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We investigate a class of multigroup epidemic models with general exposed distribution and nonlinear incidence rates. For a
simpler case that assumes an identical natural death rate for all groups, and with a gamma distribution for exposed distribution
is considered. Some sufficient conditions are obtained to ensure that the global dynamics are completely determined by the basic
production number 𝑅

0
. The proofs of the main results exploit the method of constructing Lyapunov functionals and a graph-

theoretical technique in estimating the derivatives of Lyapunov functionals.

1. Introduction

Multigroup epidemic models have been used in the literature
to describe the transmission dynamics of many different
infectious diseases such as mumps, measles, gonorrhea,
HIV/AIDS and vector borne diseases such as Malaria [1]. In
the models, heterogeneous host population can be divided
into several homogeneous groups according to modes of
transmission, contact patterns, or geographic distributions,
so that within-group and intergroup interactions can be
modeled separately. It is well known that global dynamics
of multigroup models with higher dimensions, especially the
global stability of the endemic equilibrium, are a very chal-
lenging problem. Guo et al. [2] proposed a graph-theoretic
approach to the method of global Lyapunov functions and
used it to resolve the open problem on the uniqueness and
global stability of the endemic equilibrium of a multigroup
SIR model with varying subpopulation sizes. Subsequently, a
series of studies on the global stability ofmultigroup epidemic
models were produced in the literature (see e.g., [2–5]).

In the present paper, amore general multigroup epidemic
model is proposed and studied to describe the disease spread
in a heterogeneous host population with general exposed dis-
tribution and nonlinear incidence rate. The host population
is divided into 𝑚 distinct groups (𝑚 ≥ 1). For 1 ≤ 𝑖 ≤ 𝑚,

the 𝑖th group is further partitioned into four disjoint classes:
the susceptible individuals, exposed individuals, infectious
individuals, and recovered individuals, whose numbers of
individuals at time 𝑡 are denoted by 𝑆

𝑖
(𝑡), 𝐸
𝑖
(𝑡), 𝐼
𝑖
(𝑡), and𝑅

𝑖
(𝑡),

respectively. Susceptible individuals infected with the disease
but not yet infective are in the exposed (latent) class.

It is pointed in [6] that a fixed latent period can be
considered as an approximation of the mean latent period,
and this would be appropriate for those diseases whose
latent periods vary only relatively slightly. For example,
poliomyelitis has a latent period of 1–3 days (comparing to
its much longer infectious period of 14–20 days). However
disease such as tuberculosis, including bovine tuberculosis
(a disease spread from animal to animal mainly by direct
contact), may take months to develop to the infectious stage
and also can relapse. Since the time it takes from the moment
of new infection to the moment of becoming infectious may
differ from disease to disease, even for the same disease,
it differs from individual to individual, and it is indeed a
random variable. It is thus of interest from bothmathematical
and biological viewpoints to investigate whether sustained
oscillations are the result of general exposed distribution.

Following the method of [6], we also assume that the
disease does not cause deaths during the latent period, taking
the natural death rate into consideration. Let 𝑃(𝑡) denote
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the probability that an exposed individual remains in the
time 𝑡 after entering the exposed class. For 1 ≤ 𝑖, 𝑗 ≤ 𝑚,
𝛽
𝑖𝑗

≥ 0 denotes the coefficient of transmission between
compartments 𝑆

𝑖
and 𝐼
𝑗
. It is assumed that 𝑚-square matrix

(𝛽
𝑖𝑗
)
1≤𝑖,𝑗≤𝑚

is irreducible [7]. So the proportion of exposed
individuals can be expressed by the integral

𝐸
𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
(𝑢) , 𝐼
𝑗
(𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)𝑃
𝑗
(𝑡 − 𝑢) 𝑑𝑢, (1)

where the sum takes into account cross-infections from all
groups. Integrals in (1) are in the Riemann-Stieltjes sense.
𝑃
𝑗
(𝑡) satisfies the following reasonable properties:

(𝐴) 𝑃
𝑗
: [0,∞) → [0, 1] is nonincreasing, piecewise

continuous with possibly finitely many jumps and
satisfies 𝑃

𝑗
(0
+
) = 1, and lim

𝑡→∞
𝑃
𝑗
(𝑡) = 0 with

∫
∞

0
𝑃
𝑗
(𝑡)𝑑𝑡 is positive and finite.

Differentiating (1) gives

𝐸
󸀠

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
(𝑡) , 𝐼
𝑗
(𝑡))

+

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
(𝑢) , 𝐼
𝑗
(𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)

× 𝑃
󸀠

𝑗
(𝑡 − 𝑢) 𝑑𝑢 − 𝛿

𝑖
𝐸
𝑖
(𝑡) .

(2)

The first term on the right hand side in (2) is the rate at
which new infected individuals come into the exposed class,
and the last term explains the natural deaths. The second
term accounts for the rate at which the individuals move to
the infectious class (noting that 𝑃󸀠

𝑗
(𝑡 − 𝑢) ≤ 0 due to the

aformentioned property) from the exposed class; hence

𝐼
󸀠

𝑖
(𝑡) = −

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖 (𝑢) , 𝐼𝑗 (𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)

× 𝑃
󸀠

𝑗
(𝑡 − 𝑢) 𝑑𝑢 − (𝛿𝑖 + 𝜀𝑖 + 𝛾𝑖) 𝐼𝑖 (𝑡) .

(3)

Let ℎ
𝑗
(𝑡) = −𝑃

󸀠

𝑗
(𝑡) be the probability density function for the

time (a random variable) it takes for an infected individual in
the 𝑖th group to become infectious. Then (4) becomes

𝐼
󸀠

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖 (𝑢) , 𝐼𝑗 (𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)

× ℎ
𝑗
(𝑡 − 𝑢) 𝑑𝑢 − (𝛿

𝑖
+ 𝜀
𝑖
+ 𝛾
𝑖
) 𝐼
𝑖
(𝑡) .

(4)

Within the 𝑖th group, 𝜑
𝑖
(𝑆
𝑖
) denotes the growth rate of

𝑆
𝑖
, which includes both the production and the natural death

of susceptible individuals. Therefore, under the assumptions,

the model to be studied takes the following differential and
integral equations form:

𝑆
󸀠

𝑖
(𝑡) = 𝜑

𝑖
(𝑆
𝑖
(𝑡)) −

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
(𝑡) , 𝐼
𝑗
(𝑡)) ,

𝐸
󸀠

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖 (𝑡) , 𝐼𝑗 (𝑡))

−

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
(𝑢) , 𝐼
𝑗
(𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)

× ℎ
𝑗 (𝑡 − 𝑢) 𝑑𝑢 − 𝛿𝑖𝐸𝑖 (𝑡) ,

𝐼
󸀠

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖 (𝑢) , 𝐼𝑗 (𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)

× ℎ
𝑗
(𝑡 − 𝑢) 𝑑𝑢 − (𝛿

𝑖
+ 𝜀
𝑖
+ 𝛾
𝑖
) 𝐼
𝑖
(𝑡) ,

𝑅
󸀠

𝑖
(𝑡) = 𝛾

𝑖
𝐼
𝑖
(𝑡) − 𝛿

𝑖
𝑅
𝑖
(𝑡) .

