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Discretization algorithm for real value attributes is of very important uses in many areas such as intelligence and machine
learning. The algorithms related to Chi2 algorithm (includes modified Chi2 algorithm and extended Chi2 algorithm) are famous
discretization algorithm exploiting the technique of probability and statistics. In this paper the algorithms are analyzed, and their
drawback is pointed. Based on the analysis a new modified algorithm based on interval similarity is proposed. The new algorithm
defines an interval similarity function which is regarded as a new merging standard in the process of discretization. At the same
time, two important parameters (condition parameter𝛼 and tinymove parameter 𝑐) in the process of discretization and discrepancy
extent of a number of adjacent two intervals are given in the form of function.The related theory analysis and the experiment results
show that the presented algorithm is effective.

1. Introduction

The intelligent information processing is researching hot spot
in today’s information science theory and application. In
machine learning and data mining, many algorithms have
already been developed according to processing discrete data.
Discretization of real value attributes is an important method
of compression data and simplification analysis and also is
an indeterminable in pattern recognition, machine learning,
and rough set analysis domain. The key of discretization lies
with dividing the cut point. At present, there are five different
axes by which the proposed discretization algorithms can
be classified [1–4]: supervised versus unsupervised, static
versus dynamic, global versus local, top-down (splitting)
versus bottom-up (merging), and direct versus incremen-
tal. Continuous attributes need to be discretized in many
algorithms such as rule extraction and tag sort, especially
rough set theory in research of data mining. In view of an
algorithm for discretization of real value attributes based

on rough set, people have conducted extensive research and
proposed a lot of new discretization method [5], one kind
of thought of which is that the decision table compatibility
is not changed during discretion. Rough set and Boolean
logical method proposed by Nguyen and Skowron are quite
influential [6]. Moreover, there are two quite influential
discretization methods which are the algorithms of the
correlation based on information entropy and the algorithms
of the correlation of Chi2 algorithm based on statistical
method for supervised discretization. Reference [7] is an
algorithm for discretization of real value attributes based on
decision table and information entropy, which belongs to
a heuristic and local algorithm that seeks the best results.
Reference [8] proposed a discretization algorithm for real
value attributes based on information theory, which regards
class-attribute interdependence as an important discretiza-
tion criterion and selects the candidate cut point which can
lead to the better correlation between the class labels and
the discrete intervals. But this algorithm has the following
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disadvantages. It uses a user-specified number of intervals
when initializing the discretization intervals.The significance
test used in the algorithm requires training for selection
of a confidence interval. It initializes the discretization
intervals using a maximum entropy discretization method.
Such initialization may be the worst starting point in terms
of the CAIR criterion. And it is very easy to cause the
lower degree of discretization which is not immoderate.
Huang has solved the above problem, but at the expense
of very high-computational cost [9]. Kurgan and Cios have
improved in the discretization criterion and attempted to
cause class-attribute interdependence maximization [10]. But
this criterion merely considered dependence between the
most classes in the interval and the attribute, which will
cause the excessive discretization and the result is not to
be precise. References [3, 4, 11, 12] are the algorithms of
the correlation of Chi2 algorithm based on the statistics.
The ChiMerge algorithm introduced by Kerber in 1992 is
a supervised global discretization method [11]. The method
uses 𝜒2 test to determine whether the current point is merged
or not. Bondu et al. [13] proposed a Chi2 algorithm in 1997
based on the ChiMerge algorithm. In this algorithm, the
authors increase the value of the 𝜒2

𝛼
threshold dynamically

and decide the intervals’merging order according to the value
of 𝐷, where 𝐷 = 𝜒

2

𝛼
− 𝜒
2 and 𝜒

2

𝛼
is a fractile decided by

the significance level 𝛼. Tay and Shen further improved the
Chi2 algorithm and proposed themodifiedChi2 algorithm in
[4]. The authors showed that it is unreasonable to decide the
degree of freedom by the number of decision classes on the
whole system in the Chi2 algorithm. Conversely, the degree
of freedom should be determined by the number of decision
classes of each two adjacent intervals. In [3], the authors
pointed out that the method of calculating the freedom
degrees in the modified Chi2 algorithm is not accurate and
proposed the extended Chi2 algorithm, which replaced 𝐷

with𝐷/√2V.
Approximate reasoning is an important research content

of artificial intelligence domain [14–17]. It needs measuring
similarity between the different pattern and the object.
Similarity measure is a function that is used in comparing
similarity among information, data, shape, and picture etc.
[18]. In some domain such as picture matching, information
retrieval, computer vision, image fusion, remote sensing, and
weather forecast, similarity measure has the extremely vital
significance [13, 19–22]. The traditional similarity measure
method often directly adopts the research results in statistics,
such as the cosine distance, the overlap distance, the Euclid
distance, and Manhattan distance.

