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This paper investigates the adaptive 𝑄-𝑆 synchronization of the fractional-order chaotic systems with nonidentical structures.
Based on the stability of fractional-order systems and adaptive control technique, a general formula for designing the controller
and parameters update law is proposed to achieve adaptive 𝑄-𝑆 synchronization between two different chaotic systems with
different structures. The effective scheme parameters identification and 𝑄-𝑆 synchronization of chaotic systems can be realized
simultaneously. Furthermore, two typical illustrative numerical simulations are given to demonstrate the effectiveness of the
proposed scheme, for each case, we design the controller and parameter update laws in detail. The numerical simulations are
performed to verify the effectiveness of the theoretical results.

1. Introduction

Since the pioneering work of Pecora and Carroll, chaos
control and synchronization have received particularly atten-
tion among scientists from various research fields including
secure communication, and information science [1–4]. From
then, many kinds of synchronization have been proposed in
dynamical systems. For instance, Li et al. [5] pointed out that
coexistence of complete synchronization in coupled identical
Chen systems is by linear control. In [6], they presented an
idea of stochastic phase synchronization about the dynamical
evolution of the underlying system. Lu [7] proposed a new
general scheme which was discussed for the generalized
synchronization of discrete-time chaotic and hyperchaotic
systems. Later on, Li et al. [8] studied antisynchronization of
two different chaotic systems. In 1999, Mainieri and Rehacek
first proposed the concept of projective synchronization
which characterized that the drive and response systems
could be synchronized up to a scaling constant matrix [9].
Recently, Li [10] proposed the 𝑄-𝑆 synchronization that
is a more general definition of projective synchronization
when the response system contains scaling matrix. In the
application of secure communication, more scaling matrices
may also be a useful utility to improve the security of the

secure communication scheme [11–16]. Amongst all kinds
of chaos synchronization, projective synchronization is the
most noticeable one because of its proportional feature
between the synchronized dynamical states and, hence, it has
received extensive research. To our best of knowledge, 𝑄-𝑆
synchronization of the fractional-order chaotic systems has
not considered adequately.

On the other hand, most of existing synchronization
methods are mainly concerned with the synchronization of
two special identical or similar or with mismatched systems.
Zhang et al. [17] discussed the complete synchronization of a
coupled fractional-order system, they have found a kind of
interesting nonlinear phenomenon-hybrid synchronization
in linearly coupled fractional-order chaotic systems. Recently,
Mainieri and Rehacek [18] studied the hybrid projective
synchronization of fractional-order chaotic system. They
realized the slave system can be synchronized with the
projection of the master system generated through state
transformation. Despite thesemany results for the fractional-
order systems, but in fact, in many practical problems, the
synchronization is carried out even though the oscillators
have different structures; therefore, it is extremely necessary
and important to study the synchronization of the fractional-
order systems with nonidentical structures. At the same time,
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most of the methods mentioned above have ignored the
uncertainties, but in real situations, this assumption cannot
be satisfied in many real situations because it is hard to
known all the system parameters in advance [19–23]. In this
case, the applications of the existing methods are somewhat
limited. Hence, the synchronization and identification of
chaotic systemswith uncertainties aremore essential work for
research.

Motivated by the above discussion, this paper investigates
the adaptive 𝑄-𝑆 synchronization of fractional-order chaotic
systems via increased order. Moreover, based on the stability
theory of fractional order systems, an adaptive synchroniza-
tion controller and adaptive laws of parameters are devel-
oped; numerical simulations are carried out to demonstrate
the effectiveness and flexibility for the controllers.

The organization of this paper is as follows. Preliminaries
and model description are given in Section 2. In Section 3
based on the stability theory, a general 𝑄-𝑆 synchronization
approach of fractional-order chaotic systems with unknown
parameters is presented. Section 4 shows the effectiveness of
the approach for the extensive simulation studies. Finally,
Section 5 concludes the paper.

2. Preliminaries and Model Description

The fractional calculus is a generalization of an integration
and differentiation to a noninteger-order integro-differential
operator which can be denoted by a fundamental operator as
follows [23]:

𝑎
𝐷
𝛼

𝑡
=

{{{{{

{{{{{

{

𝑑
𝛼

𝑑𝑡𝛼
, 𝑅 (𝛼) > 0,

1, 𝑅 (𝛼) = 0,

∫

𝑡

𝛼

(𝑑𝜏)
−𝛼

, 𝑅 (𝛼) < 0.