(5)

Since the variables 𝐸
𝑖
and𝑅

𝑖
do not appear in the first and

third equations of model (5), 𝐸
𝑖
(𝑡) and 𝑅

𝑖
(𝑡), 𝑖 = 1, . . . , 𝑚, can

be decoupled from the 𝑆
𝑖
(𝑡) and 𝐼

𝑖
(𝑡) equations; we only need

to consider the subsystem of (5) consisting of only the 𝑆
𝑖
and

𝐼
𝑖
equations:

𝑆
󸀠

𝑖
(𝑡) = 𝜑

𝑖
(𝑆
𝑖
(𝑡)) −

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
(𝑡) , 𝐼
𝑗
(𝑡)) ,

𝐼
󸀠

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
(𝑢) , 𝐼
𝑗
(𝑢)) 𝑒

−𝛿𝑗(𝑡−𝑢)

× ℎ
𝑗 (𝑡 − 𝑢) 𝑑𝑢 − (𝛿𝑖 + 𝜀𝑖 + 𝛾𝑖) 𝐼𝑖 (𝑡) ,

(6)

where 𝛿
𝑖
denotes the natural death rates of 𝐼

𝑖
compartments

in the 𝑖th group, 𝜀
𝑖
is the death rate caused by disease in the 𝑖th

group, and 𝛾
𝑖
is the rate of recovery of infectious individuals

in the 𝑖th group. In what follows we investigate the global
stability of system (5).

When 𝑚 = 1, 𝑃(𝑡) = 𝑒
𝜖𝑡, and with bilinear incidence

rate, system (5) will reduce to the standard SEIR ordinary
differential equation (ODE) model studied in [8, 9], and if
we further assume that 𝑃(𝑡) is a step function, system (5)
becomes the SEIRmodel with a discrete delay studied in [10].
Recently, a model of this type, but including the possibility
of disease relapse, has been proposed in [11, 12] to investigate
the transmission of herpes, and its global dynamics have been
completely investigated in [5, 13].

To express themain idea and the approachesmore clearly,
we consider a simpler case in which all groups share the
same natural death rate: 𝛿

𝑗
= 𝛿 for 𝑗 = 1, 2, . . . , 𝑚. Further,

we assume that the functions ℎ
𝑗
(𝑢) are disease specific only,
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implying that ℎ
𝑗
(𝑢) = ℎ(𝑢) for 𝑗 = 1, 2, . . . , 𝑚. We choose the

gamma distribution:

ℎ (𝑢) = ℎ
𝑛,𝑏
(𝑢) =

𝑢
𝑛−1

(𝑛 − 1)!𝑏
𝑛
𝑒
−𝑢/𝑏

, (7)

where 𝑏 > 0 is a real number and 𝑛 > 1 is an integer,
which is widely used and can approximate several frequently
used distributions. For example, when 𝑏 → 0

+, ℎ
𝑛,𝑏
(𝑠) will

approach the Dirac delta function, and when 𝑛 = 1, ℎ
𝑛,𝑏
(𝑠) is

an exponentially decaying function.
The main object of this paper is to carry out the well-

known “linear chain trick” to system (6), transfer system
into an equivalent ordinary differential equations system, and
establish its global dynamics. We derive the basic reproduc-
tive number 𝑅

0
and show that 𝑅

0
completely determines the

global dynamics of system (6).More specifically, if𝑅
0
≤ 1, the

disease-free equilibrium is globally asymptotically stable and
the disease dies out; if 𝑅

0
> 1, a unique endemic equilibrium

exists and is globally asymptotically stable, and the disease
persists at the endemic equilibrium. The global stability of
𝑃
∗ rules out any possibility for Hopf bifurcations and the

existence of sustained oscillations. We should point out here
that this work is motivated by Yuan and Zou [11, 12, 14]. In
the proof we demonstrate that the graph-theoretic approach
developed in [2, 3] can be successfully applied to construct
suitable Lyapunov functionals and thus prove the global
stability of the endemic equilibrium for model (6) with
general exposed distribution and nonlinear incidence rate.
Our work is also based on a recent work by Sun and Shi [15],
which resolved the dynamics of multigroup SEIR epidemic
models with nonlinear incidence of infection and nonlinear
removal functions between compartments.

In Section 2, we first give the model, preliminaries and
the basic reproduction number 𝑅

0
. The global stability of the

corresponding equilibria for 𝑅
0
≤ 1 and 𝑅

0
> 1 is shown,

respectively, in Section 3—the key results of this paper. And in
Section 4, some numerical simulations are shown to illustrate
the effectiveness of the proposed result.

2. Preliminaries

We make the following basic assumptions for the intrinsic
growth rate of susceptible individuals in the 𝑖th group 𝜑

𝑖
(𝑆
𝑖
)

and the transmission functions 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
).

(𝐴
1
) 𝜑
𝑖
are 𝐶1 non-increasing functions on [0,∞) with

𝜑
𝑖
(0) > 0, and there is a unique positive solution

𝜉 = 𝑆
0

𝑖
for the equation 𝜑

𝑖
(𝜉) = 0. 𝜑

𝑖
(𝑆) > 0 for

0 ≤ 𝑆 < 𝑆
0

𝑖
, and 𝜑

𝑖
(𝑆) < 0 for 𝑆 > 𝑆0

𝑖
; that is

[𝜑
𝑖
(𝑆
𝑖
) − 𝜑
𝑖
(𝑆
0

𝑖
)] (𝑆
𝑖
− 𝑆
0

𝑖
) < 0,

for 𝑆
𝑖
̸= 𝑆
0

𝑖
, 𝑖 = 1, 2, . . . , 𝑚.

(8)

(𝐴
2
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) ≤ 𝑐
𝑖𝑗
(𝑆
𝑖
)𝐼
𝑗
for all 𝐼

𝑗
> 0.

(𝐴
3
) 𝑐
𝑖𝑗
(𝑆
𝑖
) ≤ 𝑐
𝑖𝑗
(𝑆
0

𝑖
), 0 < 𝑆

𝑖
< 𝑆
0

𝑖
, 𝑖, 𝑗 = 1, . . . , 𝑚.