Using 𝜒
2 statistic and significance level codetermines

whether that cut point can be merged is the main role of
algorithms related to Chi2 algorithm. In this paper, we point
out that using the importance of nodes determined by the
distance, divided by √2V, for extended Chi2 algorithm of
reference [3] lacks theory basis and is not accurate. It is
unreasonable tomerge first adjacent two intervals which have
the maximal difference value. At the same time, based on
the study of applied meaning of 𝜒2 statistic, the drawback
of the algorithm is analyzed. To solve these problems, a new

modified algorithm based on interval similarity is proposed.
The new algorithm defines an interval similarity function
which is regarded as a new merging standard in the process
of discretization. At the same time, two important parameters
(condition parameter 𝛼 and tiny move parameter 𝑐) in
the process of discretization and discrepancy extent of a
number of adjacent two intervals are given in the form of
function. Besides, two important stipulations are given in the
algorithm. The related theory analysis and the experiment
results show that the presented algorithm is effective.

2. Correlative Conception of Chi2 Algorithm

At first, a few of conceptions about discretization are intro-
duced as follows.

(1) Interval and cut point. A single value of continuous
attributes is a cut point; two cut points produce an
interval. Adjacent two intervals have a cut point. Dis-
cretization algorithm of real value attributes actually
is in the process of removing cut point and merging
adjacent intervals based on definite rules.

(2) 𝜒
2 and 𝜒2

𝛼
. 𝜒2 is a statistic in probability.

The formula for computing the 𝜒2 value is

𝜒
2
=

2

∑

𝑖=1

𝑘

∑

𝑗=1

(𝐴
𝑖𝑗
− 𝐸
𝑖𝑗
)

2

𝐸
𝑖𝑗

, (1)

where

𝑘: number of system classes;
𝐴
𝑖𝑗
: number of patterns in the 𝑖th interval, 𝑗th class;

𝐶
𝑗
= ∑
2

𝑖=1
𝐴
𝑖𝑗
: number of patterns in 𝑗th class;

𝑅
𝑖
= ∑
𝑘

𝑗=1
𝐴
𝑖𝑗
: number of patterns in 𝑖th interval;

𝑁 = ∑
2

𝑖=1
𝑅
𝑖
: total number of patterns;

𝐸
𝑖𝑗
= 𝑅
𝑖
× 𝐶
𝑗
/𝑁: expected frequency of 𝐴

𝑖𝑗
.

𝜒
2

𝛼
is threshold determined significance level 𝛼. In statis-

tics, the asymptotic distribution of 𝜒2 statistic with 𝑘 degrees
of freedom is 𝜒2 distribution with 𝑘 − 1 degrees of freedom,
namely, 𝜒2

(𝑘−1)
distribution. 𝜒2

𝛼
is determined by selecting a

desired significance level 𝛼.

(3) Inconsistency rate. When condition attribute values
of objects are the same and decision attribute value
is not the same, the classified information of the
decision table has definite inconsistency rate (error
rate), where

Inconsistency rate: Incon rate = 1 − 𝛾
𝐶 (2)

𝛾
𝐶
is approximate precision. Rectified Chi2 algorithm pro-

posed in this paper controls merger extent and information
loss in the discretization process with Incon rate.

Extended Chi2 algorithm is as shown in Algorithm 1 [1].
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Step1: Initialization. Set significance level 𝛼 = 0.5. Calculate inconsistency rate of information
systems: Incon rate.

Step2: Sort data in ascending order for each attribute and calculate 𝜒2 value of
each adjacent two intervals according to (1), then using a table to obtain
the corresponding 𝜒2 threshold. Calculate difference𝐷 = (𝜒

2

𝛼
− 𝜒
2
) /√2V.

