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The stabilized Gauge-Uzawa method (SGUM), which is a 2nd-order projection type algorithm used to solve Navier-Stokes
equations, has been newly constructed in the work of Pyo, 2013. In this paper, we apply the SGUM to the evolution Boussinesq
equations, which model the thermal driven motion of incompressible fluids. We prove that SGUM is unconditionally stable, and
we perform error estimations on the fully discrete finite element space via variational approach for the velocity, pressure, and
temperature, the three physical unknowns. We conclude with numerical tests to check accuracy and physically relevant numerical
simulations, the Bénard convection problem and the thermal driven cavity flow.

1. Introduction

The stabilized Gauge-Uzawa method (SGUM) is a 2nd-order
projection type method to solve the evolution Navier-Stokes
equations. In this paper, we extend SGUM to the evolution

Boussinesq equations: given a bounded polygon Q in R with
d=2or3,

ut+(u-V)u+Vp—yAu+K[42g6=f, in Q,
V-u=0, inQ, ey
0,+u-VO—-AuA0 =b, inQ,
with initial conditions u(x,0) = u’ 08(x,0) = 6° in Q,
vanishing Dirichlet boundary conditions u = 0,0 = 0
on 0Q), and pressure mean-value jQ p = 0. The forcing

functions f and b are given, and g is the vector of gravitational
acceleration. The nondimensional numbers 4 = Re™' and
A = Pr’! are reciprocal of the Reynolds and Prandtl
numbers, respectively, whereas x is the Grashof number.
The Boussinesq system (1) describes fluid motion due to
density differences which are in turn induced by temperature
gradients: hot and thus less dense fluid tends to rise against
gravity and cooler fluid falls in its place. The simplest
governing equations are thus the Navier-Stokes equations for
motion of an incompressible fluid, with forcing «u*g6 due to

buoyancy and the heat equation for diffusion and transport
of heat. Density differences are thus ignored altogether except
for buoyancy.

The projection type methods are representative solvers for
the incompressible flows, and the Gauge-Uzawa method is
a typical projection method. The Gauge-Uzawa method was
constructed in [1] to solve Navier-Stokes equations and
extended to more complicated problems, the Boussinesq
equations in [2] and the nonconstant density Navier-Stokes
equations in [3]. However, most of studies for the Gauge-
Uzawa method have been limited only for the first-order
accuracy backward Euler time marching algorithm. The
second-order Gauge-Uzawa method using BDF2 scheme was
introduced in [4] and proved superiority for accuracy on the
normal mode space, but we could not get any theoretical
proof via energy estimate even stability and we suffer from
weak stability performance on the numerical test. Recently,
we construct SGUM in [5] which is unconditionally stable
for semidiscrete level to solve the Navier-Stokes equations.
The goal of this paper is to extend SGUM to the Boussinesq
equations (1), which model the motion of an incompressible
viscous fluid due to thermal effects [6, 7]. We will estimate
errors and stability on the fully discrete finite element
space. The main difficulties in the fully discrete estimation
arise from losing the cancellation law due to the failing of



the divergence free condition of the discrete velocity function.
The strategy of projection type methods computes first an
artificial velocity and then decomposes it to divergence free
velocity and curl free functions. However, the divergence
free condition cannot be preserved in discrete finite element
space, and so the cancellation law (12) can not be satisfied any
more. In order to solve this difficulty, we impose the discon-
tinuous velocity on across interelement boundaries to make
fulfill discrete divergence free velocity (12) automatically. We
will discuss this issue at Remark 2 below. This discontinuity
makes it difficult to treat nonlinear term and to apply the
integration by parts, because the discontinuous solution is not
included in H'(Q). So we need to hire technical skills in proof
of this paper.

One more remarkable discovery is in the second numer-
ical test at the last section which is the Bénard convection
problem with the same setting in [2]. In this performance,
we newly find out that the number of circulations depends
on the time step size 7. We obtain similar simulation within
[2] for a relatively larger 7, but the behavior is changed for
the small 7. So we conclude that the numerical result of the
Bénard convection problem in [2] is not an eventual solution
and a more smaller time marching step is required to get the
desired simulation.

We will denote 7 as the time marching size. Also we will
use J as the difference of 2 consecutive functions for example,
for any sequence function z"*,

6Zn+1 — Zn+1 _ Zn)
)

1

867" =68 (62"“) =" 2 L

In order to introduce the finite element discretization, we
need further notations. Let H*()) be the Sobolev space with
s derivatives in L*(Q), set L*(Q) = (LZ(Q))d and H*(Q) =
(HS(Q))d, where d = 2 or 3, and denote by L%)(Q) the
subspace of L*(Q) of functions with vanishing mean value.
We indicate with | - ||, the norm in H*(Q) and with (- ,-)
the inner product in L*(Q2). Let = {K} be a shape-
regular quasiuniform partition of Q of mesh size / into closed
elements K [8-10]. The vector and scalar finite element spaces
are

W, = {w, € L* (Q) : w,|, € 2 (K)VK € T},

\/h = Wh n H(l) (Q) >
(3)
Ty, = {0, € Hy (Q) N C°(Q) : 0], € G(K)VK € Z},

Py = {g, € Ly (Q) N C° (Q) : gy € B(K)VK € T},

where 2(K), Q(K), and Z(K) are spaces of polynomials with
degree bounded uniformly with respect to K € < [9, 10]. We
stress that the space P}, is composed of continuous functions
to ensure the crucial equality

(Vewp ) == (Wi, V), Vwy, €V, Ve, € Py (4)
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Using the following discrete counterpart of the form
N, v,w) := (u-V)v,w)

/V(“h,V;th)

= {(wv

) Vi W) (5)

- 2 V)W),

we now introduce the fully discrete SGUM to solve the
evolution Boussinesq equations (1).

Algorithm 1 (the fully discrete stabilized Gauge-Uzawa
method). Compute 6;, u;, and p; via any method satisfying
Assumption 4 below, and set 1//}11 = (-21/3) p}ll and q;l = 0.

Repeatfor1 <n < N = [T/t - 1].

Step1. Setu;, = 2u} —u}; ' and 6; =26} -6}, and then find
"' €V, as the solution of

2_1'r <3ﬁ”+1 4up + ), ,wh>

+ (VP Wi) + /'/(“h’AMI Wh)

(6)
+u <VA"+ th> + i’ (g0, W)
= <f (tn+1) ,Wh> 5 th € \/h'
Step 2. Find )" € P, as the solution of
<an+1 V¢h> = (Y, Vo) + <V w,", > )
Yy, € Py
Step 3. Update u}*' and g"! € P}, according to
uzﬂ — An+1 +V (I//;Hl _ V/Z) , (8)
an ¢h> (G >Pn) — <V a," ¢h> Ve, € Py (9)
Step 4. Update pressure p}*' by
n+1
ntl _ Wh n+l (10)
Py P
Step 5. Find 6]"" € T, as the solution of
1 .
57 (300 =46+ 6,7 )
Iy n+l 9n+1
(CACAY) W

+ M (VO Ve, )

= (o) )

Remark 2 (discontinuity of u}*'). We note that u™' is a
discontinuous function across inter-element boundarles and

Ve, € T,
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that, in light of (7) and (8), u”Jr1 is discrete divergence free in
the sense that

u, v, ) = (E +0Vy Ve, ) =0, Y, € P

(12)

We now summarize the results of this paper along with
organization. We introduce appropriate Assumptions 1-5 in
Section 2 and introduce well-known lemmas. In Section 3, we
prove the stability result.