Following the technique and method in [14], define

𝑏̂ ≡
𝑏

1 + 𝛿𝑏
, (9)

which can absorb the exponential term 𝑒
−𝛿𝑢 into the delay

kernel. The second equation in (6) can be rewritten as

𝐼
󸀠

𝑖
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗

(1 + 𝛿𝑏)
𝑛
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) ℎ
𝑛,̂𝑏
(𝑡 − 𝑢) 𝑑𝑢

− (𝛿 + 𝜀
𝑖
+ 𝛾
𝑖
) 𝐼
𝑖
.

(10)

For 𝑙 = 1, . . . , 𝑛, let

𝑦
𝑖,𝑙
(𝑡) =

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑏̂

(1 + 𝛿𝑏)
𝑛
∫

𝑡

0

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) ℎ
𝑙,̂𝑏
(𝑡 − 𝑢) 𝑑𝑢,

𝑖 = 1, 2, . . . , 𝑚.

(11)

Thus, for 𝑙 ∈ {2, . . . , 𝑛}, we obtain

̇𝑦
𝑖,𝑙
= ℎ
𝑙,̂𝑏
(0)

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑏̂

(1 + 𝛿𝑏)
𝑛
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

+

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑏̂

(1+𝛿𝑏)
𝑛
∫

𝑡

−∞

(𝑙−1) (𝑡−𝑢)
𝑙−2

(𝑙−1)!𝑏̂
𝑙

𝑒
−(𝑡−𝑢)/𝑏̂

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑑𝑢

−

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑏̂

(1 + 𝛿𝑏)
𝑛
∫

𝑡

−∞

(𝑡 − 𝑢)
𝑙−1

(𝑙 − 1)!𝑏̂
𝑙+1
𝑒
−(𝑡−𝑢)/𝑏̂

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑑𝑢

=
[𝑦
𝑖,𝑙−1

− 𝑦
𝑖,𝑙
]

𝑏̂

.

(12)

For 𝑙 = 1, we have

𝑦
𝑖,1
=

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑏̂

(1 + 𝛿𝑏)
𝑛
∫

𝑡

−∞

𝑒
−(𝑡−𝑢)/𝑏̂

𝑏̂

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑑𝑢,

𝑖 = 1, . . . , 𝑚.

(13)

It follows that

̇𝑦
𝑖,1
=

𝑚

∑

𝑗=1

𝛽
𝑖𝑗

(1 + 𝛿𝑏)
𝑛
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

−

𝑚

∑

𝑗=1

𝛽
𝑖𝑗

(1 + 𝛿𝑏)
𝑛
∫

𝑡

−∞

𝑒
−(𝑡−𝑢)/𝑏̂

𝑏̂

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑑𝑢

=

𝑚

∑

𝑗=1

𝛽
𝑖𝑗

(1 + 𝛿𝑏)
𝑛
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) −

1

𝑏̂

𝑦
𝑖,1
, 𝑖 = 1, . . . , 𝑚.

(14)
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Thus the integro-differential system (6) is equivalent to
the ordinary differential equations

𝑆
󸀠

𝑖
(𝑡) = 𝜑𝑖 (𝑆𝑖 (𝑡)) −

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖 (𝑡) , 𝐼𝑗 (𝑡)) ,

𝑦
󸀠

𝑖,1
(𝑡) =

1

(1 + 𝛿𝑏)
𝑛

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
(𝑡) , 𝐼
𝑗
(𝑡)) −

1

𝑏̂

𝑦
𝑖,1
(𝑡) ,

𝑦
󸀠

𝑖,2
(𝑡) =

1

𝑏̂

(𝑦
𝑖,1
(𝑡) − 𝑦

𝑖,2
(𝑡)) , 𝑖 = 1, 2, . . . , 𝑚,

...

𝑦
󸀠

𝑖,𝑛
(𝑡) =

1

𝑏̂

(𝑦
𝑖,𝑛−1

(𝑡) − 𝑦
𝑖,𝑛
(𝑡)) ,

𝐼
󸀠

𝑖
(𝑡) =

1

𝑏̂

𝑦
𝑖,𝑛 (𝑡) − (𝛿 + 𝜀𝑖 + 𝛾𝑖) 𝐼i (𝑡) .

(15)

For initial condition

(𝑆
1
(0) , 𝑦

1,1
(0) , . . . , 𝑦

1,𝑛
(0) , 𝐼
1
(0) ,

𝑆
2
(0) , 𝑦

2,1
(0) , . . . , 𝑦

1,𝑛
(0) , 𝐼
2
(0) , . . . ,

𝑆
𝑚
(0) , 𝑦

𝑚,1
(0) , . . . , 𝑦

𝑚,𝑛
(0) , 𝐼
𝑚
(0)) ∈ R𝑚(𝑛+2),

(16)

the existence, uniqueness, and continuity of the solution
(𝑆
𝑖
, 𝑦
𝑖,1
, 𝑦
𝑖,2
, . . . , 𝑦

𝑖,𝑛
, 𝐼
𝑖
) of system (15) follow from the stan-

dard theory of Volterra integro-differential equation [16].
It can also be verified that every solution of (15) with
nonnegative initial condition remains nonnegative.

It follows from (𝐴
1
) and the first equation of (15) that

lim sup
𝑡→∞

𝑆
𝑖
(𝑡) ≤ 𝑆

0

𝑖
for all 𝑖 = 1, 2, . . . , 𝑚. Let 𝑁

𝜑𝑖
be the

maximum of the function 𝜑
𝑖
on R
+
and let 𝑞 be a positive real

number such that 𝑞 > 𝑏̂𝑁
𝜑𝑖
. Denote by Υ

𝑖
the 𝑖th tube for

system (15); that is,

Υ
𝑖
= (𝑆
𝑖
, 𝑦
𝑖,1
, 𝑦
𝑖,2
, . . . , 𝑦

𝑖,𝑛
, 𝐼
𝑖
) . (17)

It follows from a similar argument to that in [14] that we can
show that the set𝐷

𝜖
defined by

Γ
𝜖
= {(𝑆

𝑖
, 𝑦
𝑖,1
, 𝑦
𝑖,2
, . . . , 𝑦

𝑖,𝑛
, 𝐼
𝑖
) ∈ R𝑚(𝑛+2)
+

|

𝑆
𝑖
≤ 𝑆
0

𝑖
+ 𝜖, 𝑆
𝑖
+ (1 + 𝛿𝑏)

𝑛
𝑦
𝑖,1
≤ 𝑞 + 𝑆

0

𝑖
,

𝑦
𝑖,𝑙
≤
𝑞 + 𝑆
0

𝑖
+ 𝑙𝜖

(1 + 𝛿𝑏)
𝑛
,

𝐼
𝑖
≤

𝑞 + 𝑆
0

𝑖
+ (𝑛 + 1) 𝜖

𝑏̂(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜖

𝑖
+ 𝛾
𝑖
)

,

𝑖 = 1, 2, . . . , 𝑚, 𝑙 = 2, 3, . . . , 𝑛}

(18)

is a forward invariant compact absorbing set for system (15)
for 𝜖 > 0 and that the set Γ

0
(i.e., when 𝜖 = 0) is a forward

invariant compact set.

