))

= lin {{∇𝑓
𝑖
(𝑥) − ∇𝑓

0
(𝑥)}
0 ̸= 𝑖∈𝐼(𝑥)

∪ {∇𝑔
𝑗
(𝑥)}
𝑗∈𝐽(𝑥)

} ,

(19)

andU = V⊥ means that the second formula holds.

Remark 5. (i) Since the subspaces U and V generate the
whole space 𝑅

𝑛, every vector can be decomposed along its
VU-components at 𝑥. In particular, any 𝑥 ∈ 𝑅

𝑛 can be
expressed as

𝑅
𝑛
∋ 𝑥 = 𝑥 + 𝑢 ⊕ 𝑣 = 𝑥 + 𝑈𝑢 + 𝑉𝑣, (20)

where 𝑉 = [{∇𝑓
𝑖
(𝑥) − ∇𝑓

0
(𝑥)}
0 ̸= 𝑖∈𝐼(𝑥)

∪ {∇𝑔
𝑗
(𝑥)}
𝑗∈𝐽(𝑥)

] and

𝑈 = 𝑉
⊥.

(ii) For any 𝑠 ∈ 𝜕𝐹(𝑥, 𝜌), we have

𝑠 = 𝑠U ⊕ 𝑠V = 𝑈
𝑇

𝑠 + 𝑉
𝑇

𝑠. (21)

FromTheorem 4(ii), theU-component of a subgradients 𝑠 ∈

𝜕𝐹(𝑥, 𝜌) is the same as that of any other subgradient at 𝑥, that
is, 𝑠U = 𝑈

𝑇

𝑠.

2.2. Primal-Dual Function and Its Second-Order Properties.
In order to obtain a fast algorithm for (2), we will define
an intermediate function.This function is called primal-dual
function which isC2 about 𝑢 ∈ U.

Definition 6 (see [8, Definition 1]). We say that (𝜒(𝑢), 𝛾(𝑢))

is a primal-dual track leading to (𝑥, 0), a minimizer of 𝑓 and
zero subgradient pair, if for all 𝑢 ∈ 𝑅

dimU small enough

the primal track 𝜒 (𝑢) = 𝑥 + 𝑢 ⊕ 𝑣 (𝑢) ,

the dual track 𝛾 (𝑢) = arg min {
𝑔
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: 𝑔 ∈ 𝜕𝑓 (𝜒 (𝑢))}

(22)

satisfy the following:

(i) 𝑣 : 𝑅
dimU

→ 𝑅
dimV is a C2 function satisfying

𝑉𝑣(𝑢) ∈ 𝑊U(𝑢; 𝑔V) for all 𝑔 ∈ ri 𝜕𝑓(𝑥),

(ii) the Jacobian 𝐽
𝜒
(𝑢) is a basis matrix forV(𝜒(𝑢))

⊥,

(iii) the particular U-Lagrangian 𝐿U(𝑢; 0) is a C2-
function.

When we write 𝑣(𝑢) we implicitly assume that dimU ≥ 1. If
dimU = 0 we define the primal-dual track to be the point
(𝑥, 0). If dimU = 𝑛 then (𝜒(𝑢), 𝛾(𝑢)) = (𝑥 + 𝑢, ∇𝑓(𝑥 + 𝑢)) for
all 𝑢 in a ball about 0 ∈ 𝑅

𝑛.

Theorem 7. Suppose the Assumption 1 holds. Then for all 𝑢
small enough, the following hold:

(i) the nonlinear system, with variable 𝑣 and the parame-
ter 𝑢,

𝑓
𝑖
(𝑥 + 𝑈𝑢 + 𝑉𝑣) − 𝑓

0
(𝑥 + 𝑈𝑢 + 𝑉𝑣) = 0, 0 ̸= 𝑖 ∈ 𝐼 (𝑥) ,

𝑔
𝑗
(𝑥 + 𝑈𝑢 + 𝑉𝑣) = 0, 𝑗 ∈ 𝐽 (𝑥) ,

(23)

has a unique solution 𝑣 = 𝑣(𝑢) and 𝑣 : 𝑅
dimU

→

𝑅
dimV is aC2 function;

(ii) primal track 𝜒(𝑢) := 𝑥 + 𝑢 ⊕ 𝑣(𝑢) is 𝐶2, with

𝐽𝜒 (𝑢) = 𝑈 + 𝑉𝐽𝑣 (𝑢) (24)

and 𝑣(𝑢) in (i) is 𝐶2, with

𝐽𝑣 (𝑢) = −(𝑉(𝑢)
𝑇
𝑉)
−1

𝑉(𝑢)
𝑇
𝑈, (25)

where

𝑉 (𝑢) = [{∇𝑓
𝑖
(𝑥) − ∇𝑓

0
(𝑥)}
0 ̸= 𝑖∈𝐼(𝑥)

∪ {∇𝑔
𝑗
(𝑥)}
𝑗∈𝐽(𝑥)

] .