Theorem 3 (stability). The SGUM is unconditionally stable in
the sense that, for all T > 0, the following a priori bound holds:

- 2
L A L M e B

N+1 N N+11|2
+20r — o+ o,

S n+1||2 n+11|2 n+1||2
+ 3 (ooui], + fos6i[, + [vovi,)

# 3 vy + 2wl

+1]|2 +1 (13)
e (19 2 o)

< i+ Joui, - wil, + J20s - 63l
+[6ls + 2wl + 2elail;

N
n 2 n 2
+Cry (Jee I, + el
=
We then will carry out the following optimal error esti-
mates through several lemmas in Section 4.

Theorem 4 (error estimates). Suppose the exact solution of (1)
is smooth enough and 1 < Ch. If Assumptions 1, 3, 4, and 5
mentioned later hold, then the errors of Algorithm 1 will be
bound by

TIZ\I: (“u(tnﬂ) _ n+1|| + ”u(t"” _ ‘A‘ZH"D
n=1
<C (14 + h4) ,
N
Tnzi (”u(tnﬂ An+1|' n h2||0(t"+1) 0n+1|| ) (14)
<C (rz + hz) ,

N
TZ ||6(fn+1)
n=1

Moreover, if Assumption 2 also hold, then one has

—g i<+ ht).

N
o [ -p o <c(@4r). 1)
n=1

We note that the condition 7 < Ch in Theorem 4
can be omitted for the linearized Boussinesq equations (see
Remark 16). Finally, we perform numerical tests in Section 5
to check accuracy and physically relevant numerical simula-
tions, the Bénard convection problem and the thermal driven
cavity flow.

2. Preliminaries

In this section, we introduce 5 assumptions and well known
lemmas to use in proof of main theorems. We resort to a dual-
ity argument for

—Av+Vr =1z, V:-v=0, in Q, (16)
which is the stationary Stokes system with vanishing bound-
ary condition v = 0, as well as Poisson’s equation

-Aw=¢&, inQ, 17)
with boundary condition w = 0.
We now state a basic assumption about Q.

Assumption 1 (regularity of (v,r) and w). The unique solu-
tions {v, 7} of (16) and w of (17) satisty

loll, < CJ€]l,- (18)

We remark that the validity of Assumption 1 is known if 0Q
is of class C? [11, 12], or if 9Q is a two-dimensional convex
polygon [13] and is generally believed for convex polyhedral
[12].

Ivll2 + 71l < Clizllo,

We impose the following properties for relations between
the spaces V;, and P,,.

Assumption 2 (discrete inf-sup). There exists a constant 8 > 0
such that

(V- Wy, 53)
inf sup -—————
Sh€P w, eV, "Wh“ "5h"0

> p. (19)

Assumption 3 (shape regularity and quasiuniformity [8-10]).
There exists a constant C > 0 such that the ratio between the
diameter hy of an element K € ¥ and the diameter of the
largest ball contained in K is bounded uniformly by C, and
hy is comparable with the meshsize h forall K € &

In order to launch Algorithm 1, we need to set (u}, p;., 0 )
via any first-order methods which hold the following condi-
tions.

Assumption 4 (the setting of the first step values). Let
(u(tl),p(tl), 0(t1)) be the exact solution of (1) at t = t*. The
first step value (u;, p;, 6;) satisfies
u(e) —ui], +[6(2) e, <c (e + 1),
ey -, e - i, + Joer-63, = .
(20)



Assumption 5 (approximability [8-10]). For each (w,#,s) €
H2(Q) x H*Q) x HYQ), there exist approximations
(W i Sp) €'V, x T, x P, such that

||w - wh"0 + h||w - w,1||1 < Ch2||w||2,

I =1llo + hlln = mall, < CH? [l (21)
||s - sh"O < Chllsl;.

The following elementary but crucial relations are derived
in [14].

Lemma 5 (inverse inequality). If I, denotes the Clément
interpolant, then

”IhW||L3(Q) < Ch_d/GHIhW"o’

(22)
W = Lw ) < CH 1w,
Lemma 6 (div-grad relation). If w € Hé(Q), then
IV-wlly < [Vwllo. (23)

Let now (vy,,1,) € V, x P, indicate the finite element
solution of (16); namely,
<Vvh, th> + <V7’h, Wh> = <Z, Wh> 5 th € \/h’
(24)
<V . Vh’ 5h> = 0, VSh € I]:Dh.
Then we can find the well-known lemmas in [8-10].

Lemma 7 (error estimates for mixed FEM). Let (v,r) €
H{(Q) x L(Q) be the solutions of (16), and, (v, 1,) =
©,(v,r) € V, x Py, be the Stokes projection defined by (24),
respectively. If Assumptions 1, 2, 3, and 5 hold, then

v =il N =il + Al =y < G 1l + ),
(25)

IV =l = IIv - vh||L°°(Q) + [ V(v - Vh)||L3(Q) < Cllzllo-
(26)

Proof. Inequality (25) is standard [8-10]. To establish (26), we
just deal with the L*-norm, since the other can be treated
similarly. If I, denotes the Clément interpolant, then
v = Iy¥ll oo ) < Cllvll, and

152y = Vil ooy < Ch*?|L,v - Vil < Clvl, — 27)

as a consequence of an inverse estimate. This completes the
proof. O

Remark 8 (H' stability of r;,). The bound [|[Vr, [, < C(lIvl, +
I7ll,) is a simple by-product of (16). To see this, we add and
subtract I,q, use the stability of I, in H', and observe that (25)
implies || V(r, — I,n)lly < Ch'| r, — Irll, <C.
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Lemma 9 (error estimates for Poisson’s equation [8, 10]). Let
w € H,(Q) be the solution of Poisson’s equation (17), and, wj, €
T, be its finite element approximation

(Vo Vé,) = (& dy), Ve, € Ty (28)

If Assumptions 1, 3, and 5 hold, then there exists a positive con-
stant C satisfying

||w - a)h"O + hHw - wh"1 < CH? lwll,
<o, 09

[l = wnll < ClE]l;

We finally state without proof several properties of the
nonlinear form /. In view of (5), we have the following
properties of /¥ for all u,, vj,, w;, € V:

‘/V(uh’vh’wh) =-N (“h’Wh’Vh)’

(30)
./V(uh,vh,vh) = 0,
Vou=0= 4 (a,v,w,)
= ((u-V) v, wy) (31)

—{((u- V)W, V).

