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We presented some maximal and minimal fixed point theorems of set-valued monotone mappings with respect to a partial order
introduced by a vector functional in conemetric spaces. In addition, we proved not only the existence ofmaximal andminimal fixed
points but also the existence of the largest and the least fixed points of single-valued increasing mappings. It is worth mentioning
that the results on single-valuedmappings in this paper are still new even in the case ofmetric spaces and hence they indeed improve
the recent results.

1. Introductions

Throughout this paper, let (𝑋, 𝑑) be a complete cone metric
space over a total minihedral and continuous cone 𝑃 of a
normed vector space 𝐸. A vector functional 𝜑 : 𝑋 → 𝐸

introduces a partial order ≺ on𝑋 as follows:

𝑥 ≺ 𝑦 ⇐⇒ 𝑑 (𝑥, 𝑦) ⪯ 𝜑 (𝑥) − 𝜑 (𝑦) , (1)

for all 𝑥, 𝑦 ∈ 𝑋, where ⪯ is the partial order on 𝐸

determined by the cone 𝑃. Using the partial order introduced
by the vector functional 𝜑, Agarwal and Khamsi [1] extended
Caristi’s fixed point theorem [2] to the case of cone metric
space and proved that all mapping 𝑇 : 𝑋 → 𝑋 (resp.,
𝑇 : 𝑋 → 2

𝑋) such that

∀𝑥 ∈ 𝑋, 𝑥 ≺ 𝑇𝑥 (resp., ∀𝑥 ∈ 𝑋, ∃𝑦 ∈ 𝑇𝑥, 𝑥 ≺ 𝑦)
(2)

has a fixed point provided that 𝜑 is lower semicontinuous
and bounded below on 𝑋. In [1, 3], the authors studied
Kirk’s problem [4, 5] in the case of cone metric spaces and
obtained some generalized Caristi’s fixed point theorems in
cone metric spaces. For the researches on the generalization
of primitive Caristi’s result in the case of metric spaces, we

refer the readers to [6–12]. For other references concerned
with various fixed point results for one, two, three, or four
self-mappings in the setting of metric, orderedmetric, partial
metric, Prešić-type mappings, cone metric, G-metric spaces,
and so forth, we refer the readers to [13–24].

In particular, when 𝐸 = R, the partial order defined by
(1) is reduced to the one defined by Caristi [2] who denote it
by ≺
1
. Zhang [25, 26] and Li [27] considered the existence of

fixed points of a mapping 𝑇 : 𝑋 → 𝑋 (resp., 𝑇 : 𝑋 → 2𝑋)
such that

𝑥
0
≺
1
𝑇𝑥
0

(resp., ∃𝑦 ∈ 𝑇𝑥
0
, 𝑥
0
≺
1
𝑦) , (3)

for some 𝑥
0
∈ 𝑋, and proved some maximal and minimal

fixed point theorems at the expense that 𝑇 is monotone with
respect to the partial order ≺

1
.

In this paper, we shall extend the results of Zhang [25, 26]
and Li [27] to the case of cone metric spaces. Some maximal
and minimal fixed point theorems of set-valued monotone
mappings with respect to the partial order ≺ are established
in cone metric spaces. In addition, not only the existence
of maximal and minimal fixed points but also the existence
of largest and least fixed points is proved for single-valued
increasing mappings. It is worth mentioning that the results
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on single-valued mappings in this paper are still new even in
the case of metric spaces and hence they indeed improve the
results of Zhang [25] and Li [27].

2. Preliminaries

First, we recall some definitions and properties of cones and
conemetric spaces; these can be found in [1, 3, 17–24, 28–30].

Let 𝐸 be a topological vector space. A cone 𝑃 of 𝐸 is a
nonempty closed subset of 𝐸 such that 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃 for all
𝑥, 𝑦 ∈ 𝑃 and all 𝑎, 𝑏 ≥ 0, and 𝑃 ∩ (−𝑃) = {𝜃}, where 𝜃 is the
zero element of 𝐸. A cone 𝑃 of 𝐸 determines a partial order ⪯
on 𝐸 by 𝑥 ⪯ 𝑦 ⇔ 𝑦 − 𝑥 ∈ 𝑃 for all 𝑥, 𝑦 ∈ 𝑋. For all 𝑥, 𝑦 ∈ 𝐸

with 𝑦−𝑥 ∈ int𝑃, we write 𝑥 ≪ 𝑦, where int𝑃 is the interior
of 𝑃.