(26)

In particular, 𝜒(0) = 𝑥, 𝐽𝑣(0) = 0, and 𝐽𝜒(0) = 𝑈;
(iii) 𝑓(𝜒(𝑢)) = 𝑓𝑖(𝜒(𝑢)), 𝑖 ∈ 𝐼(𝑥) and 𝐺(𝜒(𝑢)) = 0.

Proof. Items (i) and (ii) follow from the assumption that 𝑓
𝑖
,

𝑔
𝑗
are 𝐶
2 along the lines of [5, Theorem 5.1] and applying a

Second-Order Implicit Function Theorem; see [17, Theorem
2.1].The conclusion of (iii) can be obtained in terms of (i) and
the definitions of 𝐺(𝑥) and 𝜒(𝑢).
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Lemma 8 (see [7, Theorem 4.5]). Given 𝑔 ∈ 𝜕𝐹(𝑥, 𝜌), the
system with {𝛼

𝑖
(𝑢)}
𝑖∈𝐼(𝑥)

, {𝛽
𝑗
(𝑢)}
𝑗∈𝐽(𝑥)∪{0}

𝑉
𝑇
[

[

∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(𝜒 (𝑢))+ ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
(𝑢) ∇𝑔

𝑗
(𝜒 (𝑢)) − 𝑔]

]

= 0,

∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝑢) = 1,

∑

𝑗∈𝐽(𝑥)∪{0}

𝛽
𝑗
(𝑢) = 𝜌,

(27)

has a unique solution. In particular, 𝛼
𝑖
(0) = 𝛼

𝑖
, 𝑖 ∈ 𝐼(𝑥) and

𝛽
𝑗
(0) = 𝛽

𝑗
, 𝑗 ∈ 𝐽(𝑥) ∪ {0}.

The following theorem gives the definition and properties
of primal-dual function.

Theorem 9. Given 𝑔 ∈ 𝜕𝐹(𝑥, 𝜌) and supposing Assumption 1
holds, consider the primal-dual function:

𝐿
𝐼
(𝑢, 𝑔V) := 𝐹 (𝜒 (𝑢) , 𝜌) − ⟨𝑔V, 𝑣 (𝑢)⟩

V
. (28)

Then for 𝑢 small enough, the following assertions are true:

(i) 𝐿
𝐼
is a 𝐶
2 function of 𝑢;

(ii) the gradient of 𝐿
𝐼
is given by

∇𝐿
𝐼
(𝑢; 𝑔V) = 𝑈

𝑇

𝑔 (𝑢) , (29)

where

𝑔 (𝑢) = ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(𝜒 (𝑢)) + ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
(𝑢) ∇𝑔

𝑗
(𝜒 (𝑢)) .

(30)

In particular, when 𝑢 = 0, one has

∇𝐿
𝐼
(0; 𝑔V) = 𝑈

𝑇

𝑔 (0) = 𝑈
𝑇

𝑔, (31)

where

𝑔 (0) = ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
∇𝑓
𝑖
(𝑥) + ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
∇𝑔
𝑗
(𝑥) ; (32)

(iii) theU-Hessian of 𝐹 is given by

∇
2
𝐿
𝐼
(𝑢; 𝑔V) = 𝐽𝜒(𝑢)

𝑇
𝑀(𝑢) 𝐽𝜒 (𝑢) , (33)

where

𝑀(𝑢) = ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝑢) ∇
2
𝑓
𝑖
(𝜒 (𝑢)) + ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
(𝑢) ∇
2
𝑔
𝑗
(𝜒 (𝑢)) .

(34)

In particular, when 𝑢 = 0, one has

∇
2
𝐿
𝐼
(0; 𝑔V) = 𝑈

𝑇

𝑀(0)𝑈, (35)

where

𝑀(0) = ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
∇
2
𝑓
𝑖
(𝑥) + ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
∇
2
𝑔
𝑗
(𝑥) . (36)

Proof. (i) FromTheorem 7(iii), we have

𝐿
𝐼
(𝑢; 𝑔V) = 𝐹 (𝜒 (𝑢) , 𝜌) − ⟨𝑔V, 𝑣 (𝑢)⟩

V

= 𝑓
𝑖
(𝜒 (𝑢)) − ⟨𝑔V, 𝑣 (𝑢)⟩

V
.

(37)

Since 𝑓
𝑖
and 𝑣(𝑢) are 𝐶

2, (i) holds.
(ii) In view of the chain rule, differentiating the following

system with respect to 𝑢:

𝐿
𝐼
(𝑢; 𝑔V) = 𝑓

𝑖
(𝜒 (𝑢)) − ⟨ 𝑔V, 𝑣 (𝑢)⟩

V
,

𝑔
𝑗
(𝜒 (𝑢)) = 0, 𝑗 ∈ 𝐽 (𝑥) ,

(38)

we have

∇𝐿
𝐼
(𝑢; 𝑔V) = 𝐽𝜒(𝑢)

𝑇
∇𝑓
𝑖
(𝜒 (𝑢)) − 𝐽𝑣(𝑢)

𝑇
𝑉
𝑇

𝑔,

𝐽𝜒(𝑢)
𝑇
∇𝑔
𝑗
(𝜒 (𝑢)) = 0, 𝑗 ∈ 𝐽 (𝑥) .