Step3: Merge.
While (mergeable cut point)
{Search cut point that has the maximal difference𝐷, then merging it;

If Incon rate change
{Withdraw merging;

goto Step4;}
else goto Step2;

}

Step4: If 𝛼 can not be decreased
Exit procedure;

Else {𝛼
0
= 𝛼;
Decreasing the significance level by one level;
goto Step2; }

Step5: Do until no attribute can be merged
{For each mergeable attribute 𝑖

{Calculate difference𝐷;
𝛼 = 𝛼

0
;

sign flag=0;
While (flag= =0)
{While (mergeable cut point)
{Search cut point that has the maximal difference𝐷, then merging it;
If Incon rate change
{Withdraw merging;
flag=1;
break;}

Else update difference𝐷;
}

If 𝛼 can not be decreased
Break;

Else {Decreasing the significance level by one level;
Update difference𝐷;}

}

}

}

Algorithm 1

3. Interval Similarity Function

3.1. Insufficiency of Chi2 Correlation Algorithm. (1) In for-
mula (1), 𝐶

𝑗
/𝑁 is the proportion of a number of patterns

in 𝑗th class accounting for a total number of patterns, and
𝐸
𝑖𝑗
= 𝑅
𝑖
× 𝐶
𝑗
/𝑁 is a number of patterns in the 𝑖th interval.

Therefore, statistical 𝜒2 indicates the equality degree of the
𝑗th class distribution of adjacent two intervals. The smaller
the 𝜒2 value is, the more the similar is class distribution, and
the more unimportant the cut point is. It should be merged.

For the newest extended Chi2 algorithm, it is very possi-
ble to have such two groups of adjacent intervals: the number
of classes of one is more than another, then, the difference
of class distribution of adjacent two intervals which have the
greater number of classes is bigger and the corresponding
𝜒
2 value is greater. Yet, the difference of class distribution of

adjacent two intervals which have the less number of classes is

smaller and the corresponding 𝜒2 value is smaller. Moreover,
degree of freedom of adjacent two intervals with the greater
number of classes is bigger. Then, quantile 𝜒2

𝛼
(V
1
) is possibly

much more than 𝜒
2

𝛼
(V
2
) (see Figure 1). Therefore, even if

𝜒
2

1
> 𝜒
2

2
, V
1
> V
2
, we still have such situation: 𝐷

1
/√2V
1
>

𝐷
2
/√2V
2
. But in fact, adjacent two intervals with the bigger

difference of class distribution and the greater number of
classes should not be first merged. This merging standard in
the computation is not precise. So it is unreasonable to merge
first the adjacent two intervals with the maximal difference.

(2) In algorithms of the series of Chi2 algorithm, expan-
sion to 𝜒2 is as follows:

𝜒
2
=

2

∑

𝑖=1

𝑘

∑

𝑗=1

(𝐴
𝑖𝑗
− 𝐸
𝑖𝑗
)

2

𝐸
𝑖𝑗

=

2

∑

𝑖=1

𝑘

∑

𝑗=1

𝑁 ⋅ (𝐴
𝑖𝑗
− 𝑅
𝑖
⋅ 𝐶
𝑗
/𝑁)

2

𝑅
𝑖
⋅ 𝐶
𝑗

.

(3)
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Figure 1: Comparison of 𝜒2 distribution with different degrees of
freedom.

In formula (3), under certain situations 𝜒2 is not very
accurate: there are adjacent two intervals of class distribu-
tion adjoin. When the number of some class 𝐶

𝑗
increases

(two intervals both have this class, 𝑁 and 𝑅
𝑖
are invari-

able, 𝐴
𝑖𝑗
value of one of two intervals is invariable); the

numerator and the denominator of expansion to 𝜒2 formula
are increasing at the same time. Regarding (𝐴

𝑖𝑗
− 𝑅
𝑖
⋅

𝐶
𝑗
/𝑁)
2, its value may be increased first and then turn to

be decreased. In other words, when 𝑅
𝑖
⋅ 𝐶
𝑗
/𝑁 is quite

bigger than 𝐴
𝑖𝑗
, 𝜒2 value will increase (degree of freedom

not to change) and probability of interval merging will be
reduced. In fact, when the number of some class𝐶

𝑗
increases,

this class has stronger independence with intervals, and
it has leader’s class status. Therefore, compared with not
increased, this time should have the same opportunity of
competition and even should merge first these two inter-
vals.