Let 𝑃 be a cone of a topological vector space. 𝑃 is total
order minihedral [29] if, for all upper bounded nonempty
total ordered subset 𝐴 of 𝐸, sup𝐴 exists in 𝐸. Equivalently, 𝑃
is total order minihedral if, for all lower bounded nonempty
total ordered subset 𝐴 of 𝐸, inf 𝐴 exists in 𝐸.

Let 𝐸 be a normed vector space. A cone 𝑃 of 𝐸 is
continuous [1, 3] if, for all subset 𝐴 of 𝐸, inf 𝐴 exists implies
inf
𝑥∈𝐴

‖𝑥 − inf 𝐴‖ = 0, and sup𝐴 exists implies sup
𝑥∈𝐴

‖𝑥 −

sup𝐴‖ = 0. A cone 𝑃 of 𝐸 is normal [30] if there exists𝑁 > 0

such that for all 𝑥, 𝑦 ∈ 𝑃, 𝑥 ⪯ 𝑦 implies ‖𝑥‖ ≤ 𝑁‖𝑦‖, and the
minimal 𝑁 is called a normal constant of 𝑃. Equivalently, A
cone 𝑃 of 𝐸 is normal provided that for all {𝑥

𝑛
}, {𝑦
𝑛
}, {𝑧
𝑛
} ⊆ 𝐸

with 𝑥
𝑛
⪯ 𝑦
𝑛
⪯ 𝑧
𝑛
for all 𝑛, 𝑥

𝑛
→ 𝑥 and 𝑧

𝑛
→ 𝑥 imply

𝑦
𝑛
→ 𝑥 for some 𝑥 ∈ 𝑋.

Remark 1. A total orderminihedral cone𝑃 of a normed space
𝐸 is certainly normal see [29].

Let 𝑋 be a nonempty set and 𝑃 a cone of a topological
vector space 𝐸. A cone metric [28] is a mapping 𝑑 : 𝑋×𝑋 →

𝑃 such that for all 𝑥, 𝑦, 𝑥 ∈ 𝑋,

(𝑑1) 𝑑(𝑥, 𝑦) = 𝜃 if and only if 𝑥 = 𝑦,

(𝑑2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥),

(𝑑3) 𝑑(𝑥, 𝑦) ⪯ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦).
A pair (𝑋, 𝑑) is called a cone metric space over 𝑃 if 𝑑 : 𝑋 ×

𝑋 → 𝑃 is a cone metric. Let (𝑋, 𝑑) be a cone metric space
over a cone𝑃 of a topological vector space𝐸. A sequence {𝑥

𝑛
}

in (𝑋, 𝑑) converges [28] to 𝑥 ∈ 𝑋 (denote 𝑥
𝑛

𝑑

→ 𝑥) if, for
all 𝜀 ∈ 𝑃 with 𝜃 ≪ 𝜀, there exists a positive integer 𝑛

0
such

that 𝑑(𝑥
𝑛
, 𝑥) ≪ 𝜀 for all 𝑛 ≥ 𝑛

0
. A sequence {𝑥

𝑛
} in (𝑋, 𝑑) is

Cauchy [28] if, for all 𝜀 ∈ 𝑃 with 𝜃 ≪ 𝜀, there exists a positive
integer 𝑛

0
such that 𝑑(𝑥

𝑛
, 𝑥
𝑚
) ≪ 𝜀 for all 𝑚, 𝑛 ≥ 𝑛

0
. A cone

metric space (𝑋, 𝑑) is complete [28] if all Cauchy sequence
{𝑥
𝑛
} in (𝑋, 𝑑) converges to a point 𝑥 ∈ 𝑋. A vector functional

𝜑 : 𝑋 → 𝐸 is sequentially continuous at some 𝑥 ∈ 𝑋 if
lim
𝑛→∞

𝜑(𝑥
𝑛
) = 𝜑(𝑥) for all {𝑥

𝑛
} ⊆ 𝑋 such that 𝑥

𝑛

𝑑

→ 𝑥. If,
for all 𝑥 ∈ 𝑋, 𝜑 is sequentially continuous at 𝑥, then 𝜑 : 𝑋 →

𝐸 is sequentially continuous.