(39)

Multiplying each equation by the appropriate𝛼
𝑖
(𝑢) and𝛽

𝑗
(𝑢),

respectively, summing the results, and using the fact that
∑
𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝑢) = 1 yields

∇𝐿
𝐼
(𝑢; 𝑔V) = 𝐽𝜒(𝑢)

𝑇
𝑔 (𝑢) − 𝐽𝑣(𝑢)

𝑇
𝑉
𝑇

𝑔, (40)

where

𝑔 (𝑢) = ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(𝜒 (𝑢)) + ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
(𝑢) ∇𝑔

𝑗
(𝜒 (𝑢)) .

(41)

Using the transpose of the expression of 𝐽𝜒(𝑢), we get

∇𝐿
𝐼
(𝑢; 𝑔V) = 𝑈

𝑇

𝑔 (𝑢) + 𝐽𝑣(𝑢)
𝑇
𝑉
𝑇

(𝑔 (𝑢) − 𝑔) , (42)

which together with (6.11) in [5] yields the desired result.
In particular, if 𝑢 = 0, then 𝑣(0) = 0 and 𝜒(0) = 𝑥. It

follows from Remark 5(ii) that

∇𝐿
𝐼
(0; 𝑔V) = 𝑈

𝑇

𝑔 (0) = 𝑈
𝑇

𝑔, (43)

where

𝑔 (0) = ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
∇𝑓
𝑖
(𝑥) + ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
∇𝑔
𝑗
(𝑥) . (44)

(iii) Differentiating (ii) with respect to 𝑢, we obtain

∇
2
𝐿
𝐼
(𝑢; 𝑔V) = 𝑈

𝑇

𝑀(𝑢) 𝐽𝜒 (𝑢)

+ 𝑈
𝑇
[

[

∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(𝜒 (𝑢)) 𝐽𝛼

𝑖
(𝑢)

+ ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
(𝑢) ∇𝑔

𝑗
(𝜒 (𝑢)) 𝐽𝛽

𝑗
(𝑢)]

]

,

(45)
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where

𝑀(𝑢) = ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝑢) ∇
2
𝑓
𝑖
(𝜒 (𝑢)) + ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
(𝑢) ∇
2
𝑔
𝑗
(𝜒 (𝑢)) .

(46)

According to the proof of Theorem 6.3 in [5], we get

∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(𝜒 (𝑢)) 𝐽𝛼

𝑖
(𝑢) + ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
(𝑢) ∇𝑔

𝑗
(𝜒 (𝑢)) 𝐽𝛽

𝑗
(𝑢)

= −𝑉 (𝑢) (𝑉
𝑇

𝑉 (𝑢))

−1

𝑉
𝑇

𝑀(𝑢) 𝐽𝜒 (𝑢) .

(47)

Then

∇
2
𝐿
𝐼
(𝑢; 𝑔V) = 𝑈

𝑇

𝑀(𝑢) 𝐽𝜒 (𝑢)

− 𝑈
𝑇

𝑉 (𝑢) (𝑉
𝑇

𝑉 (𝑢))

−1

𝑉
𝑇

𝑀(𝑢) 𝐽𝜒 (𝑢)

= 𝑈
𝑇

𝑀(𝑢) 𝐽𝜒 (𝑢) + 𝐽𝑣(𝑢)
𝑇
𝑉
𝑇

𝑀(𝑢) 𝐽𝜒 (𝑢)

= [𝑈
𝑇

+ 𝐽𝑣(𝑢)
𝑇
𝑉
𝑇

]𝑀 (𝑢) 𝐽𝜒 (𝑢)

= 𝐽𝜒(𝑢)
𝑇
𝑀(𝑢) 𝐽𝜒 (𝑢) ,

(48)

when 𝑢 = 0,

∇
2
𝐿
𝐼
(0; 𝑔V) = 𝑈

𝑇

𝑀(0)𝑈,

where 𝑀(0) = ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝑢) ∇
2
𝑓
𝑖
(𝑥) + ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
(𝑢) ∇
2
𝑔
𝑗
(𝑥) .

(49)

3. Algorithm and Convergence Analysis

Supposing 0 ∈ 𝜕𝐹(𝑥, 𝜌), we give an algorithm frame which
can solve (2).This algorithmmakes a step in theV-subspace,
followed by a U-Newton step in order to obtain superlinear
convergence rate.