Under the assumption (𝐴
1
), we know that system (15)

always has the disease-free equilibrium

𝑃
0
= (𝑆
0

1
, 0, . . . , 0, 𝐼

0

1
, 𝑆
0

2
, 0, . . . , 0, 𝐼

0

2
, . . . , 𝑆

0

𝑚
, 0, . . . , 0, 𝐼

0

𝑚
)

∈ R𝑚(𝑛+2).
(19)

An equilibrium 𝑃
∗ of (6) has the form 𝑃

∗
=

(𝑆
∗

1
, 𝐼
∗

1
, 𝑆
∗

2
, 𝐼
∗

2
, . . . , 𝑆

∗

𝑚
, 𝐼
∗

𝑚
) ∈ R2𝑚 with 𝑆

∗

𝑖
> 0, 𝐼∗

𝑖
> 0,

𝑖 = 1, . . . , 𝑚. Translating to the equivalent system (15), 𝑃∗ is
corresponding to

𝑃
∗

= (𝑆
∗

1
, 𝑦
∗

1,1
, . . . , 𝑦

∗

1,𝑛
, 𝐼
∗

1
, 𝑆
∗

2
, 𝑦
∗

2,1
, . . . , 𝑦

∗

2,𝑛
, 𝐼
∗

2
, . . . ,

𝑆
∗

𝑚
, 𝑦
∗

𝑚,1
, . . . , 𝑦

∗

𝑚,𝑛
, 𝐼
∗

𝑚
) ∈ R𝑚(𝑛+2).

(20)

𝑃
∗ in the interior of Γ

0
is called an endemic equilibrium, and

it satisfies the following equilibrium equations:

0 = 𝜑
𝑖
(𝑆
∗

𝑖
) −

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) ,

0 =
1

(1 + 𝛿𝑏)
𝑛

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) −

1

𝑏̂

𝑦
∗

𝑖,1
,

0 =
1

𝑏̂

(𝑦
∗

𝑖,1
− 𝑦
∗

𝑖,2
) ,

...

0 =
1

𝑏̂

(𝑦
∗

𝑖,𝑛−1
− 𝑦
∗

𝑖,𝑛
) ,

0 =
1

𝑏̂

𝑦
∗

𝑖,𝑛
− (𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
) 𝐼
∗

𝑖
.

(21)

The basic reproduction number 𝑅
0
is defined as the expected

number of secondary cases produced by single infectious
individual during its entire period of infectiousness in a
completely susceptible population. For system (15), we can
calculate it as the spectral radius of a matrix called the next
generation matrix. Let

F =

(
(
(
(
(
(
(

(

𝑐
11
(𝑆
0

1
) 𝛽
11

(1 + 𝛿𝑏)
𝑛

⋅ ⋅ ⋅

𝑐
1𝑚
(𝑆
0

1
) 𝛽
1𝑚

(1 + 𝛿𝑏)
𝑛

... d
...

𝑐
𝑚1
(𝑆
0

𝑚
) 𝛽
𝑚1

(1 + 𝛿𝑏)
𝑛

⋅ ⋅ ⋅

𝑐
𝑚𝑚

(𝑆
0

𝑚
) 𝛽
𝑚𝑚

(1 + 𝛿𝑏)
𝑛

)
)
)
)
)
)
)

)

,

V = diag (𝛿 + 𝜀
𝑖
+ 𝛾
𝑖
)

= (

𝛿 + 𝜀
1
+ 𝛾
1

0 ⋅ ⋅ ⋅ 0

0 𝛿 + 𝜀
2
+ 𝛾
2
⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 𝛿 + 𝜀

𝑚
+ 𝛾
𝑚

).

(22)
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Then the next generation matrix is

FV
−1
=
(
(

(

𝑐11 (𝑆
0
1) 𝛽11

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀1 + 𝛾1)

⋅ ⋅ ⋅

𝑐1𝑚 (𝑆
0
1) 𝛽1𝑚

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀𝑚 + 𝛾𝑚)

... d
...

𝑐𝑚1 (𝑆
0
1) 𝛽𝑚1

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀1 + 𝛾1)

⋅ ⋅ ⋅

𝑐𝑚𝑚 (𝑆
0
1) 𝛽𝑚𝑚

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀𝑚 + 𝛾𝑚)

)
)

)

,

(23)

and hence, the basic reproduction number 𝑅
0
is

𝑅
0
= 𝜌 (FV

−1
) = max {|𝜆| ; 𝜆 ∈ 𝜎 (FV

−1
)} , (24)

where 𝜌(⋅) and 𝜎(⋅) denote the spectral radius and the set of
eigenvalues of a matrix, respectively. Since it can be verified
that system (15) satisfies conditions (𝐴

1
)–(𝐴
5
) of Theorem 2

of [17], we have the following proposition.

Lemma 1. For system (15), the disease-free equilibrium 𝑃
0
is

locally asymptotically stable if 𝑅
0
< 1, while it is unstable if

𝑅
0
> 1.

Following the method of [2], one defines a matrix

𝑀
0
= V−1F

=

(
(
(
(
(
(

(

𝑐11 (𝑆
0
1) 𝛽11

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀1 + 𝛾1)

⋅ ⋅ ⋅

𝑐1𝑚 (𝑆
0
1) 𝛽1𝑚

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀1 + 𝛾1)

... d
...

𝑐𝑚1 (𝑆
0
1) 𝛽𝑚1

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀𝑚 + 𝛾𝑚)

⋅ ⋅ ⋅

𝑐𝑚𝑚 (𝑆
0
1) 𝛽𝑚𝑚

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀𝑚 + 𝛾𝑚)

)
)
)
)
)
)

)

,

(25)

whose spectral radius has a similar threshold property to that
of 𝑅
0
, since both of the nonnegative matrices FV−1 and

𝑀
0 are irreducible, and hence from the Perron-Frobenius

theorem [7] that their spectral radii are given by each of
their simple eigenvalues. Thus, we obtain 𝑅

0
= 𝜌(FV−1) =

𝜌(V−1F) = 𝜌(𝑀
0
). Then the following lemma immediately

follows.

Lemma 2. 𝜌(𝑀0) ≤ 1 if and only if 𝑅
0
≤ 1.