(1)

There exist many definitions for fractional derivatives.
The Riemann-Liouvile definition and the Caputo definition
are the two most commonly used ones. In this paper,
the Caputo definition is adopted for derivatives which is
introduced as follows:

𝐷
𝛼

∗
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝜏)
𝛼−𝑛+1

𝑓
(𝑛)

(𝜏) 𝑑𝜏, (2)

for 𝑛 − 1 ≤ 𝛼 < 𝑛, where Γ(⋅) is the Gamma function,

Γ (𝑠) = ∫

∞

0

𝑡
𝑠−1

𝑒
−𝑡

𝑑𝑡. (3)

The drive system and response system are described by

𝐷
𝑞

∗
x = 𝑓 (x) , (4)

𝐷
𝑞

∗
y = 𝑔 (y) + 𝑈 (𝑡, x, y) , (5)

where x, y are the state vectors; f , g are differentiable vector
functions; andU(𝑡, x, y) is a controll function. We denote the
vector error state be e = Qx − Sy, where Q, S are scaling
matrices.

Definition 1. For the given drive system (4) and response
system (5), there exist two real matrices Q, S, such that
lim
𝑡→∞

‖e‖ = ‖Qx − Sy‖ = 0. It is to say that the 𝑄-𝑆
synchronization is achieved between system (4) and system
(5).

Some remarks on Definition 1.

Remark 2. It is easy to see that the definition of 𝑄-𝑆 syn-
chronization encompasses complete synchronization, anti-
synchronization, and projective synchronizationwhenmatri-
ces 𝑄 and 𝑆 are selected special values, respectively. In short,
𝑄-𝑆 synchronization is a more general form that includes
many kinds of synchronization as its special items.

Remark 3. For simplicity for further discussion, we suppose
that matrix 𝑆 is row full rank, which guarantee the inverse
matrix exists when the matrix is a square matrix.

Lemma4 (see [24]). For the nonlinear fractional-order system
𝐷
𝑞

∗
x = 𝑓(x) or 𝐷𝑞

∗
x = Ax with the order as 0 < 𝑞 ≤ 1, if there

exists a real symmetric positive definite matrix P such that the
equation 𝐽 = x𝑇P𝐷𝑞

∗
x ≤ 0 always holds for any states x =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ R𝑛, then the above fractional-order system is

asymptotically locally stable.

3. Theoretical Results

Consider two general fractional-order uncertain chaotic
systems which are referred to as the drive and response
systems, respectively, in the form of

𝐷
𝑞

∗
x = f (x) + F (x)Φ, (6)

𝐷
𝑞

∗
y = g (y) + G (y)Θ + U, (7)

where x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈ R𝑛1 and y(𝑡) = (𝑦
1
, 𝑦
2
, . . . ,

𝑦
𝑛
)
𝑇

∈ R𝑛2 are the state vectors, f : R𝑛1 → R𝑛1 and
g : R𝑛2 → R𝑛2 are continuous vector functions, including
nonlinear terms, F : R𝑛1 → R𝑛1×𝑚1 and G : R𝑛2 →
R𝑛2×𝑚2 are matrix functions, Φ ∈ R𝑚1 and Θ ∈ R𝑚2 are the
parameter vectors, and U ∈ R𝑛 is a controller to be designed
later.

When 𝑛
1
= 𝑛
2
, 𝑚
1
= 𝑚
2
, the structure of the drive

system is identical to that of the response system, this problem
has been solved. Therefore, when the dimension of drive
system is not equal to that of the response system, there is no
doubt that it is an interesting problem. So we will investigate
the following two cases.

Case 1 (𝑛
1
> 𝑛
2
). In this case, the dimension of the drive

system is greater than that of the response system. For
realizing the 𝑄-𝑆 synchronization between the drive system
(6) and response system (7) with different structures, so we
must add extra auxiliary state(s) to the response system.