(3)The situation when 𝜒2 value is 0 is as follows.
There exists the case that class distribution of adjacent two

intervals is completely uniform, namely, 𝐴
𝑖𝑗
= 𝐸
𝑖𝑗
⇒ 𝜒
2

𝑖𝑗
=

0. Thus, 𝐷 is very big relatively and the two intervals are
possibly first merged. But in fact, it is possibly unreasonable
that they are firstmerged. For example (see Table 1), 𝑎, 𝑏, and c
are condition attributes and 𝑑 is decision attribute. Observing
attribute 𝑎: the same value is in the identical interval. The
number of samples of two intervals is the same. Classification
in 𝐴 is completely uniform, Namely, 𝐴

𝑖𝑗
= 𝐸
𝑖𝑗
⇒ 𝜒
2

𝑖𝑗
= 0;

𝐷
 is quite big relatively. Even if degree of freedom in 𝐴 is

bigger than𝐵, but because the difference of degree of freedom
between𝐴 and𝐵 is very small, it is possible that the difference
𝐷
 of 𝐴 is bigger than the difference 𝐷

 of 𝐵. From the
computation with Table 1, we get 𝜒2 = 0 and V = 2 in 𝐴, then
𝛼 = 0.9. We can see 𝜒2

𝛼
= 4.61 and get 𝐷 ≈ 2.3. Regarding

𝐵 in Table 1, 𝜒2 = 0.45 and V = 1, then 𝛼 = 0.9. We can see
𝜒
2

𝛼
= 2.71 and get 𝐷 ≈ 1.6. Thus, two intervals of attribute

𝑎 in 𝐴 will be first merged, and then the sample 3, 4 and the
sample 1, 5 in 𝐴 could have the conflict, but it is not the case
in 𝐵. So, when 𝜒

2 value is equal to 0, using difference 𝐷 as
the standard of interval merging is inaccurate.

Table 1: Decision table.

𝐴 𝐵

𝑈 𝑎 𝑏 𝑐 𝑑 𝑈 𝑎 𝑏 𝑐 𝑑

1 0 0 2 1 1 0 0 2 1
2 0 — — 2 2 0 — — 1
3 0 1 1 3 3 0 1 1 1
4 1 1 1 1 4 1 1 1 1
5 1 0 2 2 5 1 0 2 1
6 1 — — 3 6 1 — — 2

3.2. Interval Similarity Function

Definition 1. Let 𝐵 be a database, or an information table, and
let 𝑡
𝑖
, 𝑡
𝑗
∈ 𝐵 be two arrays then their similar degree SIM(𝑡

𝑖
, 𝑡
𝑗
)

is defined as a mapping to the interval [0, 1].
A good similarity measure should have the following

characteristic:

for all 𝑡
𝑖
∈ 𝐵, SIM(𝑡

𝑖
, 𝑡
𝑖
) = 1;

for all 𝑡
𝑖
, 𝑡
𝑗
∈ 𝐵, if 𝑡

𝑖
and 𝑡
𝑗
are completely different,

then SIM(𝑡
𝑖
, 𝑡
𝑗
) = 0;

for all 𝑡
𝑖
, 𝑡
𝑗
, 𝑡
𝑘
∈ 𝐵, compared with 𝑡

𝑗
, if 𝑡
𝑘
closes to 𝑡

𝑖
,

then SIM(𝑡
𝑖
, 𝑡
𝑗
) < SIM(𝑡

𝑖
, 𝑡
𝑘
).

The traditional similarity measure method often directly
adopts the research results in statistics, such as the cosine
distance, the overlap distance, the Euclid distance, and
Manhattan distance. Based on the analysis to the drawback of
the correlation of Chi2 algorithm, we propose the similarity
function as follows.

Definition 2. Given two intervals (objects), let 𝑎
𝑖
be a class

label according to the 𝑖th value in the first interval, and let
𝑏
𝑗
be a class label according to the 𝑗th value in the second

interval. Then, the difference between 𝑎
𝑖
and 𝑏
𝑗
is

𝑑
𝑖𝑗
= {

0 if 𝑎
𝑖
= 𝑏
𝑗
,

1 if 𝑎
𝑖
̸= 𝑏
𝑗
,

(4)

where 𝑖 = 1, 2, . . . , 𝑠, 𝑗 = 1, 2, . . . , 𝑡.