3. Main Results

The following main theorems are summarized in terms of
system (15).

Theorem 3. Assume that the functions 𝜑
𝑖
and 𝑓

𝑖𝑗
satisfy

assumptions (𝐴
1
)–(𝐴
3
), and the matrix 𝐵 = (𝛽

𝑖𝑗
)
𝑚×𝑚

is
irreducible and 𝑅

0
is defined by (24).

(i) If 𝑅
0
≤ 1, then 𝑃

0
is the unique equilibrium of system

(15), and 𝑃
0
is globally asymptotically stable in Γ

0
.

(ii) If 𝑅
0
> 1, then 𝑃

0
is unstable, and system (15) is

uniformly persistent in Γ
0
.

Proof. Let us define 𝑀(𝑆) = (𝛽
𝑖𝑗
𝑐
𝑖𝑗
(𝑆
𝑖
)/(1 + 𝛿𝑏)

𝑛

(𝛿 + 𝜀
𝑖
+ 𝛾
𝑖
))
𝑚×𝑚

, where 𝑆 = (𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑚
)
𝑇. Note that

𝑀(𝑆
0
) = 𝑀

0. Since 𝐵 = (𝛽
𝑖𝑗
)
𝑚×𝑚

is irreducible, the matrix
𝑀
0 is also irreducible.
First we claim that there does not exist any endemic

equilibrium 𝑃
∗ in Ω. Suppose that 𝑆 ̸= 𝑆

0
. Then we have

0 < 𝑀(𝑆) < 𝑀
0. Since nonnegative matrix 𝑀(𝑆) + 𝑀

0

is irreducible, it follows from the Perron-Frobenius theorem
(see Corollary 2.1.5 of [7]) that 𝜌(𝑀(𝑆)) < 𝜌(𝑀

0
) ≤ 1.

This implies that 𝑀(𝑆)𝐼 = 𝐼 has only the trivial solution
𝐼 = 0, where 𝐼 = (𝐼

1
, . . . , 𝐼

𝑚
)
𝑇. Hence the claim is true.

Next we claim that the disease-free equilibrium 𝑃
0
is globally

asymptotically stable in Γ
0
. From the Perron-Frobenius (see

Theorem 2.1.4 of [7]), the nonnegative irreducible matrix
𝑀
0 has a strictly positive left eigenvector (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑚
)

associated with the eigenvalue 𝜌(𝑀0) such that

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑚
) 𝜌 (𝑀

0
) = (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑚
)𝑀
0
. (26)

Using this positive eigenvector, we construct the following
Lyapunov function:

𝑉DFE =
𝑚

∑

𝑖=1

𝜔
𝑖

𝛿 + 𝜀
𝑖
+ 𝛾
𝑖

(

𝑛

∑

𝑗=1

𝑦
𝑖,𝑗
+ 𝐼
𝑖
) . (27)

Computing the derivative of 𝑉DFE along the solutions of (15)
in Γ
0
, we get

𝑉
󸀠

DFE =
𝑚

∑

𝑖=1

[

[

𝑚

∑

𝑗=1

𝜔
𝑖
𝛽
𝑖𝑗

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
)
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) − 𝜔
𝑖
𝐼
𝑖
]

]

≤

𝑚

∑

𝑖=1

[

[

𝑚

∑

𝑗=1

𝜔
𝑖
𝛽
𝑖𝑗
𝑐
𝑖𝑗
(𝑆
𝑖
)

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
)
𝐼
𝑗
− 𝜔
𝑖
𝐼
𝑖
]

]

≤

𝑚

∑

𝑖=1

[

[

𝑚

∑

𝑗=1

𝜔
𝑖
𝛽
𝑖𝑗
𝑐
𝑖𝑗
(𝑆
0

𝑖
)

(1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
)
𝐼
𝑗
− 𝜔
𝑖
𝐼
𝑖
]

]

= (𝜔
1
, . . . , 𝜔

𝑚
) [𝑀
0
𝐼 − 𝐼]

= [𝜌 (𝑀
0
) − 1] (𝜔

1
, . . . , 𝜔

𝑚
) 𝐼.

(28)

Thus, under the assumption 𝑅
0
= 𝜌(𝑀

0
) < 1, 𝑉󸀠DFE ≤ 0, and

𝑉
󸀠

DFE = 0 if and only if 𝐼 = 0 and 𝑆 = 𝑆
0
= (𝑆
0

1
, 𝑆
0

2
, . . . , 𝑆

0

𝑚
).

Suppose that 𝜌(𝑀0) = 1. Then it follows from the previous
that 𝑉󸀠DFE = 0 implies

(𝜔
1
, . . . , 𝜔

𝑚
)𝑀
0
𝐼 = (𝜔

1
, . . . , 𝜔

𝑚
) 𝐼. (29)

Hence, if 𝑆 ̸= 𝑆
0
, then (𝜔

1
, . . . , 𝜔

𝑚
)𝑀(𝑆) < (𝜔

1
, . . . , 𝜔

𝑚
)𝑀
0
=

𝜌(𝑀
0
)(𝜔
1
, . . . , 𝜔

𝑚
) = (𝜔

1
, . . . , 𝜔

𝑚
) and thus 𝐼 = 0 is the only

solution of (29). Summarizing the statements, we see that
𝑉
󸀠

DFE = 0 if and only if 𝐼 = 0 or 𝑆 = 𝑆
0
, which implies that

the compact invariant subset of the set where 𝑉󸀠DFE = 0 is
only the singleton 𝑃

0
. Thus, by LaSalle’s invariance principle
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[18], it follows that the disease-free equilibrium 𝐸
0 is globally

asymptotically stable in Γ
0
.

If 𝑅
0
= 𝜌(𝑀

0
) > 1, then

(𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑚
)𝑀
0
− (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑚
)

= [𝜌 (𝑀
0
) − 1] (𝜔

1
, 𝜔
2
, . . . , 𝜔

𝑚
) > 0,

(30)

and then, by continuity, we can obtain

𝑉
󸀠

DFE = (𝜔1, . . . , 𝜔𝑚) [𝑀
0
𝐼 − 𝐼] > 0, (31)

in a neighborhood of 𝑃
0
in Γ
0
; then 𝑃

0
is unstable.

Assume 𝑅
0
= 𝜌(𝑀

0
) > 1. By the uniform persistence

result from [19] and a similar argument as in the proof of
[2], the instability of 𝑃

0
implies the uniform persistence of

(15). This together with the dissipativity of (15) resulted from
the forward invariant and compact property of Γ

0
stated

previously, implies which that (15) has an equilibrium in Γ
0
,

denoted by 𝑃∗ (see, e.g., Theorem D.3 in [20]).