We define the auxiliary state(s) y󸀠 ∈ R𝑛1−𝑛2 then we obtain
a new state vector y = (y, y󸀠)𝑇, thus, the response system (7)
is rewritten as follows:

𝐷
𝑞

∗
y = g (y) + G (y)Θ + U (𝑡, 𝑥, 𝑦) , (8)



Abstract and Applied Analysis 3

where y = ( y
y󸀠 ), g(y) = ( g(y)0 ), G(y) = (

G(y)
0
), U(𝑡, 𝑥, 𝑦) =

(
U(𝑡,𝑥,𝑦)
U
󸀠

(𝑡,𝑥,𝑦)

), y󸀠, and U
󸀠

(𝑡, 𝑥, 𝑦) ∈ R𝑛1−𝑛2 .

Our goal is to design a suitable controller to realize the
𝑄-𝑆 synchronization between drive system (6) and response
system (8) with different arbitrary scaling matrices 𝑄, 𝑆. The
following theorem can be obtained.

Theorem 5. The 𝑄-𝑆 synchronization of fractional-order sys-
tems between systems (6) and (8) can be achieved, if the active
control under the hypothesis is given by (9) and the updating
laws of the estimated parameter are given by (10)

U = −g (y) − G (y) Θ̂ + S−1Q (f (x) + F (x) Φ̂ + Ke) , (9)

𝐷
𝑞

∗
Φ̂ = −[QF (x)]𝑇e,

𝐷
𝑞

∗
Θ̂ = [SG (y)]

𝑇

e,
(10)

where K = diag (𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
) is a gain matrix for each

state controller, Φ̂ and Θ̂ are the estimated vectors of unknown
parameters, and Φ̃ = Φ − Φ̂, Θ̃ = Θ − Θ̂.

Proof. We have the vector error state e = Qx − Sy, then we
can obtain the error dynamical system as follows:

𝐷
𝑞

∗
e (𝑡) = Q (f (x) + F (x)Φ) − S (g (y) + G (y)Θ + U) .

(11)

According to Lemma 4, combining (9) and (10) with (11), one
has

J = [e𝑇 Φ̃𝑇 Θ̃𝑇]
[
[
[

[

𝐷
𝑞

∗
e

𝐷
𝑞

∗
Φ̃

𝐷
𝑞

∗
Θ̃

]
]
]

]

= e𝑇𝐷𝑞
∗
e + Φ̃𝑇𝐷𝑞

∗
Φ̃ + Θ̃

𝑇

𝐷
𝑞

∗
Θ̃.

(12)

From (6)–(11), we can get that

e𝑇𝐷𝑞
∗
e + Φ̃𝑇𝐷𝑞

∗
Φ̃ + Θ̃

𝑇

𝐷
𝑞

∗
Θ̃

= e𝑇 [Q (f (x) + F (x)Φ) − S (g (y) + G (y)Θ + U)]

+ Φ̃
𝑇

([−QF (x)]𝑇e) + Θ̃𝑇 ([SG (y)]
𝑇

e)

= e𝑇 [Q (f (x) + F (x)Φ) − Sg (y) − SG (y)Θ + Sg (y)

+ SG (y) (Θ − Θ̃)−Qf (x)−QF (x) (Φ − Φ̃) − Ke]

+ Φ̃
𝑇

(−(QF (x))𝑇e) + Θ̃𝑇 ((SG (y))
𝑇

e)

= −e𝑇Ke.
(13)

Suppose we select an appropriate matrix K, such that
−e𝑇Ke ≤ 0. From Lemma 4, the origin of error dynamical
system (11) is asymptotically stable, it is to say that the
response system (6) can synchronize the drive system (8)
globally and asymptotically.

Remark 6. In order to identify the unknown parameters, we
suppose that the nonlinear vector functions −[QF(x)]𝑇 and
[SG(y)]𝑇 should be linearly independent.

Based onTheorem 5, two corollaries can be easily derived
as below.

Corollary 7. Suppose the parameters in the drive system
Φ are known, the controller can be designed as follows:

U = −g (y) − G (y) Θ̂ + S−1Q (f (x) + F (x)Φ + Ke) . (14)

Moreover, the parameter update laws are degraded as

𝐷
𝑞

∗
Θ̂ = [SG(y)]

𝑇

e. (15)

Therefore, the drive system and response system can achieve𝑄-
𝑆 synchronization.