Applying Sobolevimbedding lemma yields the following use-
ful results.

Lemma 10 (bounds on nonlinear convection [1, 12]). Let
wv e H(Q) with V - u = 0, and let u;,, v, w;, € V,,. Then

[lall; "Vh "1 "wh "1
EARVAR (32)
el [Vl Wl

A (g v, W) < Clgflg vl wi - (33)

N (w, v, wy,) <C

In addition,

Tl vl Iwl,

(34)
o IVilly vl

./V(uh, Vi Wh) < C {

Remark 11 (Treatment of convection term). Aswe mention in
Remark 2, uZ“ is discontinuous across inter-element bound-
aries and so u}*! ¢ H'(Q). Thus, we can't directly apply (32)
anymore to treat the convection term. To solve this difficulty,
we apply (34) together with (26) and inverse inequality

Lemma 5.

We will use the following algebraic identities frequently
to treat time derivative terms.
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Lemma 12 (inner product of time derivative terms). For any
sequence {z"}nNzo, one has

2 <3zn+1 _ 4Zn + Zn—l’zn+1>

112 1 2 12 (35)
= ", + 8= = ="+ Jos="
2< ntl n n+1>
. , 1 5 (36)
_ n+ 'O _ “zn”o + “zn+ _Zn ”
2 <zn+1 _ Zn)Zn>
(37)
- [z '2 _ “anZ _ “zn+1 _ 2‘
0 0 0
3. Proof of Stability

We show that the SGUM is unconditionally stable via a stand-
ard energy method in this section. We start to prove stability
with rewriting the momentum equation (6) by using (8) and
(10) as follows:

+ (u;,ﬁzﬂ,wh) + K’ (g6, wp)

—< ( WZ+1_P‘qZ>’Wh>
+;4<Vuh ,th> <f("+1) wh>

! and apply (35) to obtain

(38)

We now choose w;, = 471},

n+1

2
| +(‘5“2u"4rl uZ“
0

2

+ Joou [+ saufvar|; (39)

™-

]
—

A,

j
where
Ay =6 vy arty,
Ay = (g, VT,
Ay =40 (£(e), 8,

A, = —driy’ <g (ZQZ - 92_1) ,ﬁ"+1> .

(40)

We give thanks to (30) for eliminating the convection term.

In light ofu"Jrl = uZ“ — V8y!, (12) and (36) yield

- -6 <Vl//n+1’V61//Z+l>

(41)
=3 (9w - I9wsle + |vowr™ L) -

Before we estimate A ,, we evaluate an inequality via choosing
¢y, = 8g " in (9) to get

Jodi ", == (v 04)

<[V, Joai

Lemma 6 derives IISq”Jrl Iy < IV A"”II
(9) and (37) lead us to

IIVA"“IIO, and so

A, = —4ur (4,04, )

=2 (o, - Nl - 04”12 (43)
< —2ur ([lg [, - lapls ) + 26 vy |
Clearly, we have
| RS Lo
We now attack A , with IIA”Jrl I, = ||u"“|| + ||V81//““|| which

comes from (8) and (12). Then we arrive at

A< CKZ[,I4T||292 - 6;1"1"(2)
(45)
e L lvovt

In conjunction with /' (u;, OZ”, GZ“) = 0 which comes from

(30), if we choose ¢, = 4162“ in (11) and use (35), then we
obtain

alle|; + o2 - 6

+ [s06;! |§ + 4| Ve

=47 (b(t""),06})

< Cﬁ”b(t”ﬂ)“: + Mt VoL

Inserting A,-A, back into (39), adding with (46), and then
summing over # from 1 to N lead to (13) by help of discrete

1
= Jupty +

Gronwall 1nequahty and the equality ||A””||
Ivey I lly- So we finish the proof of Theorem 3.

4. Error Estimates

We prove Theorem 4 which is error estimates for SGUM of
Algorithm 1. This proof is carried out through several
lemmas. We start to prove this theorem with defining
UL PR = @™, pt™!) €V, x P, to be



the Stokes projection of the true solution at time "', It means
that (U™, P*1) € V, x P, is the solution of

(v (a () - 05). V)
@ () - B ) w) =0
VYwy, €V,
(V- U ) =0, ¢, € P
We also define ®}*! € T}, as the solution of
(VO Ve, ) = (VO ("), V¢, ), Y, €T,  (48)
And we denote notations G*' := u(t""") - UJ*,

gn+1 = p(thrl) _ P;:Hl,

(47)

ntl  _ n+l\ _ qn+l (49)
n=0 (t ) 0, .
From Lemma 7, we can deduce
&[5+ e[ + 12a™
(50)

< o (Jue™D]; + Joe™DI;)-

Jog 1+ wfos I + o™,
6D
<co' [ (Il + Ip ) ar.

In conjunction with the definition of [|| - ||| in (26), we can
derive

e < @)

We now carry out error evaluation by comparing (65) with
(6)-(10) and then by comparing (82) and (11). We derive
strong estimates of order 1, and this result is instrumental in
proving weak estimates of order 2 for the errors

EZH = UZH _ u;ﬁ—l’
pnt+l n+1 ~n+1
E, =0 -u, ,
(53)

n+l _ pntl n+1
e =P —pp s

n+l | ~ntl 7+1
gt =@t — gt

Then, in conjunction with (50), we can readily get the same
accuracy for the errors

En+1 =u (tn+1) _ Z+1>

En+1 =u (tn+1) _ ﬁzﬂ’

en+1 _ ntl) ntl (54)
=p (t ) J 2

9n+1 =0 (tn+1) _ GZ+1
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Additionally, we denote

3 n+1
&= Py ‘g—’; (55)

We readily obtain the following properties:

Gn+1 — En+1 _ EZH — En+l _ EZ+1>
EZH _ EZH + V(SV/ZH’ (56)

| Tiagi EZ“ =G"' =0, on 0Q.
Moreover, from (12),

<Ez+l’ V¢h> — <En+1)v¢h>
(G",V¢,) (57)

= 0, V(ph € Iph'

Whence we deduce crucial orthogonality properties:

[, = [ + [vowi, (58)

We also point out that, owing to Lemma 6, g*' € P, defined
in (9) satisfies

n+l

"‘Ih -q, 0

< ||VE”“ ||O (59)

In conjunction with #*! = 9(t**') — @' = 9" - 9,
Assumption 5 leads to

[+ 12, < o

n+l (60)
o« o < oo | o

We now estimate the first-order accuracy for velocity and
temperature in Lemma 13 and then the 2nd-order accuracy
for time derivative of velocity and temperature in Lemma 15.
The result of Lemma 13 is instrumental to treat the convection
term in proof of Lemma 15. We will use Lemmas 13 and 15 to
prove optimal error accuracy in Lemma 17. Finally, we will
prove pressure error estimate in Lemma 18.