Algorithm 10 (algorithm frame).
Step 0 (Initialization). Given 𝜀 > 0, choose a starting point
𝑥
(0) close to 𝑥 enough, and a Clarke subgradient 𝑔

(0)
∈

𝜕𝐹(𝑥
(0)

, 𝜌), set 𝑘 = 0.
Step 1. Stop if


𝑔
(𝑘)

≤ 𝜀. (50)

Step 2. Find the active index set 𝐼(𝑥) and 𝐽(𝑥).
Step 3. ConstructVU-decomposition at 𝑥, that is, 𝑅𝑛 = V ⊕

U. Compute

∇
2
𝐿
𝐼
(0; 0) = 𝑈

𝑇

𝑀(0)𝑈, (51)

where

𝑀(0) = ∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
∇
2
𝑓
𝑖
(𝑥) + ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
∇
2
𝑔
𝑗
(𝑥) . (52)

Step 4. PerformV-step. Compute 𝛿
(𝑘)

V
which denotes 𝑣(𝑢) in

(23) and set 𝑥(𝑘) = 𝑥
(𝑘)

+ 0 ⊕ 𝛿
(𝑘)

V
.

Step 5. PerformU-step. Compute 𝛿
(𝑘)

U
from the system

𝑈
𝑇

𝑀(0)𝑈𝛿U + 𝑈
𝑇

𝑔
(𝑘)

= 0, (53)

where

∑

𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝑢) ∇𝑓

𝑖
(𝑥
(𝑘)

) + ∑

𝑗∈𝐽(𝑥)

𝛽
𝑗
(𝑢) ∇𝑔

𝑗
(𝑥
(𝑘)

)

= 𝑔
(𝑘)

∈ 𝜕𝐹 (𝑥
(𝑘)

, 𝜌) ,

(54)

is such that 𝑉𝑇𝑔(𝑘) = 0. Compute 𝑥
(𝑘+1)

= 𝑥
(𝑘)

+ 𝛿
(𝑘)

U
⊕ 0 =

𝑥
(𝑘)

+ 𝛿
(𝑘)

U
⊕ 𝛿
(𝑘)

V
.

Step 6 (update). Set 𝑘 = 𝑘 + 1, and return to Step 1.

Theorem 11. Suppose the starting point 𝑥(0) close to 𝑥 enough
and 0 ∈ ri 𝜕𝐹(𝑥, 𝜌), ∇2𝐿

𝐼
(0; 0) ≻ 0. Then the iteration points

{𝑥
(𝑘)

}
∞

𝑘=1
generated by the algorithm converge and satisfy


𝑥
(𝑘+1)

− 𝑥

= 𝑜 (


𝑥
(𝑘)

− 𝑥

) . (55)

Proof. Let 𝑢(𝑘) = (𝑥
(𝑘)

−𝑥)U, 𝑣
(𝑘)

= (𝑥
(𝑘)

−𝑥)V+𝛿
(𝑘)

V
. It follows

fromTheorem 7(i) that

(𝑥
(𝑘+1)

− 𝑥)
V


=


(𝑥
(𝑘)

− 𝑥)
V



= 𝑜

(𝑥
(𝑘)

− 𝑥)
U


= 𝑜


(𝑥
(𝑘)

− 𝑥)

.

(56)

Since ∇
2
𝐿
𝐼
(0; 0) exists and ∇𝐿

𝐼
(0; 0) = 0, we have from the

definition ofU-Hessian matrix that

∇𝐿
𝐼
(𝑢
(𝑘)

; 0) = 𝑈
𝑇

𝑔
(𝑘)

= 0 + ∇
2
𝐿
𝐼
(0; 0) 𝑢

(𝑘)
+ 𝑜 (


𝑢
(𝑘)U

) .

(57)

By virtue of (53), we have∇
2
𝐿
𝐼
(0; 0)(𝑢

(𝑘)
+𝛿
(𝑘)

U
) = 𝑜(‖𝑢

(𝑘)
‖U).

It follows from the hypothesis ∇
2
𝐿
𝐼
(0; 0) ≻ 0 that ∇2𝐿

𝐼
(0; 0)

is invertible and hence ‖𝑢
(𝑘)

+ 𝛿
(𝑘)

U
‖ = 𝑜(‖𝑢

(𝑘)
‖U). In

consequence, one has

(𝑥
(𝑘+1)

− 𝑥)
U

= (𝑥
(𝑘+1)

− 𝑥
(𝑘)

)
U

+ (𝑥
(𝑘)

− 𝑥
(𝑘)

)
U

+ (𝑥
(𝑘)

− 𝑥)
U

= 𝑢
(𝑘)

+ 𝛿
(𝑘)

U = 𝑜 (

𝑢
(𝑘)U

)

= 𝑜 (

𝑥
(𝑘)

− 𝑥

) .

(58)

The proof is completed by combining (56) and (58).
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Since Algorithm 10 relies on knowing the subspaces
U and V and converges only locally, it needs significant
modification for implemental. Our VU-algorithm defined
below finds V-step by approximating equivalent proximal
points.