Corollary 8. Suppose the parametersΘ in the response system
are known, then the controller is modified as

U = −g (y) − G (y)Θ + S−1Q (f (x) + F (x) Φ̂ + Ke) . (16)

Moreover, the parameter update laws can be taken as

𝐷
𝑞

∗
Φ̂ = −[QF (x)]𝑇e. (17)

Therefore, the drive system and response system can achieve𝑄-
𝑆 synchronization.

Case 2 (𝑛
1
< 𝑛
2
). That is, since the order of the drive system is

lower than that of the response system, the redundant state(s)
in the response system should synchronize other artificially
built state(s) of the drive system.

Denote the auxiliary state as x󸀠 ∈ R𝑛2−𝑛1 , then we can get
a new 𝑛

2
dimension state vector x = ( xx󸀠 ), and the new drive

system can rewrite as

𝐷
𝑞

∗
x = f
1
(x) + F

1
(x)Θ, (18)

where x = ( xx󸀠 ), f1(x) = (
f1(x)
f󸀠
1
(x) ), and F

1
(x) = ( F1(x)F󸀠

1
(x) ).

Theorem 9. For the given scaling matrices Q, S, the 𝑄-𝑆
synchronization of fractional-order systems between system (6)
and (8) can be achieved, if the active control under the
hypothesis is given by (19) and the updating laws of the
estimated parameter are given by (20)

U = −𝑔 (y) − G (y) Θ̂ + S−1 (Q (f (x) + F (x) Φ̂) + Ke) ,
(19)

𝐷
𝑞

∗
Φ̂ = −[QF (x)]

𝑇

e,

𝐷
𝑞

∗
Θ̂ = [SG(y)]𝑇e.

(20)

The proof is the same as in Case 1, so we omit it.
Similarly, fromTheorem 9, we can also obtain the follow-

ing corollaries.
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Corollary 10. Suppose the parameters in the drive system
Φ are known, the controller can be designed as follows:

U = −𝑔 (y) − G (y) Θ̂ + S−1 (Q (f (x) + F (x)Φ) + Ke) .
(21)

Moreover, the parameter update laws are degraded as

𝐷
𝑞

∗
Θ̂ = [SG(y)]𝑇e. (22)

Therefore, the drive system and response system can achieve𝑄-
𝑆 synchronization.

Corollary 11. Suppose the parameters Θ in the response sys-
tem are known, then the controller is modified as

U = −𝑔 (y) − G (y)Θ + S−1 (Q (f (x) + F (x) Φ̂) + Ke) .
(23)

Moreover, the parameter update laws can be taken as

𝐷
𝑞

∗
Φ̂ = −[QF(x)]

𝑇

e. (24)

Therefore, the drive system and response system can achieve the
adaptive 𝑄-𝑆 synchronization.

4. Simulation Results

In this section, we will present two numerical examples to
verify the effectiveness of the adaptive 𝑄-𝑆 synchronization
scheme with different structures proposed in Section 3. All
the following numerical simulations are performed via the
predictor-corrector algorithm [23].

4.1. Adaptive 𝑄-𝑆 Synchronization between the Fractional-
Order Hyperchaotic Lorenz System and Fractional-Order
Financial System (𝑛

1
> 𝑛
2
). The fractional-order Lorenz

system can be described as follows:

𝐷
𝑞

∗
𝑥
1
= 𝑎 (𝑥

2
− 𝑥
1
) + 𝑥
4
,

𝐷
𝑞

∗
𝑥
2
= 𝑐𝑥
1
− 𝑥
2
− 𝑥
1
𝑥
3
,

𝐷
𝑞

∗
𝑥
3
= 𝑥
1
𝑥
2
− 𝑏𝑥
3
,

𝐷
𝑞

∗
𝑥
4
= −𝑥
2
𝑥
3
+ 𝑟𝑥
4
,

(25)

when 𝑞 = 0.98 and (𝑎, 𝑏, 𝑐, 𝑟) = (10, 8/3, 28, −1), the
fractional-order Lorenz displays hyperchaotic attractors.