Remark 2. Let (𝑋, 𝑑) be a cone metric space over a normal
cone 𝑃 of a normed vector space 𝐸 and {𝑥

𝑛
} a sequence in

(𝑋, 𝑑). Then 𝑥
𝑛

𝑑

→ 𝑥 if and only if lim
𝑛→∞

𝑑(𝑥
𝑛
, 𝑥) = 𝜃, and

{𝑥
𝑛
} is Cauchy if and only if lim

𝑚,𝑛→∞
𝑑(𝑥
𝑛
, 𝑥
𝑚
) = 𝜃 see [28].

Let 𝑋 be a nonempty set and ≺ a partial order on 𝑋. For
all 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≺ 𝑦, set [𝑥, +∞) = {𝑧 ∈ 𝑋 : 𝑥 ≺ 𝑧},
(−∞, 𝑥] = {𝑧 ∈ 𝑋 : 𝑧 ≺ 𝑥}, and [𝑥, 𝑦] = {𝑧 ∈ 𝑋 : 𝑥 ≺ 𝑧 ≺ 𝑦}.
Let 𝐴 be a nonempty subset of 𝑋. A set-valued mapping 𝑇 :

𝑋 → 2
𝑋 is increasing on𝐴 if, for all 𝑥, 𝑦 ∈ 𝐴with 𝑥 ≺ 𝑦 and

all 𝑢 ∈ 𝑇𝑥, there exists V ∈ 𝑇𝑦 such that 𝑢 ≺ V. A set-valued
mapping 𝑇 : 𝑋 → 2𝑋 is quasi-increasing if, for all 𝑥, 𝑦 ∈ 𝐴

with 𝑥 ≺ 𝑦 and all V ∈ 𝑇𝑦, there exists 𝑢 ∈ 𝑇𝑥 such that
𝑢 ≺ V. In particular, a single-valued mapping 𝑇 : 𝑋 → 𝑋 is
increasing on 𝐴 if, for all 𝑥, 𝑦 ∈ 𝐴 with 𝑥 ≺ 𝑦, 𝑇𝑥 ≺ 𝑇𝑦.

A point 𝑥∗ ∈ 𝑋 is called a fixed point of a set-valued
(resp., single-valued)mapping𝑇 if𝑥∗ ∈ 𝑇𝑥∗(resp.𝑥∗ = 𝑇𝑥∗).
Let 𝐴 be a nonempty subset of 𝑋 and let 𝑥∗ ∈ 𝐴 be a fixed
point of a mapping 𝑇. 𝑥∗ is called a maximal (resp. minimal)
fixed point of 𝑇 in 𝐴 if for all fixed point 𝑥 ∈ 𝐴 of 𝑇, 𝑥∗ ≺ 𝑥

(resp., 𝑥 ≺ 𝑥∗) implies 𝑥∗ = 𝑥. 𝑥∗ ∈ 𝐴 is called a largest
(resp., least) fixed point of 𝑇 in 𝐴 if, for all fixed point 𝑥 ∈ 𝐴
of 𝑇, 𝑥 ≺ 𝑥∗ (resp., 𝑥∗ ≺ 𝑥). A largest (resp., least) fixed point
of 𝑇 in 𝐴 is naturally a maximal (resp., minimal) fixed point
in 𝐴, but the converse may not be true.

3. Fixed Point Theorems

In this section, we always assume that the partial order ≺ is
defined by (1).

Theorem 3. Let (𝑋, 𝑑, ≺) be a complete partially ordered cone
metric space over a total order minihedral and continuous cone
𝑃 of a normed vector space 𝐸. Let 𝜑 : 𝑋 → 𝐸 be a sequentially
continuous vector functional and let 𝑇 : 𝑋 → 2

𝑋 be a set-
valued mapping such that 𝑇𝑥 is compact for all 𝑥 ∈ 𝑋. Assume
that there exists 𝑥

0
∈ 𝑋 such that 𝜑 is bounded below on

[𝑥
0
, +∞),𝑇 is increasing on [𝑥

0
, +∞), and𝑇𝑥

0
∩[𝑥
0
, +∞) ̸= 0.