Definition 3. Similarity function of adjacent two intervals
𝑡
𝑘
, 𝑡
𝑘+1

is defined as

SIM (𝑡
𝑘
, 𝑡
𝑘+1

) =

{
{

{
{

{

1 if 𝐶 = 1,

1 −

2

𝜋

arctan(
∑
𝑠

𝑖=1
∑
𝑡

𝑗=1
𝑑
𝑖𝑗

(𝑠 + 𝑡)
𝛼

) if 𝐶 > 1.

(5)

In the formula (5), 𝛼 is a condition parameter:

𝛼 =

{
{
{
{

{
{
{
{

{

1 if (|𝑠 − 𝑡| < (
√
∑
𝐴

𝑖=1
𝑉
𝑖

𝐴

± 𝑐)) ,

1

2

other,

(6)
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where 𝐶 is the number of classes of two adjacent intervals,
𝐴 is the number of condition attribute, “| |” denotes absolute
value, 𝑉

𝑖
is the number of cut points of attribute 𝑖 before

discretizing, 1 ≤ 𝑖 ≤ 𝐴, 𝑐 is tiny move parameter (𝑐 =

1, 2, 3), 1 ≤ 𝑘 ≤ 𝑉
𝑖
, and 𝛼 ∈ {1, 1/2}.

Considering any adjacent two intervals 𝑡
𝑘
and 𝑡

𝑘+1
,

∑
𝑠

𝑖=1
∑
𝑡

𝑗=1
𝑑
𝑖𝑗
can express the difference degree between adja-

cent two intervals. But, because the number of each group
of adjacent intervals is different, it is unreasonable to merely
take ∑𝑠

𝑖=1
∑
𝑡

𝑗=1
𝑑
𝑖𝑗
as a difference measure standard. In order

to obtain a uniform standard of difference measure and
a fair compete opportunity among each group of adjacent
intervals, it is reasonable to take ∑

𝑠

𝑖=1
∑
𝑡

𝑗=1
𝑑
𝑖𝑗
/(𝑠 + 𝑡)

𝛼 as
a difference measure standard. In formula (5), when the
number of adjacent two intervals has only one (𝐶 = 1),
similar degree between them is the biggest obviously. In order
to enable similar degree among various intervals to compare
in the uniform situation, we can take arc tangent function
to normalized processing, making similar value mapped in
[0, 1]. The formula√∑𝐴

𝑖=1
𝑉
𝑖
/𝐴 expresses the average norma-

tive value of cut points before discretizing. And we take it as
benchmark of distance of the number between two intervals,
carrying on tiny move in the 𝑐 scope.

Reason of parameter 𝛼 selected: when the distance of
the number between adjacent two intervals reaches a certain
extent, ∑𝑠

𝑖=1
∑
𝑡

𝑗=1
𝑑
𝑖𝑗
will be small relatively, but 𝑠 + 𝑡 will

quite possibly be big. Thus, ∑𝑠
𝑖=1

∑
𝑡

𝑗=1
𝑑
𝑖𝑗
/(𝑠 + 𝑡) will be

relatively very small and not be easily merged. In fact,
considering the relations of containing and being contained
between two adjacent intervals, they still have the greater
merged opportunity and it is unfair. Therefore, parameter 𝛼
as condition parameter can play a fair role: when the distance
of the number between adjacent two intervals reaches the
certain extent, we select ∑𝑠

𝑖=1
∑
𝑡

𝑗=1
𝑑
𝑖𝑗
/√𝑠 + 𝑡 as standard. In

addition, by considering that the size of intervals has relation
with the number of initial attribute value (the number cut
point), we can take √∑

𝐴

𝑖=1
𝑉
𝑖
/𝐴 ± 𝑐 as the distance of the

number of adjacent two intervals, carrying on the tiny move
in the 𝑐 scope on benchmark of√∑𝐴

𝑖=1
𝑉
𝑖
/𝐴. In brief, interval

similarity definition not only can inherit the logical aspects of
𝜒
2 statistic but also can resolve the problems about algorithms

of the correlation of Chi2 algorithm, realizing equality.

4. Discretization Algorithm for Real Value
Attributes Based on Interval Similarity

In this section we propose a new discretization algorithm
for real value attributes based on interval similarity (the
algorithm is called SIM for short).The new algorithm defines
an interval similarity function which is regarded as a new
merging standard in the process of discretization. In the
algorithm we adopt two operations.