Inwhat followswe prove that the endemic equilibrium𝑃
∗

of system (15) is globally asymptotically stable when 𝑅
0
> 1.

Throughout the paper, we denote

𝐻(𝑧) = 𝑧 − 1 − ln 𝑧. (32)

Then𝐻(𝑧) ≥ 0 for 𝑧 > 0 and has global minimum at 𝑧 = 1.
For convenience of notations, set 𝛽

𝑖𝑗
= 𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
), 1 ≤

𝑖, 𝑗 ≤ 𝑚, and

𝐵 =

[
[
[
[
[
[
[
[
[
[
[

[

∑

𝑙 ̸= 1

𝛽
1𝑙

−𝛽
21

⋅ ⋅ ⋅ −𝛽
𝑚𝑙

−𝛽
12

∑

𝑙 ̸= 2

𝛽
2𝑙

⋅ ⋅ ⋅ −𝛽
𝑚2

...
... d

...

−𝛽
1𝑚

−𝛽
2𝑚

⋅ ⋅ ⋅ ∑

𝑙 ̸=𝑚

𝛽
𝑚𝑙

]
]
]
]
]
]
]
]
]
]
]

]

. (33)

Then, 𝐵 is also irreducible. One knows that the solution space
of the linear system

𝐵V = 0 (34)

has dimension 1 and

(V
1
, V
2
, . . . V
𝑚
) = (𝐶

11
, . . . , 𝐶

𝑚𝑚
) (35)

gives a base of this space, where 𝐶
𝑘𝑘

> 0, 𝑘 = 1, 2, . . . , 𝑚,
is the cofactor of the 𝑘th diagonal entry of 𝐵. To get the
global stability of 𝑃∗, the following assumptions in [15] are
proposed:

(𝐴
4
) : [𝜑
𝑖
(𝑆
𝑖
) − 𝜑
𝑖
(𝑆
∗

𝑖
)](𝑆
𝑖
− 𝑆
∗

𝑖
) < 0 for 𝑆

𝑖
̸= 𝑆
∗

𝑖
, 𝑆
𝑖
∈ [0, 𝑆

0

𝑖
],

(𝐴
5
) : For 𝑆

𝑖
̸= 𝑆
∗

𝑖
, [𝜑
𝑖
(𝑆
𝑖
)−𝜑
𝑖
(𝑆
∗

𝑖
)]⋅[𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)−𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)] <

0.

(𝐴
6
) : For 𝑆

𝑖
, 𝐼
𝑗
> 0,

(𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) − 𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
))

⋅ (

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

𝐼
𝑗

−

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

𝐼
∗

𝑗

) ≤ 0.

(36)

A difficult mathematical question for system (15) is that of
whether the endemic equilibrium 𝑃

∗ is unique when 𝑅
0
> 1

and whether 𝑃∗ is globally asymptotically stable when it is
unique. Our main global stability result is given.

Theorem 4. Consider system (15). Assume that (𝐴
4
)–(𝐴
6
)

hold and the matrix 𝐵 = (𝛽
𝑖𝑗
)
𝑚×𝑚

is irreducible. If 𝑅
0
> 1,

then there is a unique endemic equilibrium 𝑃
∗ for system (15),

and 𝑃∗ is globally asymptotically stable in Γ
0
.

Proof. We show that𝑃∗ is globally asymptotically stable in Γ
0
,

which implies that there exists a unique endemic equilibrium.
Consider a Lyapunov function as

𝑉EE = 𝑆
𝑖
− 𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
) ∫

𝑆𝑖

𝑆
∗
𝑖

𝑑𝜉

𝑓
𝑖𝑖
(𝜉, 𝐼
∗

𝑖
)

+ (1 + 𝛿𝑏)
𝑛 [

[

𝑛

∑

𝑗=1

(𝑦
𝑖,𝑗
− 𝑦
∗

𝑖,𝑗
− 𝑦
∗

𝑖,𝑗
ln
𝑦
𝑖,𝑗

𝑦
∗

𝑖,𝑗

)

+𝐼
𝑖
− 𝐼
∗

𝑖
− 𝐼
∗

𝑖
ln

𝐼
𝑖

𝐼
∗

𝑖

]

]

.

(37)

This function has a linear part 𝑉EE expressed by

𝐿EE = 𝑆𝑖 + (1 + 𝛿𝑏)
𝑛 [

[

𝑛

∑

𝑗=1

(𝑦
𝑖,𝑗
− 𝑦
∗

𝑖,𝑗
) + 𝐼
𝑖
− 𝐼
∗

𝑖
]

]

. (38)

First, calculating the derivatives of 𝐿EE, we obtain

𝐿
󸀠

EE = 𝜑𝑖 (𝑆𝑖) − (1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
) 𝐼
𝑖
. (39)

Calculating the time derivative of𝑉EE along the solutions
of system (15) and using equilibrium equation (21), we have

𝑉
󸀠

EE = 𝐿
󸀠

EE −
𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)

̇𝑆
𝑖
+ (1 + 𝛿𝑏)

𝑛 [

[

𝑛

∑

𝑗=1

𝑦
∗

𝑖,𝑗

𝑦
𝑖,𝑗

̇𝑦
𝑖,𝑗
+
𝐼
∗

𝑖

𝐼
𝑖

̇𝐼
𝑖
]

]

= 𝜑
𝑖
(𝑆
𝑖
) − (1 + 𝛿𝑏)

𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
) 𝐼
𝑖

−
{

{

{

(𝜑
𝑖
(𝑆
𝑖
) −

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
))

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)



Abstract and Applied Analysis 7

0 5 10 15 20
t

S
1
(t
)

0

1

2

3

4

5

6

(a)

0 5 10 15 20
t

S
2
(t
)

0

1

2

3

4

5

6

(b)

0 5 10 15 20
t

I 1
(t
)

0

1

2

3

4

(c)

0 5 10 15 20
t

I 2
(t
)

0

1

2

3

4

(d)

Figure 1: Trajectories of 𝑆
1
(𝑡), 𝐼
1
(𝑡), 𝑆
2
(𝑡), and 𝐼

2
(𝑡) for 𝑅

0
= 0.051 < 1, and 𝑃

0
= (3, 0, 0, 0, 3, 0, 0, 0) is globally stable. 𝑆

1
(𝑡), 𝑆
2
(𝑡), 𝐼
1
(𝑡), and

𝐼
2
(𝑡) versus 𝑡 are illustrated by (a), (b), (c), and (d). Initial values are 𝑆

1
(0) = 9, 𝑆

2
(0) = 1, 𝑦

1,1
(0) = 2, 𝑦

1,2
(0) = 2, 𝑦

2,1
(0) = 0, 𝑦

2,2
(0) =

0, 𝐼
1
(0) = 6, and 𝐼

2
(0) = 2.