Then 𝑇 has a maximal fixed point 𝑥∗ ∈ [𝑥
0
, +∞).

Proof. Since 𝑃 is a total order minihedral cone and 𝐸 is a
normed space, then 𝑃 is a normal cone by Remark 1. Set

𝑄
1
= {𝑥 ∈ [𝑥

0
, +∞) : 𝑇𝑥 ∩ [𝑥, +∞) ̸= 0} . (4)

Clearly, 𝑄
1
is nonempty since 𝑥

0
∈ 𝑄
1
. Let {𝑥

𝛼
}
𝛼∈Γ

⊆ 𝑄
1
be

an increasing chain, where Γ is a directed set. Then by (1) we
have

𝑑 (𝑥
𝛼
, 𝑥
𝛽
) ⪯ 𝜑 (𝑥

𝛼
) − 𝜑 (𝑥

𝛽
) , (5)

for all 𝛼, 𝛽 ∈ Γ with 𝛼 ⪯ 𝛽. This implies that {𝜑(𝑥
𝛼
)} is

a decreasing chain in 𝐸. Since 𝑃 is total order minihedral
and 𝜑 is bounded below on [𝑥

0
, +∞), then inf

𝛼∈Γ
𝜑(𝑥
𝛼
) exists

in 𝐸. Moreover, inf
𝛼∈Γ

‖𝜑(𝑥
𝛼
) − inf

𝛼∈Γ
𝜑(𝑥
𝛼
)‖ = 0 since 𝑃

is continuous. Therefore there exists an increasing sequence
{𝑥
𝛼
𝑛

} ⊆ {𝑥
𝛼
} such that lim

𝑛→∞
‖𝜑(𝑥
𝛼
𝑛

) − inf
𝛼∈Γ

𝜑(𝑥
𝛼
)‖ = 0,

that is,

lim
𝑛→∞

𝜑 (𝑥
𝛼
𝑛

) = inf
𝛼∈Γ

𝜑 (𝑥
𝛼
) . (6)
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By (1) we have for all𝑚 ∈ N such that𝑚 ≥ 𝑛,

𝑑 (𝑥
𝛼
𝑛

, 𝑥
𝛼
𝑚

) ⪯ 𝜑 (𝑥
𝛼
𝑛

) − 𝜑 (𝑥
𝛼
𝑚

) . (7)

Let 𝑛 → ∞, by (6) we have lim
𝑚,𝑛→∞

[𝜑(𝑥
𝛼
𝑛

) − 𝜑(𝑥
𝛼
𝑚

)] =

𝜃 and hence lim
𝑚,𝑛→∞

𝑑(𝑥
𝛼
𝑛

, 𝑥
𝛼
𝑚

) = 𝜃 by the normality of
𝑃. Moreover by Remark 2, {𝑥

𝛼
𝑛

} is a Cauchy sequence in 𝑋.
Therefore by the completeness of 𝑋, there exists some 𝑥 ∈ 𝑋
such that

𝑥
𝛼
𝑛

𝑑

→ 𝑥. (8)

Note that {𝑥
𝛼
𝑛

} is an increasing sequence of 𝑄
1
, then by (1),

we have for all 𝑛,

𝑑 (𝑥
0
, 𝑥
𝛼
𝑛

) ⪯ 𝜑 (𝑥
0
) − 𝜑 (𝑥

𝛼
𝑛

) , (9)