Lemma 13 (reduced rate of convergence for velocity and tem-
perature). Suppose the exact solution of (1) is smooth enough.
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If Assumptions 3-5 hold, then the velocity and temperature
error functions satisfy

=N+1]|2 N+1|2 N+1 N|?
& + B[, + o™ -
) Ne1|2 | 4T vV
2ty + - [va

N+1||2 N+1 N |12
19 N + 292 - 94l

S (I ) o
n=1

)

& n+1 2 n+1 2 71+1
+ 2 (foom [, + [vovi ", + oss;

<C (12 + hz) .
Proof. We resort to the Taylor theorem to write (1) as follows:
3u (t"”) —4u(t")+u (t”fl)
2T

+(u(tn+1)'V)ll(tn+1)+Vp(tn+l) (62)
_ [/lAll (tn+1) + K//l2g6 (tn+l)

_ Rn+1 + f(thrl)’

30 (£1) 40 (") + 0 (")
2T
+u(tn+1) . VO (tn+1) —AMA@ (tn+1) (63)

— Qn+1 + b(tn+1),

where

tn+1
R"! .= <l> J- u,, (s) (s —t")’ds
T "

n+l

NESY A

- (64)
Q™= <%> L 0,, (s) (s — £")’ds

tﬂ+1
_ (%) L B (9) (£ ) ds

are the truncation errors. In conjunction with the definition
n

of the Stokes projection {U}*', Pi*'}, we readily get a weak
formulation for (62), Yw;, € V;;:

= (Bu () - au (@) +u () w)
() () o)+ (TR )
+u <VUZ+1, th> + K’ <g9 (t"“) ,wh>

= <R”+1,wh> + <f (t"“) ,wh> .

7

We replace the pressure p, term in (6) with (10) and then sub-
tract it from (65) to obtain

% (3E™' —4E" + E"w,)
+ ut (VE;, Vw,, )
=~ (VOB +47) wi) + o (Ve i)
+ 4 (20 —wy @ wy,) (66)
= (u () u () W)
—p’ (g (0 (") - 20, +6,71) Wy,
+ <R”+1,wh> )

Choosing w;, = 47E}"" = 47(E""' - G"') = 4¢(E}*" +
VSwZ“) in (66) and using (58) and (35) yield
)

n+1||2 n+1 nl|?
B+ of2Ey™ - B,

2

+ [0S} + 6| Vo

+ 4‘14T|'VEZ+1"§ 7
7
=Y A,
n=1
where
Al - 4l (ll (tn+1) )u(tnﬂ) ’Ezﬂ)
y (2112 _ uz—l’ ﬁzﬂ’ EZH) ,
Ay = -2 (36" - 46"+ GLEN),
Ay =47 (VORLE),
(68)

Ay =47 (VELEY,
As = 4dut <qu, EZ+1> ,
Ay = 4 (R B,

A, =4y’ (g (0 (") - 20, + 6, 1), B}

We now estimate all the terms from A to A, respectively. To
tackle A, we first add and subtract 2u(t") — u(t" ") to obtain

A = -4t (66u (t"“) ,u (t"“) , EZH)
— 4T (ZuZ - uZﬁl, AR Ezﬂ) (69)
— 4t N (ZE” ~F"u (t””) , EZ+1) )

Because of ///(2u), — uz_l, EZH, EZ“) = 0, which comes from
(30), the second term of A, can be replaced by

4/ (2B -E" = 2u (") +u (), GLEY). (70)
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If we apply Lemma 10, then we can readily obtain

A, < Cr (osu ()] Ju ()],
e - o (L) B2
(71)
+ Cr (o - B l6™ |

+||2u(t) u(t"” 1)|| ||G”“|| )BT

N

Since we have [[u(t™")[l, + ||G™|| < M according to (52),
we arrive at

A, < Cr |2k, - B!

+ “2G” -G i +

&[5

e[ 7

tn+l
2
x L g (0|t
In light of (51) and (58), A, becomes

A, < CrlE;] + 1||V<81//,’1“ 2

n+l
E, 0

(73)
cant [ (IO + o0

In order to estimate A5 and A, we note that the cancellation
law (12) gives (Ve} ,E;"') = 0. Then EZ” = E*' + Véy !
yields

Ay = — 47 (VOPy, vyt

< gIvovi [y + e 74)

n+l

<[, (e @+ lp, @) de

In conjunction with the definition &' = PI*' + 3y;*! /21,

A, can be evaluated by
A, = -4t <V£Z, V61;/2+1>
_ 872 n n+1 n+1
= - <V£h,V(5£h - 8B))
47°
-5

+CT|Ve2 + CT||V5P,;’“ i

(75)

IN

n+l1
Ve &

)

= Ivesl§ - [voe,™
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If we now apply inequality (a + b)? < 4a® + (4/3)b%, then we
can get

?uvae;;ﬂ ;

_4 Vo + _me Z (76)
<Cr ||V5P”+1 + 4||v&,/”“||
So we arrive at
Ay < (llV s - 1907
+CT| Vel e + 4||V61//”+1 77)

i
07 [ (ol + Il d
In light of V - u(t"*') = 0 and (37), (9) and (59) yield

As = dut(q,,V-5;")
—aut (g, ,oq,"")

o (| ;- Nl - Joals)  os)

o~ l1%)

o

n+1

IN

—2(41(

+ 2HT||VE“+1

Also we readily get

e A T LA &

(79)
vert | o).
L
The Holder inequality and (60) yield
Ay = — i’ (g (000 (£") - 29" + 9" B
71 11— 2 n— 2
SCK2y4T(i29h—9h 1|O n 0)
(80)

eelEr o+ g lvouil;

c 4 t"+1 3
ver) 16, ()]t
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Inserting the above estimates into (67) gives
ol 1, + ofl2e; - 3,
e WS N R
S A Rk
2
< AVl + Vel + 20l

sor (e + 28 - 57,

(81)
+“2Gn _ Gn—l g + Gn+1 ;)
+ sz‘u‘lrj o -yt "(2)

t"+1
+crt L (I O] + 6, 0)]2) dt

+ Clutt]29) - 92_1"(2)

(@) [ (lnoE + Ipol)d

On the other hand, the definition (48) of ®}*! € T, leads to a
weak formula of (63) as, for all ¢, € T,

;;<39(tWH)._4e(f3.+e(fwﬂ),¢h>
+ 4 (u (), 0(¢"), 1)
+ M (VO Ve, )

- <Qn+1 +b(fn+1),q5h>.