The fractional-order financial system is described by

𝐷
𝑞

∗
𝑦
1
= 𝑦
3
+ (𝑦
2
− 𝑑) 𝑦

1
,

𝐷
𝑞

∗
𝑦
2
= 1 − 𝑓𝑦

2
− 𝑦
2

1
,

𝐷
𝑞

∗
𝑦
3
= −𝑦
1
− ℎ𝑦
3
,

(26)

when 𝑞 = 0.98, (𝑑, 𝑓, ℎ) = (3, 0.1, 1), and the fractional-order
financial system shows chaotic attractors.

We take the fractional-order Lorenz system as drive
system, then the response system is given as

𝐷
𝑞

∗
𝑦
1
= 𝑦
3
+ (𝑦
2
− 𝑑) 𝑦

1
+ 𝑢
1
,

𝐷
𝑞

∗
𝑦
2
= 1 − 𝑓𝑦

2
− 𝑦
2

1
+ 𝑢
2
,

𝐷
𝑞

∗
𝑦
3
= −𝑦
1
+ ℎ𝑦
3
+ 𝑢
3
.

(27)

In order to realize the 𝑄-𝑆 synchronization between
the above two different structure systems, we construct an
auxiliary state 𝑦

4
= 0 to the response system, so the response

system can be rewritten as the following form:

𝐷
𝑞

∗
𝑦
1
= 𝑦
3
+ (𝑦
2
− 𝑑) 𝑦

1
+ 𝑢
1
,

𝐷
𝑞

∗
𝑦
2
= 1 − 𝑓𝑦

2
− 𝑦
2

1
+ 𝑢
2
,

𝐷
𝑞

∗
𝑦
3
= −𝑦
1
− ℎ𝑦
3
+ 𝑢
3
,

𝐷
𝑞

∗
𝑦
4
= 𝑢
4
.

(28)

For simplicity, we choose the matrices 𝑄 = 𝑆 = [
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

],

and 𝑆−1 = [
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

].

From the prefer theorem, we can obtain that

f (x) =
[
[
[
[

[

𝑥
4

𝑥
2
− 𝑥
1
𝑥
3

𝑥
1
𝑥
2

−𝑥
2
𝑥
3

]
]
]
]

]

,

F (x) =
[
[
[

[

𝑥
2
− 𝑥
1
0 0 0

0 0 𝑥
1
0

0 𝑥
3
0 0

0 0 0 𝑥
4

]
]
]

]

, Φ =
[
[
[

[

𝑎

𝑏

𝑐

𝑟

]
]
]

]

,

𝑔 (y) =
[
[
[
[

[

𝑦
3
+ 𝑦
2
𝑦
1

1 − 𝑦
2

1

−𝑦
1

0

]
]
]
]

]

,

𝐺 (y) =
[
[
[

[

−𝑦
1
0 0 0

0 −𝑦
2
0 0

0 0 −𝑦
3
0

0 0 0 0

]
]
]

]

, Θ =

[
[
[
[

[

𝑑

𝑓

ℎ

0

]
]
]
]

]

.

(29)

According to Definition 1, we choose the following scaling
matrices:

Qx =
[
[
[

[

𝑥
1

𝑥
2

𝑥
3

1

]
]
]

]

, Sy = (

𝑦
1

2𝑦
2
+ 𝑦
3

2𝑦
3

𝑦
4

). (30)
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Figure 1: Time evolution of parameter estimations for system (25).

From (9), we have

𝑢
1
= −𝑦
3
− 𝑦
1
𝑦
2
+ 𝑑𝑦
1
+ 𝑥
4
+ 𝑎 (𝑥

2
− 𝑥
4
) + 𝑘
1
𝑒
1
,

𝑢
2
= 𝑦
2

1
− 1 + 𝑓𝑦

2
− 𝑥
2
− 𝑥
1
𝑥
3
+ 𝑐𝑥
1
+ 𝑘
2
𝑒
2
,

𝑢
3
= 𝑦
1
+ 𝑥
1
𝑥
2
− ℎ̂𝑦
3
− 𝑏̂𝑥
3
+ 𝑘
3
𝑒
3
,

𝑢
4
= −𝑥
2
𝑥
3
+ 𝑟𝑥
4
+ 𝑘
4
𝑒
4
,

(31)

and the parameters estimation update laws as follows:

𝐷
𝑞

∗
𝑎 = (𝑥

4
− 𝑥
2
) 𝑒
1
,

𝐷
𝑞

∗
𝑏̂ = 𝑥
3
𝑒
3
,

𝐷
𝑞

∗
𝑐 = −𝑥

1
𝑒
2
,

𝐷
𝑞

∗
𝑟 = −𝑥

4
𝑒
4
,

𝐷
𝑞

∗
𝑑 = 𝑦
1
𝑒
1
,

𝐷
𝑞

∗
𝑓 = 𝑦

2
𝑒
2
,

𝐷
𝑞

∗
ℎ̂ = 𝑦
3
𝑒
3
.