(1) With formula (5) there are many maximal similar
values calculated among groups of adjacent intervals;

Table 2: Data Information.

Datasets Continuous
attributes

Discrete
attributes

Number of
Classes Examples

Iris 4 0 3 150
Glass 9 0 7 214
Breast 9 0 2 683
Wine 13 0 3 178
Auto 5 2 3 392
Bupa 6 0 2 345
Machine 7 0 8 209
Pima 8 0 2 768
Ionosphere 34 0 2 351

we will merge the adjacent two intervals with the
smallest number of classes.

(2) When there are many maximal similar values cal-
culated and the number of classes among groups
of adjacent intervals is the same, we will merge the
adjacent two intervals with the smallest number of
samples of adjacent intervals (namely, 𝑠 + 𝑡 is the
smallest).

The two operations can reduce the influence of merge
degree to other intervals or attributes, and the inconsistency
rate of system cannot increase beforehand. The algorithm
SIM is as shown in Algorithm 2.

5. The Experimental Results and Analysis

We adopt the datasets of UCI machine learning database (see
Table 2). The UCI machine learning datasets are commonly
used in data mining experiment.

Nine datasets were discrete respectively by the algorithm
proposed in this paper (SIM) and the EXT algorithm, the
Boolean algorithm. We ran C4.5 on the discreted data.
Choosing randomly, 80 percent of examples are training sets;
the rest are testing sets. The average predictive accuracy, the
average numbers of nodes of decision tree, and the average
numbers of rules extracted are computed and compared by
different algorithms (see Table 3). Meanwhile, discreted data
is classified by multiclass classification method [23–26] of
SVM. 80 percent of examples are randomly chosen as training
sets; the rest are testing sets. Model type is C-SVC. Kernel
function type is RBF function. Search range of penalty C is
[1, 100]. Kernel function parameter 𝛾 is 0.5. The predictive
accuracy (acc) and the number of support vector (svs) are
computed and compared for the above three algorithms (see
Table 4).

From Table 3, we can see that compared with extended
Chi2 algorithm and Boolean discretization algorithm, the
average predictive accuracy of decision tree of SIM algorithm
for discretization of real value attributes based on interval
similarity has been rising except Bupa and Pima datasets for
9 datasets. In particular promotion scope of Glass, Wine, and
Machine datasets is very big. The average numbers of nodes
of decision tree and the average numbers of rules extracted
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Step1: Compute inconsistency rate of information system;
Step2: Sort data in ascending order for each attribute and calculate the similar

value SIM of each adjacent intervals according to (5) and (6);
Step3: Merge
While (merge-able cut point)
{

Search cut point that has the maximal similar value, then merging it;
If (many maximum values)
{

Merge adjacent two intervals with the smallest number of classes;
If (Incon rate increases)
{

Withdraw merging;
Exit procedure;

}

Else {break; goto Step2;}
}

If (some several maximum values and the same class number of classes
among groups of adjacent intervals)

{

Merge the adjacent two intervals with the smallest number of samples
of adjacent intervals;
If (Incon rate increases)
{

withdraw merging;
exit procedure;
}

Else {break; goto step2;}
}

}

Algorithm 2

Table 3: Comparison of C4.5 performance on 9 UCI real datasets.

Datasets Predictive accuracy (%) Number of nodes Number of rules
EXT SIM Boolean EXT SIM Boolean EXT SIM Boolean

Iris 91.67 93.67 90.0 20.85 20 20.43 14.35 13.7 13.03
Glass 51.16 55.12 49.74 121.5 125.6 127.8 79.55 112.4 105.6
Breast 92.55 94.12 92.0 89.1 79.1 88.3 57.5 45.1 58.2
Wine 80.28 91.53 88.9 62.8 28.65 48.35 36 21.4 28.56
Auto 77.15 78.73 72.2 139.65 122.9 148.6 99.35 91 104.5
Bupa 45.29 38.41 38.24 236.4 248.7 249.3 183.55 201.9 196.9
Machine 77.38 83.69 66.7 64.15 62 72.35 42.45 42.9 48.36
Pima 61.82 59.25 63.6 448.4 485.9 445.3 342.1 427.6 356.8
Ionosphere 83.94 88.48 85.9 90.25 74.3 82.23 1 1 1

of algorithm for discretization of real value attributes based
on interval similarity have been decreased for most of
the data. These results show the superiority of algorithm
for discretization of real value attributes based on interval
similarity.