Given a positive scalar parameter 𝜆, the proximal point
function depending on 𝑓 is defined by

𝑝
𝜆
(𝑥) := arg min

𝑝∈𝑅
𝑛

{𝑓 (𝑝) +
𝜆

2

𝑝 − 𝑥


2

} for 𝑥 ∈ 𝑅
𝑛
.

(59)

If Assumption 2 holds, then the proximal point 𝑝
𝜆
is single-

valued; see [18, Theorem 1].
Corresponding to the primal track, the dual track is

defined by

𝛾 (𝑢) = arg min {
𝑔



2

| 𝑔 ∈ 𝜕𝐹 (𝜒 (𝑢) , 𝜌)} . (60)

For its properties, one can refer to [16].
The next theorem shows that V-steps in Algorithm 10

can be replaced by proximal steps, at least in the locality of
a minimizer, if Assumptions 1 and 2 hold.

Theorem 12. Suppose that Assumptions 1 and 2 hold, and that
0 ∈ ri 𝜕𝐺(𝑥). Then for all 𝜆 > 0 sufficiently large and for any
sequence 𝑥

𝑘
→ 𝑥, one has

𝑝
𝜆
(𝑥
𝑘
) = 𝜒 (𝑢

𝑘
) ,

𝛾
𝑘
= arg min {

𝑔


2

| 𝑔 ∈ 𝜕𝐹 (𝑝
𝜆
(𝑥
𝑘
) , 𝜌)} ,

(61)

for all large 𝑘, where 𝑢
𝑘
:= (𝑝
𝜆
(𝑥
𝑘
) − 𝑥)U.

Proof. Since 𝑔
𝑗
are 𝐶
2, 𝑗 = 𝑚 + 1, . . . , 𝑙 and 𝑔

𝑗
are lower-

𝐶
2. Functions defined by sums, maximums are lower-𝐶2 [15,

Example 10.35]; therefore 𝐹 is lower-𝐶2. From Lemma 2 and
[15, Proposition 13.33], we have 𝐹 is prox-bounded and -
regular. Appling the definition of 𝐹 and the fact 𝑓, 𝑔

𝑗
are 𝐶
2,

respectively, we have that𝐹 is subdifferentially regular. So𝑓 is
a function with pdg structure satisfying strong transversality
and prox-regular at 𝑥, and 0 ∈ ri 𝜕𝐺(𝑥), 0 ∈ ri 𝜕𝐹(𝑥, 𝜌), by
[16, Theorem 5.3] we get the result.

In order to define a nonconvex VU-algorithm for (2)
problem, we will use a nonconvex bundle method to approx-
imate proximal points. Many practically nonconvex bundle
algorithms are modifications of some convex forerunner,
with a fixed model function. Basically, such fixes consist
in redefining linearization errors to enforce nonnegativity.
However, a redistributed proximal bundle method for non-
convex optimization [19] based on [18] is a different picture.
This work proposes an approach based on generating cutting-
planes models, not of the objective function as most bundle
methods do, but of a local convexification of the objective
function. They deal with the augmented functions at 𝑥:

𝐹
𝑥

𝜂
𝑛

(⋅, 𝜌) := 𝐹 (⋅, 𝜌) +
1

2
𝜂
𝑛‖⋅ − 𝑥‖

2
, (62)

where 𝜂
𝑛
denotes convexification parameter; in the following

𝜇
𝑛
is model prox-parameter and 𝜆

𝑛
strands for the prox-

parameter, which satisfies 𝜆
𝑛
= 𝜂
𝑛
+ 𝜇
𝑛
.

Bundle subroutine accumulates information from past
points 𝑥

𝑖
in the form

⋃

𝑖∈B

(𝑒
𝑖
, 𝑑
𝑖
, Δ
𝑖
, 𝑔
𝑖
) , (63)

where B is some index set containing an index 𝑖 such that
𝑥
𝑖

= 𝑥, 𝑒
𝑖

= 𝐹(𝑥, 𝜌) − (𝐹(𝑥
𝑖
, 𝜌) + ⟨𝑔

𝑖
, 𝑥 − 𝑥

𝑖
⟩), 𝑑
𝑖

=

(1/2)‖ 𝑥
𝑖
− 𝑥‖
2, Δ
𝑖

= 𝑥
𝑖
− 𝑥, and 𝑔

𝑖
∈ 𝜕𝐹(𝑥

𝑖
, 𝜌). This

information is used at each iteration to define a 𝑉-model
underestimating 𝐹

𝑥

𝜂
𝑛

via the cutting-plane function.

𝜑
𝑛
(𝑦) = 𝐹 (𝑥, 𝜌) + max

𝑖∈B
{ − (𝑒

𝑖
+ 𝜂
𝑛
𝑑
𝑖
)

+ ⟨(𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
) , 𝑦 − 𝑥⟩} .

(64)

To approximate a proximal point we solve a first quadratic
programming subproblem 𝜒

−QP, which has the following
form and properties.