(32)

It selects the parameters of the drive and response systems
as (𝑎, 𝑏, 𝑐, 𝑟) = (10, 8/3, 28, −1), 𝑑 = 3, 𝑓 = 0.1, and ℎ =
1 to ensure the chaotic behavior, the initial conditions
are (𝑥

1
(0), 𝑥
2
(0), 𝑥
3
(0)) = (1, 2, 3) and (𝑦

1
(0), 𝑦
2
(0), 𝑦
3
(0)) =

(0.1, 0.1, 0.1), and the initial values for the estimations of
unknown parameters are 𝑎 = 1, 𝑏̂ = 1, 𝑐 = 1, 𝑟 =
1, 𝑑 = 0.1, 𝑓 = 0.1, ℎ̂ = 0.1, respectively. The feedback
gain K = (1, 1, 1, 1). Figures 1 and 2 show that all the
unknown parameters in the system are identified to their
true values as time increase. It is shown in Figure 3 that the
synchronization errors between the two different structures
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Figure 2: Time evolution of parameter estimations for system (27).
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Figure 3: Time evolution of synchronization error between system
(25) and system (27).

fractional-order systems (25) and (27) converge to zero with
time passing.

4.2. Adaptive 𝑄-𝑆 Synchronization between Arneodo System
and Hyperchaotic Chen System (𝑛

1
< 𝑛
2
). In this subsection,

we will study the 𝑄-𝑆 synchronization between Arneodo
system and hyperchaotic Chen system, the drive system is
Arneodo system and the response system is hyperchaotic
Chen system.
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The fractional order Arneodo system are described by
𝐷
𝑞

∗
𝑥
1
= 𝑥
2
,

𝐷
𝑞

∗
𝑥
2
= 𝑥
3
,

𝐷
𝑞

∗
𝑥
3
= −𝛽
1
𝑥
1
− 𝛽
2
𝑥
2
− 𝛽
3
𝑥
3
+ 𝛽
4
𝑥
3

1
,

(33)

where the true values for each parameter are (𝛽
1
, 𝛽
2
, 𝛽
3
, 𝛽
4
) =

(−5.5, 3.5, 1, −1) and the order 𝑞 = 0.97, system (33) displays
chaotic behaviors.

The controlled hyperchaotic fractional-order Chen sys-
tem is described as

𝐷
𝑞

∗
𝑦
1
= 𝑎
1
(𝑦
2
− 𝑦
1
) + 𝑦
4
+ 𝑢
1
,

𝐷
𝑞

∗
𝑦
2
= 𝑏
1
𝑦
1
− 𝑦
1
𝑦
3
+ 𝑐
1
𝑦
2
+ 𝑢
2
,

𝐷
𝑞

∗
𝑦
3
= 𝑦
1
𝑦
2
− 𝑑
1
𝑦
3
+ 𝑢
3
,

𝐷
𝑞

∗
𝑦
4
= 𝑦
2
𝑦
3
+ 0.5𝑦

4
+ 𝑢
4
.

(34)

Based on the proposed scheme in Section 3, we should add
an auxiliary state variable to the drive system.