‘We now subtract (1) from (82) to derive

(82)

i <39n+1 _49n +9n—1 )¢h>

2T
+ 0 (u (), 0 () ¢y)
— (0 ) (83)
+ M (VO Ve, )
=(Q" ) -

Choosing ¢, = 479" = 47(9""! — f"*") yields

2
0

89 + ofl29; -

+ [oog f)+ 4Am||v9;;“||§ (84)

=Ag+ A,

where

=
i

—At N (u (tn+1) .0 (tn+1) ,9;1&1)
+4T N (uZH,@ZH,SZ“) ,
(85)
Ag:i= =2 <3,7n+1 _ 4}171 + ’7n_1>92+1>
rar (@97
To estimate Ag, we note J/(E™" — u(t""), 97", 9*") = 0
which comes from (30), then ||E"+1||L3(Q) < Ch_l/2||En+1||0
and [l7" ||, < ChIO(™)||, yield
A8 = — At N (En+1)0 (tn+1) ’92+1)
+ AT N (En+1 —u (tn+1) ’nn+1)82+1)

< CrE] Joe ],

n+1
9, .

n+1 (86)
!

+Cr ( E™!

L3(Q) “

D] o) o,

C n
< (e

2
o

n+1

(2)) + Ayr“VSZ“

We use 077 < Crh' j:“ 16,(t)l3dt which is (60) to
attack Ag:
Ay < Cll3™" —an + | 97,
+ el |95,
oot [ joopa 7
¢ -1

n

tn+l
4 2
+Cr L [0, 2.
Inserting the above estimates into (84) gives

o[, + ol - 91l

+[o69;! E + 3/\;41||V9;‘“||(2)

<Cr n+1

2) (88)

n+1
A 0

2
0

A R

n+l

+C (h4 + T4) Ln—l (”@tt(t)”g + ||0t(t)”§) dt.
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Adding 2 inequalities (81) and (88) and summing over # from
1to N imply

L R s o

N+1 N+1 N||2

i E A e
n+l |2 472 n+1||2
+2ut|q, 0+?|Vsh 0

+ Z (looe™ 1, + oot
+|voyil;)
+ WZ (I8l + 329 ;)
<[Ef, + o -l + [9il;

2
e
S +1
N

)
+CT,,;(

n+1

n+1|2 1 n—1|2
0+ 29 - 97,

o112

;)

+ C‘[3||V£Z"§ +C (h4 + 14)
tYH'l

<[ (oa®l; + 160,01

+e.l;) dt

+“2;7" -

t?H-l
C(@ o) [ (I lpolf) ar

Because of ¢ = 0, we have ¢ = P, + (3/27)y, = e;, and

thus, Assumption 4 yields ||Vs;11||z < C and the first 4 terms
in the right-hand side can be bound by Assumption 4 and
properties E° = 0and g' = 0 which are directly deduced from
the conditions in Algorithm 1. Moreover, the remaining terms
can be treated by the discrete Gronwall lemma. Finally, in
conjunction with (58), we conclude the desired result and
complete this proof. O

Remark 14 (optimal estimation). In order to get optimal
accuracy, we must get rid of the terms of A; and A, by
applying duality argument in Lemma 17. To do this, we
first evaluate the errors for time derivative of velocity and
temperature in Lemma 15. Thus, we need to evaluate optimal

Journal of Applied Mathematics

initial errors for the case n = 1, and so we have to recompute
again (77). We start to rewrite A, as

87° 1 2 2
A= =5 (7, 7 (0, - 9B))

4 2
-5 (véil - Ivail; - [voeil;)

+ CTZHVSPII"é +Cr’ “VSP;:H 3

47° 2|2 2 112 ©0
=S lvels + c[val

+ 4”V61//,§ "z +C7’

t2
< [, UpaF: + g ) .

In light of Assumption 4, we arrive at
B3+ 2, + o2 - B3
« LJosE ] + [vovil;
o8- 2 + 15; "
VB + 2,
A eall + oo,
<C(r*+h').

We now start to estimate errors for time derivative of
velocity.

Lemma 15 (error estimate for time derivative of velocity
and temperature). Suppose the exact solution of (1) is smooth
enough and v < Ch. If Assumptions 3-5 hold, then the time
derivative velocity and temperature error functions satisfy

Jos ], + OB,
+ |20y - ok}
+ 2ucoqy™ ], + o5y,
+ 209y — 9}

¥ Z (Josoes™|;

+|os59; ||0)

+ ||V681//”+1

(92)

ey

+ WZ (||V<SE"“ + A||v59;“||§ )

SC(T +h).
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Ch requires to control convection terms which are used
at only (100) and (117), so we can omit this condition for
the linearized Boussinesq equations. However, this condition
cannot be removed for nonlinear equation case, because (99)
must be bounded by h.

Remark 16 (the condition 7 < Ch). The assumption 7 <

Proof. We subtract two consecutive formulas of (66) and
impose w, = 470E]/"" to obtain

||6E”“|| + 208 - SEZ“Z
+ |o55E,"! || + 6| vooy}*! ||0

- |oEsl; - 208, - o8, (©3)

+ 4;41"V81A€Z+1 "3

7
=Y 4,
n=1
where
A= At N (u (tn) > (tn) 4 6EZ+1)
— 4t (2u) " — w6y, O,
4 (ll (thrl) u ( n+1) 8En+l)
Ry (ZI.IZ _ uZ_l’ ﬁzﬂ) 5EZ+1) ,
A, = -2 (30G™! ~48G" + 6G™, 5B},
A3 — _ar <V58P;+1)8EZ+1> , (94)
A, =47 (Voe), OB,
Ay = 4yt (Vo) OB,
A6 = 47 <6Rn+1,6EZ+1> ,
A, = 4t
x (g8 (6("") = 20" +6") OB,

We now estimate each term from A, to A, separately. The
convection term A, can be rewritten as follows:

Ay = 47/ (88u ("), u(t"),0E"")
— 4t (6511 (t"“),u( "), R
+ 4N Ju (i), 08™)
Lu (), 58)

+ 4t/ (2u;, l—uh 2 E, SE"“)

(95)

(2E"

—dT N (21-:” E"
(

— 4T N (Zu "7

n+1) 5En+1)

1

In estimating convection terms, we will use Lemma 10
frequently without notice. We recall |[u(¢)||, < C to obtain

At A,
< Cr (|[osue™ |, Jue™H)|,
+osuE™|[u™],) |0E;"|

' (96)

<l

C
Il

The result in Lemma 13, [|2E" — E"'[|, < C(7 + h), is essential
to treat the next 2 convection terms. Invoking (33), we have

A+ AL,
< Cr|2E" - B
x [ou™H, JoE" ],
+Cr|[288" - 6B
x Ju@)], |oF; ],

< _“v&E"“]] 7)
+ —T||26E” =) A
u

o (2 + 1)
[/{

<[ ol

n—1

+

We note /' (2uj, - uz_l, 6]@2”, 8EZ+1) = 0 which comes from
(30). Then we obtain

A+ A
=41 (ZSuZ - 6uZ_1,
Gn+1 + EZH,(SEZH)
—4r (2u) -y,
1 egmntl
8G™, 6E;)
= 47/ (20E" - 6E"™" - 28u (") (98)
+du (tn—l) , Gn+1 + EZH,(SEZH)
+4t.0 (2B - E"

n—l) + u(tn—Z))

1 qpntl
8G™!, 8E,")

—2u(t

= B, + B,.
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To attack B,, we first note Lemma 5 which is, for any w;, € V,,
IWillsqy < ChClwyl,. If we apply

pn+l n+1
En+ + "
[+ &,

+VT+h (99)

n+l n+l1
E" +G .