The problem 𝜒
−QP

min 𝑟 +
1

2
𝜇
𝑛

 𝑝 − 𝑥


2

s.t. 𝑟 ≥ 𝐹 (𝑥, 𝜌) − (𝑒
𝑖
+ 𝜂
𝑛
𝑑
𝑖
)

+ ⟨(𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
) , 𝑝 − 𝑥⟩ , 𝑖 ∈ B

(65)

has a dual

min 1

2𝜇
𝑛



∑

𝑖∈B

𝛼
𝑖
(𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
)



2

+ ∑

𝑖∈B

𝛼
𝑖
(𝑒
𝑖
+ 𝜂
𝑛
𝑑
𝑖
)

s.t. 𝛼
𝑖
≥ 0, 𝑖 ∈ B, ∑

𝑖∈B

𝛼
𝑖
= 1.

(66)

Their respective solutions, denoted by (𝑟, 𝑝) and �̂� =

(�̂�
1
, . . . , �̂�

|B|), satisfy

𝑟 = 𝜑
𝑛
(𝑝) , 𝑝 = 𝑥 −

1

𝜇
𝑛

𝑔, where 𝑔 := ∑

𝑖∈B

�̂�
𝑖
(𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
) .

(67)

In addition, �̂�
𝑖
= 0 for all 𝑖 ∈ B such that

𝑟 > 𝐹 (𝑥, 𝜌) − (𝑒
𝑖
+ 𝜂
𝑛
𝑑
𝑖
) + ⟨(𝑔

𝑖
+ 𝜂
𝑛
Δ
𝑖
) , 𝑝 − 𝑥⟩ ,

𝜑
𝑛
(𝑝) = 𝐹 (𝑥, 𝜌) − ∑

𝑖∈B

�̂�
𝑖
(𝑒
𝑖
+ 𝜂
𝑛
𝑑
𝑖
)

+ ⟨ ∑

𝑖∈B

�̂�
𝑖
(𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
) , 𝑝 − 𝑥⟩

= 𝐹 (𝑥, 𝜌) − ∑

𝑖∈B

�̂�
𝑖
(𝑒
𝑖
+ 𝜂
𝑛
𝑑
𝑖
) −

1

𝜇
𝑛

𝑔


2

.

(68)



Abstract and Applied Analysis 7

For convenience, in the sequel we denote the output of these
calculations by

(𝑝, 𝑟) = 𝜒
−QP (𝜇

𝑛
, 𝜂
𝑛
, {(𝑒
𝑖
+ 𝜂
𝑛
𝑑
𝑖
, 𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
)}
𝑖∈B

) . (69)

The vector 𝑝 is an estimate of a proximal point and, hence,
approximates a primal track point when the latter exists. To
proceed further we define new data, corresponding to a new
index 𝑖

+
, by letting 𝑥

𝑖
+

:= 𝑝 and computing

𝜀 := 𝐹 (𝑝, 𝜌) +
𝜂
𝑛

2

𝑝 − 𝑥


2

− 𝜑
𝑛
(𝑝) . (70)

An approximate dual track point, denoted by 𝑠, is constructed
by solving a second quadratic problem, which depends on a
new index set:

B̂ := {𝑖 ∈ B : 𝑟 = 𝐹 (𝑥, 𝜌) − (𝑒
𝑖
+ 𝜂
𝑛
𝑑
𝑖
)

+ ⟨(𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
) , 𝑝 − 𝑥⟩} ∪ {𝑖

+
} .

(71)

The second quadratic programming problem, denoted by
𝛾
−QP,

min 𝑟 +
1

2

𝑝 − 𝑥


2

s.t. 𝑟 ≥ ⟨(𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
) , 𝑝 − 𝑥⟩ , 𝑖 ∈ B̂,

(72)

has a dual problem similar to (66),

min 1

2



∑

𝑖∈B̂

𝛼
𝑖
(𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
)



2

s.t. 𝛼
𝑖
≥ 0, 𝑖 ∈ B̂, ∑

𝑖∈B̂

𝛼
𝑖
= 1.

(73)

Similar to (67), the respective solutions, denoted by (𝑟, 𝑝) and
𝛼, satisfy

𝑝 − 𝑥 = −𝑠 where 𝑠 := ∑

𝑖∈B̂

𝛼
𝑖
(𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
) . (74)

Let an active index set be defined by

B̂act := {𝑖 ∈ B̂ : 𝑟 = (𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
)
𝑇

(𝑝 − 𝑥)} . (75)

Then, from (74), 𝑟 = −(𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
)
𝑇
𝑠, 𝑗 ∈ B̂act, so

[(𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
) − (𝑔

𝑙
+ 𝜂
𝑛
Δ
𝑙
)]
𝑇

𝑠 = 0, (76)

for all such 𝑖 and for a fixed 𝑙 ∈ B̂act. Define a full column
rank matrix �̂� by choosing the largest number of indices
𝑖 satisfying (76) such that the corresponding vectors (𝑔

𝑖
+

𝜂
𝑛
Δ
𝑖
) − (𝑔

𝑙
+ 𝜂
𝑛
Δ
𝑙
) are linearly independent and by letting

these vectors be the columns of �̂�. Then let �̂� be a matrix
whose columns form an orthonormal basis for the null-space
of �̂�𝑇. And let �̂� = 𝐼 if �̂� is vacuous.