And, for all 𝑛 ≥ 𝑛
0
,

𝑑 (𝑥
𝛼
𝑛
0

, 𝑥
𝛼
𝑛

) ⪯ 𝜑 (𝑥
𝛼
𝑛
0

) − 𝜑 (𝑥
𝛼
𝑛

) , (10)

where 𝑛
0
is an arbitrary integer. Let 𝑛 → ∞, then by (8)

and the continuity of 𝜑 we have 𝑑(𝑥
0
, 𝑥) ⪯ 𝜑(𝑥

0
) − 𝜑(𝑥) and

𝑑(𝑥
𝛼
𝑛
0

, 𝑥) ⪯ 𝜑(𝑥
𝛼
𝑛
0

)−𝜑(𝑥), that is,𝑥 ∈ [𝑥
0
, +∞) and𝑥

𝛼
𝑛
0

≺ 𝑥.
Moreover the arbitrary property of 𝑛

0
forces that

𝑥
𝛼
𝑛

≺ 𝑥, (11)

for all 𝑛. By 𝑥
𝛼
𝑛

∈ 𝑄
1
, there exists 𝑦

𝑛
∈ 𝑇𝑥
𝛼
𝑛

such that

𝑥
𝛼
𝑛

≺ 𝑦
𝑛
, (12)

for all 𝑛. Since 𝑇 is increasing on [𝑥
0
, +∞), then by (11) and

𝑥 ∈ [𝑥
0
, +∞), there exists 𝑧

𝑛
∈ 𝑇𝑥 such that

𝑦
𝑛
≺ 𝑧
𝑛
, (13)

for all 𝑛. This together with (12) implies that

𝑥
𝛼
𝑛

≺ 𝑧
𝑛
, (14)

for all 𝑛. Note that 𝑇𝑥 is compact, and there exists a sub-
sequence {𝑧

𝑛
𝑘

} ⊆ {𝑧
𝑛
} and 𝑧 ∈ 𝑇𝑥 such that

𝑧
𝑛
𝑘

→ 𝑧. (15)

From (14) we have 𝑥
𝛼
𝑛
𝑘

≺ 𝑧
𝑛
𝑘

for all 𝑛
𝑘
and hence by (1),

𝑑 (𝑥
𝛼
𝑛
𝑘

, 𝑧
𝑛
𝑘

) ⪯ 𝜑 (𝑥
𝛼
𝑛
𝑘

) − 𝜑 (𝑧
𝑛
𝑘

) , (16)

for all 𝑛
𝑘
. Let 𝑛

𝑘
→ ∞, then by (8), (15), and the continuity

of 𝜑we have 𝑑(𝑥, 𝑧) ⪯ 𝜑(𝑥)−𝜑(𝑧), that is, 𝑥 ≺ 𝑧. This implies
that 𝑇𝑥 ∩ [𝑥, +∞) ̸= 0 and hence 𝑥 ∈ 𝑄

1
by 𝑥 ∈ [𝑥

0
, +∞).

For all 𝛼 ∈ Γ, if there exists some 𝑛
0
such that 𝑥

𝛼
≺ 𝑥
𝛼
𝑛
0

,
then 𝑥 is an upper bound of {𝑥

𝛼
} by (11). Otherwise, there

exists some 𝛽 ∈ Γ such that 𝑥
𝛼
𝑛

≺ 𝑥
𝛽
for all 𝑛. Thus by (1)

we have 𝜑(𝑥
𝛼
𝑛

) − 𝜑(𝑥
𝛽
) ∈ 𝑃 for all 𝑛. Let 𝑛 → ∞, by (6) we

have inf
𝛼∈Γ

𝜑(𝑥
𝛼
) − 𝜑(𝑥

𝛽
) ∈ 𝑃; that is, 𝜑(𝑥

𝛽
) ⪯ inf

𝛼∈Γ
𝜑(𝑥
𝛼
).

So we have 𝜑(𝑥
𝛽
) = inf

𝛼∈Γ
𝜑(𝑥
𝛼
) and hence 𝜑(𝑥

𝛽
) ⪯ 𝜑(𝑥

𝛼
)

for all 𝛼 ∈ Γ. Note that {𝜑(𝑥
𝛼
)}
𝛼∈Γ

is a decreasing chain, then

𝛽 ≥ 𝛼 for all 𝛼 ∈ Γ. Moreover 𝑥
𝛼
≺ 𝑥
𝛽
for all 𝛼 ∈ Γ since

{𝑥
𝛼
}
𝛼∈Γ

is an increasing chain. Hence {𝑥
𝛼
}
𝛼∈Γ

has an upper
bound in𝑄

1
. By Zorn’s lemma, (𝑄

1
, ≺) has amaximal element

𝑥∗; that is, for all 𝑥 ∈ 𝑄
1
, 𝑥∗ ≺ 𝑥 implies 𝑥 = 𝑥∗. By 𝑥∗ ∈ 𝑄

1
,

there exists 𝑦∗ ∈ 𝑇𝑥∗ such that 𝑥∗ ≺ 𝑦∗. Moreover by the
increasing property of 𝑇 on [𝑥