For the convenience of controller form, we can get

f (x) =
[
[
[

[

𝑥
2

𝑥
3

0

1

]
]
]

]

, F (x) =
[
[
[

[

0 0 0 0

0 0 0 0

−𝑥
1
−𝑥
2
−𝑥
3
𝑥
3

1

0 0 0 0

]
]
]

]

,

Φ =
[
[
[

[

𝛽
1

𝛽
2

𝛽
3

𝛽
4

]
]
]

]

,

𝑔 (y) =
[
[
[
[

[

𝑦
4

−𝑦
1
𝑦
3
− 𝑦
2

𝑦
1
𝑦
2

𝑦
2
𝑦
3
+ 0.5𝑦

4

]
]
]
]

]

,

𝐺 (y) =
[
[
[

[

𝑦
2
− 𝑦
1
0 0 0

0 𝑦
1
𝑦
2
0

0 0 0 −𝑦
3

0 0 0 0

]
]
]

]

, Θ =
[
[
[

[

𝑎
1

𝑏
1

𝑐
1

𝑑
1

]
]
]

]

.

(35)

According to Definition 1, we choose the scaling matrices

Qx =
[
[
[

[

𝑥
1

𝑥
2

𝑥
3

1

]
]
]

]

, Sy = (

𝑦
1

2𝑦
2
+ 𝑦
3

2𝑦
3

𝑦
4

). (36)

So we can obtain

Q =
[
[
[

[

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

]
]
]

]

, S =
[
[
[

[

1 0 0 0

0 1 1 0

0 0 2 0

0 0 0 −1

]
]
]

]

,

S−1 =
[
[
[
[
[

[

−1 0 0 0

−1 −1
1

2
1

0 0 0 0

0 0 0 1

]
]
]
]
]

]

.

(37)
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Figure 4: Time evolution of parameter estimations for system (33).

Based on the proposed scheme, the controllers are designed
in the following form:

𝑢
1
= −𝑦
4
− (𝑦
2
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1
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1
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2
+ 𝑘
1
𝑒
1
,

𝑢
2
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𝑦
3
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𝑦
1
− 𝑐
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𝑦
2
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2
− 𝑥
3
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2
𝑒
2
,
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3
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𝑦
2
+ 𝑦
3
𝑑
1
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1
𝛽
1
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2
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2
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3
+ 𝑥
3
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4
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3
,

𝑢
4
= −𝑦
2
𝑦
3
− 𝑟𝑦
4
+ 1 + 𝑘

4
𝑒
4
,

(38)

and the parameters estimation update laws as follows:
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1
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1
,

𝐷
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1
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𝑒
2
,
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2
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2
,

𝐷
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1
= −2𝑦

3
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3
,

𝐷
𝑞
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1
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1
𝑒
3
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𝐷
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3
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3
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𝐷
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𝛽
4
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3

1
𝑒
3
.

(39)

Analogously, we also would like to give the numeri-
cal simulations to verify the effectiveness of the above-
designed controller and the update laws. In these numerical
simulations, we take the initial states as the initial condi-
tions are (𝑥

1
(0), 𝑥
2
(0), 𝑥
3
(0)) = (1, −2, 5) and (𝑦

1
(0), 𝑦
2
(0),

𝑦
3
(0)) = (1, 1, 1), and the initial values for the estimations

of unknown parameters are 𝛽
1
= 1, 𝛽

2
= 1, 𝛽

3
= 1, 𝛽

4
=

1, 𝑎
1
= 1, 𝑏̂

1
= 0.1, 𝑐

1
= 1, 𝑑

1
= 0.1. The feedback gain K =

(5, 5, 5, 5). From Figures 4 and 5, it can be clearly seen that all
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Figure 5: Time evolution of parameter estimations for system (34).
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Figure 6: Time evolution of synchronization error between system
(33) and system (34).

the unknown parameters in the drive and response systems
are identified to their true values as time increase. It is shown
in Figure 6 that the synchronization errors between the two
different structures fractional-order systems (33) and (34)
converge to zero with time passing, which means that the 𝑄-
𝑆 synchronization between the fractional-order system (33)
and system (34) with different dimension is achieved.

5. Conclusion

In this paper, adaptive 𝑄-𝑆 synchronization of fractional-
order chaotic systemswith different structures is investigated.
Based on the stability theory and adaptive control method,

a general approach for suitable controller and adaptive
laws is provided to realize the 𝑄-𝑆 synchronization. Typical
examples are taken to display the applications of the proposed
scheme. For each case, the controller and parameter update
laws are designed in detail. Meanwhile, results could extend
to other fractional-chaotic systems with different structure
and uncertain parameters. Numerical simulations show the
effectiveness and feasibility of the controllers and identifica-
tion rules.
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