For convenience, in the sequel we denote the output from
these calculation by

(𝑠, �̂�) = 𝛾
−QP ({𝑔

𝑖
+ 𝜂
𝑛
Δ
𝑖
}
𝑖∈B̂

) . (77)

The bundle subprocedure is terminated and 𝑝 is declared to
be approximation of 𝑝

𝜆
(𝑥) if

𝜀 ≤ ‖𝑠‖
2
. (78)

Otherwise, B above is replaced by B̂ and new iterate
data are computed by solving the updated two quadratic
programming problems above.

Now we consider a heuristic algorithm depending on the
VU-theory and the primal-dual track point approximations
above.

Algorithm 13 (nonconvexVU-Algorithm for (2)).
Step 0. Select initial starting point 𝑝

0
and positive parameter

𝑀
0
, 𝜆
0
, 𝜉, 𝜌, a convexification growth parameter Γ > 1.

Compute the oracle values 𝐹(𝑝
0
, 𝜌) and 𝑔

0
∈ 𝜕𝐹(𝑝

0
, 𝜌), and

the additional bundle information (𝑒
0
, 𝑑
0
, Δ
0
) := (0, 0, 0),

with (𝜇
0
, 𝜂
0
) = (𝜆

0
, 0). Also, let 𝑈

0
be a matrix with

orthonormal 𝑛-dimensional columns estimating an optimal
U-basis. Set 𝑠

0
= 𝑔
0 and 𝑘 := 0.

Step 1. Stop if ‖𝑠
𝑘
‖
2
≤ 𝜉.

Step 2. Choose an 𝑛
𝑘
× 𝑛
𝑘
positive definite matrix 𝐻

𝑘
, where

𝑛
𝑘
is the number of columns of 𝑈

𝑘
.

Step 3. Compute an U-Newton step by solving the linear
system

𝐻
𝑘
𝛿
𝑘
= −𝑈
𝑇

𝑘
𝑠
𝑘
. (79)

Set 𝑥
𝑘+1

:= 𝑝
𝑘
+ 𝑈
𝑘
𝛿
𝑘
.

Step 4. Initialize B and run the bundle subprocedure with
𝑥 = 𝑥



𝑘+1
. Compute recursively,

(𝑝, 𝑟) = 𝜒
−QP (𝑥, {(𝑒

𝑖
+ 𝜂
𝑛
𝑑
𝑖
, 𝑔
𝑖
+ 𝜂
𝑛
Δ
𝑖
)}
𝑖∈B

) ,

𝜀 = 𝐹 (𝑝, 𝜌) +
𝜂
𝑛

2

𝑝 − 𝑥


2

− 𝜑
𝑛
(𝑝) , B̂ given by (71) ,

(𝑠, �̂�) = 𝛾
−QP ({𝑔

𝑖
+ 𝜂
𝑛
Δ
𝑖
}
𝑖∈B̂

)

(80)

until satisfaction of (78). Then set (𝜀


𝑘+1
, 𝑝


𝑘+1
, 𝑠


𝑘+1
, 𝑈


𝑘+1
) :=

(𝜀, 𝑝, 𝑠, �̂�).
Step 5. If

𝐹 (𝑝


𝑘+1
, 𝜌) − 𝐹 (𝑝

𝑘
, 𝜌) ≤ −


𝑠


𝑘+1



2

, (81)

then set

(𝑥
𝑘+1

, 𝜀
𝑘+1

, 𝑝
𝑘+1

, 𝑠
𝑘+1

, 𝑈
𝑘+1

)

:= (𝑥


𝑘+1
, 𝜀


𝑘+1
, 𝑝


𝑘+1
, 𝑠


𝑘+1
, 𝑈


𝑘+1
) .

(82)
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Table 1: Numerical results.