<C(t+h)

which is the result of Lemma 13, then we can conclude, in light
of (34),

B, < Ct|20E" - 6B

L*(Q)

En+1 + Gn+1
h

”v(SErﬁl

0

+ Cr|28u(”) - du(t"™)|,

~ “Ezﬁ—l + Gn+l“ '|V5En+1"

+2<1+Z)
0 u h

x “26E” ) ||z

(100)
'|V8En+1

Cr2 t"
Py [, bl

We now estimate B, using [2E"! —E”_ZIILa(Q) <
Ch™ 2" —E" 2|, < M:

B, < Cr|2E"" - E*

L*(Q)

xJoe™] [veEy"],

+ CT||zu(t"*1) - u(t“)"l

< Joe | [vs;,

(101)

< Crloa™ [+ £ |voy |

< ?"V(SEZ“"O +CrH?

tn+1
<[ (O + ool dr

In light of Hélder inequality, (51) yields
A, = -2(38G™" - 45G"
+6G", 8E;")

<28 "VSEH-H

0 (102)
+Ch* L (”ut(t)“;

]} dt

Journal of Applied Mathematics

Integral by parts leads to
Ay =47 (80P, V - SE;)

< U osky [+

(103)

trﬁ-l

<[ Qo+ ool

In order to tackle A,, marking use of SE;*' = SE;™' +
VoSy;*, we readily get

A, = —41 (V3e,, 8B, + Vody, )
8‘[‘2 n n+1 n+1
= -5 (Ve v (006" - 60B;™))

2
<=2 ([voe |, - Ivoesl: (104)

)

+Cr|vee|; + cr|vosrr .

~|vose,™

If we now apply inequality (a + b)* < 4a” + (4/3)b%, then we
can have

%uva&gﬂnz

-2 n _W‘SWZH Z (105)
<cr HV&SP"“ ||
+ 4| vesy;|.
So we arrive at
A= -2 ([vos [ - Ivesyl2)
+ 4| vody; ””|| +CT|| Vo (106)

tn+
vert [ (O o) e
Invoking (9), (37) and (60) lead to
As = - 4ur (8q),80q,"")
- 2y0r (|log;™ |1 - 10431

-Joad;],)

(107)

IN

-2z (|og|; - loapl)

+ 2;41'”V8EZ+1 “i
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Finally, the A4 term becomes

Aq = CrloR™| [0},

< CrloB;™; (108)

"
vert L e

For the new term A, we argue as in Lemma 13 to arrive at

A; < CK2‘L14T

x (209, - 097 I

o =o],) (109)

+ -r||8E"+1

+ = ||v56 ”“||

4 2
+Cr J o).
-
We now insert the above estimates into (93) to obtain

8[0E; || + 8208 ~ oK

+ |ossE [ + m||v5fa"“||2

n+1

+ |vosy | Sq,

+ 2ur|

0

-2 oo

C R
< 7T (|20E; - o

+ ||28G” - 8G"!

)

2
+ S |va ] + O

x (209, - 69,7 (110)

+ oo - o[}

+ T"SE"+1 + 2ut|éqy|; + cr*

tn+1

x L,l (e @ + Jue O

+ea®]; +l0u®)]5) dt

+CP Vol + C(+* + 1)’

X L,_z ("“tt(ﬂ“é + "ut(t)lli

+Hp?) dt.

13

To evaluate errors of 892“, we subtract two consecutive
formulas (83) and choose by ¢, = 4789 = 47(89™" -
81™1) as follows:

oo9; [, + o269

+ 0069 || + adur||vos (111)

=Ag+ A,
where

Ag =40 (u(t"),0(t"),89,")
— 4z (u}, 6}, 69,
—ar (u(e),6 (), 09,")
+ 4 (w05, 894, (112)
Ag = —2(38y"™" - 4o
+on" ", 89, )
+47 (8Q", 89, ) .
We treat the A4 term first by rewriting it as follows:
Ag=—4r/ (E",0(¢"),00,)
e (w9 090
t"),89,")

9n+1)

(u
+ 47N (E" 113)
(w

+ 4t (w,

4
= ZAS
i1

In estimating convection terms, we will use Lemma 10
frequently without notice. We recall |0(¢)]l, < C and ||E"||, <
C(1 + h) which is the result in Lemma 13 to obtain

Agy +Ags
= 4z (SE™,60(¢"),00,)
— 4t/ (E%,560 ("), 00,™)

<Crt (“8E"+1

ol
oo D) oo™, e
< Ar|vo9 |

Cr*(t + h)*

C n
oo o C7

tn+1
<[ oo
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In conjunction with /' (u}*!, 891, 89;"") = 0 which comes
from (30), we rewrite Ag, + Ag 4 as

Agy+Agy
+1 +1
=4/ (B - U,

8’1n+1 , 619;:+1)

(115)
+ 4t (OB, - 8UL,
971’ 692+1)
= B; + B,.
Because we can readily get [|E}*" - UZHIIL3(Q) < M via

Lemmas 5 and 13, we conclude, in conjunction with (60),

B, < Cr|[E; - Uy

L*(Q)
o] Jo%i],

(116)

< M| Voo + C;;hz

tn+1

x L 16, (0)|dt.

Before we attack B,, we note that the assumption 7 < Ch is
required to apply [|0E,[|; @ < crY 2||5EZ||0- We now imply
19712 + 719" < C(z* + h*) and (51) to get

B, = 41/ (8G™" - Su (")

+8E,", 9", 09,

'L3(Q))

<97, + Joul, 19", ) 95,

|2
0

< CT((||<SG”“||1 +[oEp

" 6En+1 )

| + Aur| Vo9,

Cr? (T +h2)
Au

n+l

<[ (@ + 1ol ae

+

In light of Hélder inequality, Ay becomes

Ay < Crlo9r L+ C («* + 1)
o (118)

<[ (0.0l + l6,)

Journal of Applied Mathematics

Inserting the above estimates into (111) yields

oo +efosey - o
+ 6869 + Aur||vos|;
< cT||592“||2

||6E”“|| A

(119)
+||8G”““O) + C(-r2 + h2)2
tn+1

(el + 2ol

HOWI; + 10l e

Adding 2 equations (110) and (119) and then summing up n
from 2 to N lead up to (92) and complete the proof. O

We now estimate optimal accuracy for velocity and
temperature.

Lemma 17 (full rate of convergence for velocity and temper-
ature). One denotes that (v, 7"') and (v”“,rZ“) are the
solutions of (16) and (24) with z = E"Jr1 respectively. And let

™" and w*' be solutions of (17) and (28) with & = 9*".
Let the exact solution of (1) be smooth enough and T < Ch If
Assumptions 1 and 3-5 hold, then one has

N+1
[ve [,
N+1 N\ (|2 N+1
v =) + v,

+ |V (20" - @ ||

(120)
+||V68w,'1‘+1 "z)

N 2
) (7]
n=1

+A|or!