0
, +∞), there exists 𝑧∗ ∈ 𝑇𝑦∗

such that 𝑦∗ ≺ 𝑧
∗. Thus we have 𝑥∗ ≺ 𝑧

∗ by 𝑥∗ ≺ 𝑦
∗. This

indicates 𝑧∗ ∈ 𝑇𝑥
∗
∩ [𝑥
∗
, +∞) and hence 𝑧∗ ∈ 𝑄

1
. Finally

the maximality of 𝑥∗ in 𝑄
1
forces that 𝑥∗ = 𝑧∗ ∈ 𝑇𝑥∗; that

is, 𝑥∗ is a maximal fixed point of 𝑇 in [𝑥
0
, +∞). The proof is

complete.

Theorem 4. Let (𝑋, 𝑑, ≺) be a complete partially ordered cone
metric space over a total order minihedral and continuous cone
𝑃 of a normed vector space 𝐸. Let 𝜑 : 𝑋 → 𝐸 be a sequentially
continuous vector functional and 𝑇 : 𝑋 → 2

𝑋 be a set-valued
mapping such that 𝑇𝑥 is compact for all 𝑥 ∈ 𝑋. Assume that
there exists 𝑦

0
∈ 𝑋 such that 𝜑 is bounded above on (−∞, 𝑦

0
],

𝑇 is quasi-increasing on (−∞, 𝑦
0
], and 𝑇𝑦

0
∩ (−∞, 𝑦

0
] ̸= 0.

Then 𝑇 has a minimal fixed point 𝑥
∗
∈ (−∞, 𝑦

0
].

Proof. Set

𝑄
2
= {𝑥 ∈ (−∞, 𝑦

0
] : 𝑇𝑥 ∩ (−∞, 𝑥] ̸= 0} . (17)

Clearly, 𝑄
2
̸= 0. By the same method used in the proof of

Theorem 3, we can prove that (𝑄
2
, ≺) has a minimal element

𝑥
∗
which is also a minimal fixed point of 𝑇 in (−∞, 𝑦

0
]. The

proof is complete.

Remark 5. If𝑇 : 𝑋 → 𝑋 is a single-valuedmapping, then𝑇𝑥
is naturally compact for all 𝑥 ∈ 𝑋. Hence both ofTheorems 3
and 4 are still valid for a single-valued mapping.

In particular when 𝑇 is a single-valued mapping, we have
the following further results.

Theorem6. Let (𝑋, 𝑑, ≺) be a complete partiallly ordered cone
metric space over a total order minihedral and continuous cone
𝑃 of a normed vector space 𝐸. Let 𝜑 : 𝑋 → 𝐸 be a sequentially
continuous vector functional and let 𝑇 : 𝑋 → 𝑋 be a single-
valued mapping. Assume that there exists 𝑥

0
∈ 𝑋 such that 𝜑 is

bounded below on [𝑥
0
, +∞), 𝑇 is increasing on [𝑥

0
, +∞), and

𝑥
0
≺ 𝑇𝑥
0
. Then 𝑇 has a maximal fixed point 𝑥∗ and a least

fixed point 𝑥
∗
in [𝑥
0
, +∞) such that 𝑥

∗
≺ 𝑥∗.