+ (1 + 𝛿𝑏)
𝑛 [

[

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑦
∗

𝑖,1

(1 + 𝛿𝑏)
𝑛
𝑦
𝑖,1

−
𝑦
∗

𝑖,1

𝑏̂

+
1

𝑏̂

𝑛

∑

𝑘=2

𝑦
∗

𝑖,𝑘
(
𝑦
𝑖,𝑘−1

𝑦
𝑖,𝑘

− 1)

+
𝑦
𝑖,𝑛
𝐼
∗

i

𝑏̂𝐼
𝑖

− (𝛿 + 𝜀
𝑖
+ 𝛾
𝑖
) 𝐼
∗

𝑖
]

]

}

}

}

= 𝜑
𝑖
(𝑆
𝑖
) (1 −

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)
)

−

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

𝑦
∗

𝑖,1
𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

𝑦
𝑖,1
𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

−
(1 + 𝛿𝑏)

𝑛

𝑏̂

𝑛

∑

𝑘=2

𝑦
∗

𝑖,𝑘
𝑦
𝑖,𝑘−1

𝑦
𝑖,𝑘

+
(1 + 𝛿𝑏)

𝑛

𝑏̂

𝑛𝑦
∗

𝑖
−
(1 + 𝛿𝑏)

𝑛

𝑏̂

𝑦
∗

𝑖,𝑛

𝑦
𝑖,𝑛
𝐼
∗

𝑖

𝑦
∗

𝑖,𝑛
𝐼
𝑖

+ (1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
) 𝐼
∗

𝑖

+

𝑚

∑

𝑗=1

𝛽
𝑖𝑗
𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) 𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)

− (1 + 𝛿𝑏)
𝑛
(𝛿 + 𝜀

𝑖
+ 𝛾
𝑖
) 𝐼
𝑖

= (𝜑
𝑖
(𝑆
𝑖
) − 𝜑
𝑖
(𝑆
∗

𝑖
)) (1 −

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)
)

+

𝑚

∑

𝑗=1

𝛽
𝑖𝑗

{

{

{

𝑛 + 2 −
𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)
−

𝑛

∑

𝑘=2

𝑦
∗

𝑖,𝑘
𝑦
𝑖,𝑘−1

𝑦
𝑖,𝑘
𝑦
∗

𝑖,𝑘−1

−
𝑦
𝑖,𝑛
𝐼
∗

𝑖

𝑦
∗

𝑖,𝑛
𝐼
𝑖

−
𝐼
𝑖

𝐼
∗

𝑖

−

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑦
∗

𝑖,1

𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) 𝑦
𝑖,1

+

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) 𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)

}

}

}

.

(40)
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Figure 2: Numerical simulation of (45) with 𝑅
0
= 0.051 < 1; hence 𝑃

0
= (3, 0, 0, 0, 3, 0, 0, 0) is globally stable. Graphs (a) and (b) illustrate

that 𝑆
1
(t), 𝑦
1,1
(𝑡), 𝑦
1,2
(𝑡) and 𝐼

1
(𝑡) will eventually towards to steady state. Graphs (c) and (d) illustrate that 𝑆

2
(𝑡), 𝑦
2,1
(𝑡), 𝑦
2,2
(𝑡), and 𝐼

2
(𝑡) will

eventually towards to steady state. Initial values are 𝑆
1
(0) = 9, 𝑆

2
(0) = 1, 𝑦

1,1
(0) = 2, 𝑦

1,2
(0) = 2, 𝑦

2,1
(0) = 0, 𝑦

2,2
(0) = 0, 𝐼

1
(0) = 6, and

𝐼
2
(0) = 2.

It follows from the assumptions (𝐴
4
)-(𝐴
5
) that 𝑉󸀠EE can be

estimated by

𝑉
󸀠

EE ≤
𝑚

∑

𝑖,𝑗=1

𝛽
𝑖𝑗

{

{

{

𝐺
𝑖
(𝐼
𝑖
) − 𝐺
𝑗
(𝐼
𝑗
) + 𝐻(

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)
)

+ 𝐻(

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑦
∗

𝑖,1

𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) 𝑦
𝑖,1

)

+

𝑛

∑

𝑘=2

𝐻(
𝑦
∗

𝑖,𝑘
𝑦
𝑖,𝑘−1

𝑦
𝑖,𝑘
𝑦
∗

𝑖,𝑘−1

)

+ 𝐻(
𝑦
𝑖,𝑛
𝐼
∗

𝑖

𝑦
∗

𝑖,𝑛
𝐼
𝑖

)

+ 𝐻(

𝐼
𝑗
𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

𝐼
∗

𝑗
𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

)
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Figure 3: Trajectories of 𝑆
1
(𝑡), 𝐼
1
(𝑡), 𝑆
2
(𝑡), and 𝐼

2
(𝑡) for 𝑅

0
= 1.67355 > 1, and 𝑃∗ = (0.347644, 0.0760948, 0.0760948, 4.51674, 0.330353,

0.0765909, 0.0765909, 4.4678) is globally stable. 𝑆
1
(𝑡), 𝑆
2
(𝑡), 𝐼
1
(𝑡), and 𝐼

2
(𝑡) versus 𝑡 are illustrated by (a), (b), (c), and (d). Initial values are

𝑆
1
(0) = 6, 𝑆

2
(0) = 2, 𝑦

1,1
(0) = 3, 𝑦

1,2
(0) = 3, 𝑦

2,1
(0) = 0.1, 𝑦

2,2
(0) = 0.1, 𝐼

1
(0) = 1.5, and 𝐼

2
(0) = 0.5.

+ [

[

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

− 1]

]

⋅[

[

1 −

𝐼
𝑗
𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
)

𝐼
∗

𝑗
𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
)

]

]

}

}

}

.

(41)

From the assumption (𝐴
6
) and (32), we know that

𝑉
󸀠

EE ≤
𝑚

∑

𝑖,𝑗=1

𝛽
𝑖𝑗
{𝐺
𝑖
(𝐼
𝑖
) − 𝐺
𝑗
(𝐼
𝑗
)} , (42)

where 𝐺
𝑖
(𝐼
𝑖
) = −𝐼

𝑖
/𝐼
∗

𝑖
+ ln(𝐼

𝑖
/𝐼
∗

𝑖
).