)

<C (T4 + h4) .
Proof. We choose wj, = 47v}™! € V, in (66) to obtain

vl + ol (2 - i)l

+ [voov; [+ aurl (121

Il
T
>
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where
Al _ 4‘[,/V(211h n l,ﬁZ+I,VZ+1)
—4T./V( ( n+1),u(tn+1) VZH),
A, = (36" —4G" + G v,
(122)
Ay = dur (B}, WZ“%
Ay = dr (R,
Ag = dip’t <g (9 (t”“) -20, + 92_1) ,VZ+1> .

We now estimate all the terms from A, to A, respectively.
The convection term A, can be rewritten as follows:

A = 41N (&Su (t"“),u(t"“) ,VZH)
— 4z (2u (t")-u (t”_l) ,E"+1,VZ+1)
+4r/ (2B - E"LETL v
— 4z (2B -E" L u (), v,

and we denote by A, fori = 1,2,...,4, the four terms in
the right-hand side. To estimate convection terms, we will use
frequently Lemma 10 without notice. Using ||u(t"+1)||2 < M,
we can readily get

Ay < Cr|8su™h)|,

(123)

xJueH], W,
< Cr|vvi |} + Curt o
x f e Oflodt.
Ay < Cr ("], + |0E"],)
x Ju™H], i
< % (IExll5 + 167 (125)

+SE;IG + 196715)
g,

Because V- 2u(t") —u(t" ")) = 0 and 2u(t") —u(t"') = 0 on
boundary, we can use (32) and so we get

Ay, < Crf2u(”) —u@™™)|,

[E i,

5 (s +1s™; (126)

+[voui ;)

_T n+l
g,

15
In light of &' = P"*' + 3y//*' /2, we can obtain
oo
= 24w (o - omt):
5 (127)
< CT2||V<SsZ+1 .
e [ (I +Ip ) e
and so we can conclude
e+ e 1)
+Cut’ “V&ZH “i + Cut*
(128)

x Jt (0l + Il de

||V n+l

If we apply [2E" —E" '|sq < Ch¥*I2E"-E"|, <
ch™ ®(7 + h) which can be derived from Lemmas 5 and 13,
then we can get, by the help of Lemma 10 and Assumption 1,

A, < Crf2E" - B

B b,
+Crf2E" - B .
o [E vt v,
< Cr(zr+h) B v, 19)
+ Crh[E" v,
< Srrany
Z
x(IvE I+ Ivel;)
+ S lE
In conjunction with (51), we can have
Ay & (Joe |+ boa"1;) ool |
< Crlvi! “ +Ch* (130)

<[ (o IR d
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The definition E}*' = E}*' + Voy//*! and Assumption 1 give
us

As = 4yt <V81//"+1 vty

n+1|| LY ||V<S n+1||' (131)

< g,
If we apply (127) again, then we arrive at

As s WIIE”“II

—“V(SSZH 2

(132)

CT
T opol
uoJe

On the other hand, the truncation error term becomes

A4 =47 <Rn+1 n+1>

1 4
< C-r"Vv”+ +Crt

(133)

tYl+
x L e ()]t

For the new term A;, we observe ||860(t”+1)||0 <

t"+1
CT* [, 16,(t)3dt; whence

As = dxp’t
x (g (800 (") +29" -9"1) vy )
< Cr|vvy, “|| +Clutt
«|

tn+1
x L 16,(0)| .

(134)

2 4 4

29" - 9| ,HCKUT

Invoking v° = 0 and inserting the above estimates from A
and A5 into (121) lead us to

8||V n+l

+ 8||V 2VZ+1 - VZ)"E

+ ||v55v"“ ,

+ 2;41”E
e (e e

+HG I + 08, + 19675)

n+1 “

Journal of Applied Mathematics
+ CK2[44T||2\9n -9t “E
+ 91(1 +h)?
¢

("VEnH

y

+ ||VG"Jr1

meal
+Cu (14 + h4)

<[ (ol + 1@l d

2
+ Cr|w |, + Crt

[ (a8 + sl + 10,01
(135)

On the other hand, we choose ¢, = 4TwZ+1 in (83) to obtain

(S"V n+1

+ 6“V ZwZJrl - wﬁ)“z

+ [voswr | (136)

+ 4)LMT|'SZ+1 ”z

=Ac+ A,
where
Ag =4t (uZH,OZ“,wZH)

— 4t (u (t"“) ,0 (t"“) , a)ZH) ,
(137)

1 n+1

A, = =2 <3;1"+1 -4+, W),

+4r <Qn+l’wz+1> )

In order to estimate A4, we note first |E"! <

Il )
CHY2IE™ |y and 9" < C((z> + W?)/7) which come
from Lemmas 5 and 13, respectively. Then Lemma 10 and the
assumption 7 < Ch yield

Ag= —ar (B,0(0) o)
(), o)

A

i,

n+l1
h

+4tN (E”+1

< CrllE| Joe ]

+ CT"En+1 9n+1

L3(Q) (138)

+ CT“u(t”Jr1 "

) ) 9n+1

0 1

< CT“VwZ”“Z + ptr”E"”"z

n+1

e (o +

o)
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Since 87" [ls < Ch'r I, "1 116,(t)]2dt, we can readily get

A, < Crl|Va |l + C(+* + 1Y)

- (139)
<[ (18O + 10 ) .
Inserting the above estimates into (136) yields
ofver[;
+ (SHV (2(4),:’“ - wZ) (2)
+ |[voswy | + 3|9 H
(140)

< oV, + Al

+ MT"EnH"z +C (" +ht)

n+l
<[ (180 + 1o]) .

In conjunction with the discrete Gronwall inequality,
adding (135) and (140) and summing over # from 1 to N lead
to (120). O

We now estimate the pressure error in L2(0, T; L*(Q)).
This hinges on the error estimates for the time derivative of
velocity and temperature of Lemma 15.

Lemma 18 (pressure error estimate). Let the exact solution of
(1) be smooth enough and T < Ch. If Assumptions 1-5 hold,
then one has

n+1

TZ |0 (T + hz)

Proof. We first recall again inf-sup condition in Assump-
tion 2. Consequently, it suffices to estimate (¢""',V - w) in

terms of [ Vw],. In conjunction with (10), we can rewrite (66)
as

(141)

=5 (3E™! —4E" + E" W)

+u (VES™, Vw,)

+ N (88u (t"”) ,u (t"“) ,wh)

+ /V(Zu (tn+1) ( n) n+1,wh) (142)
+ A (2B -E" 6 w,)

—u <V8q2+1,wh> - <R"+1,wh>

+xp’ <g (0 (t”“) -20, + GZ_I) ,wh>

3
= ZA,-.
i=1

17
We now proceed to estimate each term from A, to A,
separately. We readily obtain
C n
Ay s (o] + 1OE™ ;) Il
C
< = (Jor™"], + 0B | ) Ivwil, 4

A, < C|VE; | IVwil,.