𝑛 #𝑓/𝑔 ‖𝑥
𝑘
− 𝑥‖ ‖𝑥

0
− 𝑥‖

40 5 1.0084 × 10−12 3.3503 × 103

100 10 5.0028 × 10−12 5.8699 × 103

200 15 6.7345 × 10−12 8.1666 × 103

500 20 1.2895 × 10−11 1.3440 × 104

1000 25 1.6550 × 10−11 1.8329 × 104

And apply rule

𝜂
𝑛+1

:= 𝜂
𝑛

if 𝜂
min
𝑛+1

≤ 𝜂
𝑛
,

𝜂
𝑛+1

:= Γ𝜂
min
𝑛+1

, 𝜆
𝑛
:= 𝜇
𝑛
+ 𝜂
𝑛+1

if 𝜂
min
𝑛+1

> 𝜂
𝑛
,

(83)

where

𝜂
min
𝑛+1

:= max
𝑖∈B
𝑑
𝑖
>0

−
𝑒
𝑖

𝑑
𝑖

. (84)

Otherwise, execute a line search on the line determined
by 𝑝
𝑘
and 𝑝



𝑘+1
to find 𝑥

𝑘+1
thereon satisfying 𝑓(𝑥

𝑘+1
) ≤

𝑓(𝑝
𝑘
); reinitialize B and restart the bundle subroutine with

𝑥 = 𝑥
𝑘+1

, and set 𝜂
0

:= 𝜂, 𝜇
0

:= Γ𝜇
𝑛
, 𝜆
0

:= 𝜂
0

+ 𝜇
0
,

(𝑒
0
, 𝑑
0
, Δ
0
) := (0, 0, 0) to find new values for (𝜀, 𝑝, 𝑠, �̂�); then

set (𝜀
𝑘+1

, 𝑝
𝑘+1

, 𝑠
𝑘+1

, 𝑈
𝑘+1

) = (𝜀, 𝑝, 𝑠, �̂�).
Step 6. Replace 𝑘 by 𝑘 + 1 and go to Step 1.

4. An Illustration Numerical Example

Now we report numerical result to illustrate Algorithm 13.
Our numerical experiment is carried out in Matlab 7.8.0
running on a PC Intel Core 2DuoCPU2.93GHz and 2.00GB
memory.

We consider the following Second-Order Cone program-
ming problem (SOCP):

min
𝑝

∑

𝑗=1

1

2
𝑥
𝑗𝑇

𝐷
𝑗
𝑥
𝑗

s.t. 𝑥
𝑗
∈ K
𝑛
𝑗 , 𝑗 = 1, . . . , 𝑝,

(85)

where𝐷
𝑗
∈ 𝑅
𝑛
𝑗 ×𝑅
𝑛
𝑗 is 𝑛
𝑗
×𝑛
𝑗
symmetric infinite matrix and

𝑥
𝑗
= (𝑥
𝑗

0
, 𝑥
𝑗
) with 𝑥

𝑗
= (𝑥
𝑗

1
, . . . , 𝑥

𝑗

𝑛
𝑗
−1

).
This (SOCP) can be formulated in the form:

min
𝑝

∑

𝑗=1

1

2
𝑥
𝑗𝑇

𝐷
𝑗
𝑥
𝑗

s.t. 𝑥
𝑗

0
≥


𝑥
𝑗

, 𝑗 = 1, . . . , 𝑝,

(86)

equivalently,

min
𝑝

∑

𝑗=1

1

2
𝑥
𝑗𝑇

𝐷
𝑗
𝑥
𝑗

s.t.
𝑛
𝑗
−1

∑

𝑖=1

(𝑥
𝑗

𝑖
)
2

− (𝑥
𝑗

0
)
2

≤ 0, 𝑗 = 1, . . . , 𝑝

− 𝑥
𝑗

0
≤ 0, 𝑗 = 1, . . . , 𝑝,

(87)

Let

𝑥
𝑗
=

{{{

{{{

{

𝑛
𝑗
−1

∑

𝑖=1

(𝑥
𝑗

𝑖
)
2

− (𝑥
𝑗

0
)
2

≤ 0, 𝑗 = 1, . . . , 𝑝

−𝑥
𝑗−𝑝

0
≤ 0, 𝑗 = 𝑝 + 1, . . . , 2𝑝.

(88)

Then (SOCP) problem is equivalent to the nonlinear pro-
gramming problem:

min
𝑝

∑

𝑗=1

1

2
𝑥
𝑗𝑇

𝐷
𝑗
𝑥
𝑗

s.t. 𝑥
𝑗
≤ 0, 𝑗 = 1, . . . , 2𝑝.

(89)

Let 𝐷 = diag(𝐷
1
, . . . , 𝐷

𝑝
), 𝑥 = (𝑥

1𝑇
, . . . , 𝑥

𝑝𝑇
)
𝑇, then

the exact penalty function of this nonlinear programming
problem is

min 𝐹 (𝑥, 𝜌) =
1

2
𝑥
𝑇
𝐷𝑥 + 𝜌max {𝑥

0
, 𝑥
1
, . . . , 𝑥

2𝑝
} , (90)

with 𝑥
0
= 0.

In the implementation, the initial starting point is chosen
arbitrarily, and the parameters have values 𝑀

0
= 10, 𝜆

0
=

10, 𝜉 = 1.0 × 10
−5 and Γ = 2. Optimality is declared when

stopping criterion is satisfied.
Numerical results are summarized in Table 1 in which 𝑛

denotes the number of variables, #𝑓/𝑔 denotes the number
of function and one subgradient evaluation.
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