From Table 4, we can see that under 1-V-1 classi-
fication method the predictive accuracy with SIM algo-
rithm is higher than that of extended Chi2 algorithm and
Boolean discretization algorithm except for Breast and Pima
datasets.

Figures 2 and 3 visually describe predictive accuracy of
decision tree and SVM with different discretization algo-
rithms.

From the experiments we can see that the algorithm
for discretization of real value attributes based on interval
similarity proposed in this paper can obtain very good
discretization effect.

We give a further analysis about the algorithms.
(1) In regard to data set with the greater number of

classes, it is very possible that the difference of the number
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Figure 2: Comparison of C4.5 performance on 9 UCI real datasets.
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Figure 3: Comparison of SVM (1-V-1) performance on 9 UCI real
datasets.

of classes of each group of adjacent intervals is very big.
Thus, if extended Chi2 discretization algorithm was used,
it is not accurate and unreasonable to merge first adjacent
two intervals which have the maximal difference value.
The method proposed in this paper has avoided the above
situation. This is also the main reason that recognition effect
of Glass and Machine datasets is effective.

(2) In regard to data set with the greater number of real
value attribute, although the difference of the number of
classes of each group of adjacent intervals is small, it may
appear very unreasonable many situations in extended Chi2
algorithm in the discretization process: merged standard is
not precise in computation, 𝜒2 = 0 and so on. Regarding
such situation, the method proposed in this paper has
superiority very well (e.g. Ionosphere and Wine datasets).

Table 4: Comparison of SVM (1-V-1) performance on 9 UCI real
datasets.

Datasets EXT SIM Boolean
acc (%) svs acc (%) svs Acc (%) svs

Iris 93.3 36 93.3 26 90.0 27
Glass 67.4 120 67.4 149 67.1 146
Breast 98.5 50 97.8 129 95.6 79
Wine 97.2 37 100.0 72 97.2 103
Auto 69.6 148 84.8 138 67.1 173
Bupa 68.1 180 72.5 167 62.3 197
Machine 69.0 101 73.8 70 64.3 130
Pima 74.7 339 70.8 357 74.0 370
Ionosphere 97.2 178 98.6 221 93.0 272

Under the comparison for two methods, the difference of
recognition and forecast effect of Auto and Iris datasets (each
of them has three classes) is small. But the method proposed
in this paper is good.

(3) In regard to Auto and Iris datasets (each of them has
two classes) class distribution difference of each adjacent two
intervals is not big. It is improbable to appear unreasonable
factors. This time, merged standard of extended Chi2 algo-
rithm is possibly more accurate in computation. However, as
the data of Breast is with less attribute and more samples,
the intervals are massive in process of discretizing and
inconsistency rate will increase easily. At this time, extended
Chi2 algorithm produces the lower discretization effect; SIM
algorithm proposed in this paper gets better discretization
results by means of two important parameters’ choice.

However, from the experiments we can see that SIM
algorithm does not outperform extended Chi2 algorithm
and Boolean discretization algorithm for all datasets. The
characteristic of the data set on which SIM algorithm does
not perform well is that it has lesser classes. That is the data
set has not enough information of class.

6. Conclusions and Next Step of Work

Study of discretization algorithm of real value attributes
operates an important effect for many aspects of computer
application. Series of algorithms correlative toChi2 algorithm
based on probability statistics theory offer a new way of
thinking to discretization of real value attributes. Based on
the study for these algorithms a new algorithm using interval
similarity technique is proposed. The new algorithm defines
an interval similarity function which is regarded as a new
merging standard in the process of discretization. At the
same time, two important parameters (condition parameter
𝛼 and tiny move parameter 𝑐) which embody equilibrium
in the process of discretization and discrepancy of adjacent
two intervals are given in the function. The new algorithm
gives fair standard and can discrete the real value attributes
exactly and reasonably, and not only can it inherit the logical
aspects of 𝜒2 statistic, but also it can avoid the problems with
the correlation of Chi2 algorithm. The theory analysis and
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the experiment results show that the presented algorithm is
effective.
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