Terms A; and A, can be dealt with thanks to the aid of
Lemma 10 and ||u(t"+l)||2 < M as follows:

A, <Clgsu ()|
X[ D, will,
< Cllodu ()| VWil
A, < C“Zu (t"”) -u (t”)"2

% En+1

Jolwil,

< CJE™] I9will-

In light of [&;""[|, = |E™*" -
we can have

u(t™)||, < C from Lemma 13,

A5 < C|2E"-E"™!

|L3(Q)

IIA”“II il
(145)
< < (e, el
X[ fo-
Integrate by parts and Holder inequality yield
Ag < Cl3g; | IVWilly- (146)
On the other hand, we have
Ay < R 1wl (147)

The new term Ag can be bound by the Holder inequality as
Ag= Kyz
x (g (000 (")
—20"+ 9" Wit
(148)
< Cr” (||6o0¢™™H)|,

+ ||29; -9t

!

Han" =) 19wl
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TABLE 1: Error decay for Algorithm 1with 7 = hand p = 1.
T=h 1/16 1/32 1/64 1/128 1/256
IE] 0.00198001 0.000651734 0.000188113 5.0822e - 05 1.32686e — 05
0 Order 1.603153 1.792684 1.888075 1.937437
IE] 0.00837795 0.00282504 0.000825997 0.000225008 5.90462¢ - 05
B Order 1.568326 1.774063 1.876160 1.930060
IE] 0.0279984 0.00950852 0.00280233 0.00077052 0.000205078
! Order 1.558052 1.762594 1.862723 1.909660
lel 0.0341734 0.0123334 0.00376493 0.00105695 0.000283961
0 Order 1.470303 1.711876 1.832716 1.896142
lel 0.197857 0.107171 0.0453294 0.0170497 0.00610541
t Order 0.884544 1.241396 1.410701 1.481586
191 0.000215482 5.3851e - 05 1.34612e - 05 3.36511e - 06 8.4091e - 07
0 Order 2.000522 2.000166 2.000081 2.000630
191 0.000197687 4.98479¢ - 05 1.25012e - 05 3.1314e - 06 7.84502¢ - 07
t Order 1.987613 1.995466 1.997187 1.996959
191 0.0167834 0.00839145 0.0041957 0.00209784 0.00104892
! Order 1.000043 1.000009 1.000007 1.000000
I 5 |
0=0
9,0 =0 1 =0 6"=0 9,60 =0
0=1

FIGURE 1: Example 20: initial and boundary values of Bénard convection problem.

Inserting the estimates from A, to A, back into (142) and 5. Numerical Experiments
employing the discrete inf-sup condition in Assumption 2, we

obtain We finally document 3 computational performances of

SGUM. The first is to check accuracy, and then the next 2
wrl examples are physically relevant numerical simulations, the
C"e "0 Bénard convection problem and the thermal driven cavity
flow. We perform the last 2 examples under the same set
within [2], but we conclude with different numerical simula-
tion for the second test, the Bénard convection problem, from
that of [2]. We impose Taylor-Hood (%2 — 9°1) in all 3
experiments.

IN

= (Joe, + o,

1 n n
+ W ('E +1“o + "E "0)

n+1 pnt+l
+[ogi™], + Ve,

Example 19 (mesh analysis). In this first experiment, we
choose square domain [0, 1] x [0, 1] and impose forcing term
(149) the exact solution to become

+ ||<sau(t"+‘)||1 + |

nnt+l
. "0 uzn(tz—t+l)x2(l—x)zsin(ery),

+ "R”“"_1 + ||866(t"+1)“0 v=-2 (t2 —t+ 1) x(2x - 1) (x - 1) sin® (my),
(150)

+||2‘92—SZ_1"0 p=—<t2—t—1)cos(nx) (y2+1),

N "2;1” _ ”n—1"0. 0 = cos (t)sin (mx) y (1 - y).

Table 1 is error decay with 4 = 1 and 7 = h. We conclude
If we now square it, multiply it by 7, and sum over nfrom 1 that the numerical accuracy of SGUM is optimal and consists
to N, then Lemmas 13, 15, and 17 derive (141). O with the result of Theorem 4.
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FIGURE 2: Example 20: streamlines of velocity and isolines of temperature and pressure, at time ¢ = 1.0. The nondimensional parameters are
k =10* A =1, u = 1, and the discretization parameters are 7 = 10 %, h = 27*,

Pressure

FIGURE 3: Example 20: streamlines of velocity and isolines of
temperature and pressure, at time t = 1.0. The nondimensional
parameters are K = 1041 = 1, and p = 1, and the discretization
parameters are T = 107, 1 = 27,

Example 20 (Bénard convection). In order to explore the
applicability of the SGUM, we consider the Bénard convec-
tion on the domain Q = [0, 5] x [0, 1] with forcing f = 0 and
b = 0. Figure 1 displays the initial and boundary conditions
for velocity u and temperature 6, as already studied in [2].
Figures 2-4 are simulations at ¢ = 1 with the nondimensional
parameters ¥ = 10*, A = 1, and u = 1. Figure 2 is the result
for the case 7 = 1072, h = 27* which is the same condition
in [2], and so it displays similar behavior within [2] including
6 circulations in the velocity stream line. However, Figures 3
and 4, the higher resolution simulations with 7 = 1073, h =
2% and v = 107% h = 27 display 8 circulations in

Velocity

FIGURE 4: Example 20: streamlines of velocity and isolines of
temperature and pressure, at time f = 1.0. The nondimensional
parameters are k = 10,1 = 1, and p = 1, and the discretization
parameters are T = 1074 h=2"

2,0 =0
! o= 1
= 0 0=-=
7] 5 0 3
2,0=0

FIGURE 5: Example 21: initial and boundary values for thermal
driven cavity flow.
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t =0.003

(a) (b)

() (d)

FIGURE 6: Example 21: time sequence ¢ = 0.003, 0.01, 0.02, 0.04, and 0.1 for the driven cavity. The first two columns are the streamlines and
vector fields for velocity, and the third and fourth ones are the contour lines for pressure and temperature, respectively. The nondimensional
parameters are ¥ = 10°,1 = 1,and y = 1, and the discretization parameters are 7 = 10, h = 27°. Note that v, stands for ||, .

the stream line. So we conclude that the high resolution result
is correct simulation and thus Figure 2 and the result in [2] are
not eventual simulation.

Example 21 (thermal driven cavity flow). We consider the
thermal driven cavity flow in an enclosed square Q = [0, 1%,
as already studied in several papers [2, 6, 7]. The experiment
is carried out with the same setting as in the work of

Gresho et al. [6], which is shown in Figure 5. Figure 6 displays
the evolution from rest (¢t = 0) to steady state (¢ = 0.2).
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