Obviously, the equalities in (41) and (42) hold if and only
if

𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)
= 1,

(1 −
𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)
) [𝜑
𝑖
(𝑆
𝑖
) − 𝜑
𝑖
(𝑆
∗

𝑖
)] = 0,

[

[

𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝑓
𝑖𝑖
(𝑆
∗

𝑖
, 𝐼
∗

𝑖
)

𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) 𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
)

− 1]

]

× [

[

1 −

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
∗

𝑖
, 𝐼
∗

𝑗
) 𝐼
𝑗

𝑓
𝑖𝑖
(𝑆
𝑖
, 𝐼
∗

𝑖
) 𝑓
𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) 𝐼
∗

𝑗

]

]

= 0.

(43)

That is, 𝑆
𝑖
= 𝑆
∗

𝑖
, 𝐼
𝑖
= 𝐼
∗

𝑖
, 𝑖 = 1, 2, . . . , 𝑚. We can show

that 𝑉EE and 𝛽
𝑖𝑗
satisfy the assumptions of Theorem 3.1 and

Corollary 3.3 in [21]. Therefore, the function

𝐿 =

𝑛

∑

𝑖=1

V
𝑖
𝑉EE (44)

is a Lyapunov function for system (15); namely, 𝐿󸀠|
(15)

≤ 0

for 𝑃∗ ∈ Γ
0
. One can only show that the largest invariant

subset, where 𝐿󸀠|
(15)

= 0, is the singleton {𝑃
∗

} by the same
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Figure 4: Numerical simulation of (45) with𝑅
0
= 1.67355 > 1; hence 𝑃∗ = (0.347644, 0.0760948, 0.0760948, 4.51674, 0.330353, 0.0765909,

0.0765909, 4.4678) is globally stable. Graphs (a) and (b) illustrate that 𝑆
1
(𝑡), 𝑦
1,1
(𝑡), 𝑦
1,2
(𝑡), and 𝐼

1
(𝑡) will eventually towards to steady state.

Graphs (c) and (d) illustrate that 𝑆
2
(𝑡), 𝑦
2,1
(𝑡), 𝑦
2,2
(𝑡), and 𝐼

2
(𝑡) will eventually towards to steady state. Initial values are 𝑆

1
(0) = 6, 𝑆

2
(0) =

2, 𝑦
1,1
(0) = 3, 𝑦

1,2
(0) = 3, 𝑦

2,1
(0) = 0.1, 𝑦

2,2
(0) = 0.1, 𝐼

1
(0) = 1.5, and 𝐼

2
(0) = 0.5.

argument as in [2–5, 13, 21]. By LaSalle’s invariance principle,
𝑃
∗ is globally asymptotically stable in Γ

0
. This completes the

proof of Theorem 4.

Remark 5. We show a complete proof for global asymptotic
stability of unique endemic equilibrium of system (15). In the
case of 𝑓

𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) = 𝑆
𝑖
𝐼
𝑗
, system (15) will reduce to the system

studied in [14, 22]. HereTheorem 4 extends related results in
[14, 22] to a result to a more general case allowing a nonlinear
incidence rate. Our result also cover the related results of
single group model in [13] for the case of 𝑓(𝑆, 𝐼) = 𝑓(𝑆)𝐼.

4. Numerical Example

Consider the system (15) when 𝑚 = 2, 𝑛 = 2, 𝜑
𝑖
(𝑆
𝑖
(𝑡)) =

3 − 𝑆
𝑖
, and 𝑓

𝑖𝑗
(𝑆
𝑖
, 𝐼
𝑗
) = 𝑆
𝑖
𝐼
𝑗
, 𝑖, 𝑗 = 1, 2. One then has a two-

group model as follows:

𝑆
󸀠

1
(𝑡) = 3 − 𝑆

1
− [𝛽
11
𝑆
1
(𝑡) 𝐼
1
(𝑡) + 𝛽

12
𝑆
1
(𝑡) 𝐼
2
(𝑡)] ,

𝑦
󸀠

1,1
(𝑡) =

1

(1 + 𝛿𝑏)
𝑛
[𝛽
11
𝑆
1
(𝑡) 𝐼
1
(𝑡) + 𝛽

12
𝑆
1
(𝑡) 𝐼
2
(𝑡)]

−
1

𝑏̂

𝑦
1,1
(𝑡) ,
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𝑦
󸀠

1,2
(𝑡) =

1

𝑏̂

(𝑦
1,1
(𝑡) − 𝑦

1,2
(𝑡)) ,

𝐼
󸀠

1
(𝑡) =

1

𝑏̂

𝑦
1,2 (𝑡) − (𝛿 + 𝜀1 + 𝛾1) 𝐼1 (𝑡) ,

𝑆
󸀠

2
(𝑡) = 3 − 𝑆

2
− [𝛽
21
𝑆
2
(𝑡) 𝐼
1
(𝑡) + 𝛽

22
𝑆
2
(𝑡) 𝐼
2
(𝑡)] ,

𝑦
󸀠

2,1
(𝑡) =

1

(1 + 𝛿𝑏)
𝑛
[𝛽
21
𝑆
2
(𝑡) 𝐼
1
(𝑡) + 𝛽

22
𝑆
2
(𝑡) 𝐼
2
(𝑡)]

−
1

𝑏̂

𝑦
2,1 (𝑡) ,

𝑦
󸀠

2,2
(𝑡) =

1

𝑏̂

(𝑦
2,1
(𝑡) − 𝑦

2,2
(𝑡)) ,

𝐼
󸀠

2
(𝑡) =

1

𝑏̂

𝑦
2,2 (𝑡) − (𝛿 + 𝜀2 + 𝛾2) 𝐼2 (𝑡) .

(45)

If we choose parameters as 𝛽
11

= 5/24, 𝛽
12

= 1, 𝛽
21

=

1/36, 𝛽
22

= 1/2, 𝛿 = 0.8, 𝜀
1
= 2, 𝜀

2
= 2, 𝛾

1
= 1/4, and

𝛾
2
= 1/4, we can compute 𝑅

0
= 0.051 < 1, and hence

𝑃
0
= (3, 0, 0, 0, 3, 0, 0, 0) is the unique equilibrium of system

(45) and it is globally stable from Theorem 4 (see Figures 1
and 2).

On the other hand, if 𝛽
𝑖𝑗
are chosen as 𝛽

11
= 0.7, 𝛽

12
=

1, 𝛽
21
= 0.8, 𝛽

22
= 1, 𝛿 = 0.5, 𝜀

1
= 0.02, 𝜀

2
= 0.03, 𝛾

1
= 0.05,

and 𝛾
2
= 0, 05, we can compute 𝑅

0
= 1.67355 > 1, and hence

𝑃
∗

= (0.347644, 0.0760948, 0.0760948, 4.51674, 0.330353,
0.0765909, 0.0765909, 4.4678) is the unique equilibrium of
system (45) and it is globally stable from Theorem 4 (see
Figures 3 and 4).
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