Proof. By Theorem 3 and Remark 5, 𝑇 has a maximal fixed
point 𝑥∗ ∈ [𝑥

0
, +∞) and hence 𝐹 = {𝑥 ∈ [𝑥

0
, +∞) : 𝑥 =

𝑇𝑥} ̸= 0. Set

𝑆 = {𝐼 = [𝑥, +∞) : 𝑥 ∈ [𝑥0, +∞) , 𝑥 ≺ 𝑇𝑥, 𝐹 ⊆ 𝐼} . (18)

Clearly, [𝑥
0
, +∞) ∈ 𝑆 and hence 𝑆 ̸= 0. Define a relation ⊑ on

𝑆 by

𝐼
1
⊑ 𝐼
2
⇐⇒ 𝐼

1
⊆ 𝐼
2
, (19)

for all 𝐼
1
, 𝐼
2
∈ 𝑆, then it is easy to check that ⊑ is a partial order

on 𝑆.
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Let {𝐼
𝛼
}
𝛼∈Γ

be a decreasing chain of 𝑆, where 𝐼
𝛼

=

[𝑥
𝛼
, +∞). From (1), (18), and (19) we find that {𝑥

𝛼
}
𝛼∈Γ

is an
increasing chain of𝑀, where

𝑀 = {𝑥 ∈ [𝑥
0
, +∞) : 𝑥 ≺ 𝑇𝑥, 𝐹 ⊆ [𝑥, +∞)} . (20)

Set 𝑄
1
= {𝑥 ∈ [𝑥

0
, +∞) : 𝑥 ≺ 𝑇𝑥}. Clearly, 𝑀 ⊆ 𝑄

1
. Fol-

lowing the proof of Theorem 3, there exists 𝑥 ∈ 𝑄
1
and an

increasing sequence {𝑥
𝛼
𝑛

} ⊆ {𝑥
𝛼
} satisfying (6) such that (8)

and (11) are satisfied. From 𝑥
𝛼
𝑛

∈ 𝑀 we have that 𝑥
𝛼
𝑛

≺ 𝑥

for all 𝑥 ∈ 𝐹 and all 𝑛. Thus the increasing property of 𝑇 on
[𝑥
0
, +∞) implies that, for all 𝑥 ∈ 𝐹 and all 𝑛,

𝑥
𝛼
𝑛

≺ 𝑇𝑥
𝛼
𝑛

≺ 𝑇𝑥 = 𝑥, (21)

and hence by (1),

𝑑 (𝑥
𝛼
𝑛

, 𝑥) ⪯ 𝜑 (𝑥
𝛼
𝑛

) − 𝜑 (𝑥) , (22)

for all 𝑥 ∈ 𝐹 and all 𝑛. Let 𝑛 → ∞, then by (8) and the
continuity of 𝜑 we have 𝑑(𝑥, 𝑥) ⪯ 𝜑(𝑥) − 𝜑(𝑥); that is,

𝑥 ≺ 𝑥, (23)

for all 𝑥 ∈ 𝐹. This together with 𝑥 ∈ 𝑄
1
implies 𝑥 ∈ 𝑀. Then

in analogy to the proof of Theorem 3, by (6), (8), and 𝑥 ∈ 𝑀
we can prove {𝑥

𝛼
}
𝛼∈Γ

has an upper bound �̂� ∈ 𝑀. By (18), we
have [�̂�, +∞) ∈ 𝑆. Note that �̂� is an upper bound of {𝑥

𝛼
}
𝛼∈Γ

in𝑀, then [�̂�, +∞) ⊆ 𝐼
𝛼
for all 𝛼 ∈ Γ and hence by (19),

[�̂�, +∞) ⊑ 𝐼𝛼, (24)

for all 𝛼 ∈ Γ. This means [�̂�, +∞) is a lower bound of {𝐼
𝛼
}
𝛼∈Γ

in 𝑆. By Zorn’s lemma, (𝑆, ⊑) has a minimal element; denote
it by 𝐼∗ = [𝑥

∗
, +∞). By (18) we have 𝑥

0
≺ 𝑥
∗
≺ 𝑇𝑥
∗
and

𝑥
∗
≺ 𝑥, (25)

for all 𝑥 ∈ 𝐹. By the increasing property of 𝑇, we have 𝑥
0
≺

𝑥
∗
≺ 𝑇𝑥
∗
≺ 𝑇(𝑇𝑥

∗
) and 𝑇𝑥

∗
≺ 𝑇𝑥 = 𝑥 for all 𝑥 ∈ 𝐹, which

implies [𝑇𝑥
∗
, +∞) ∈ 𝑆 and [𝑇𝑥

∗
, +∞) ⊆ 𝐼∗. Moreover by

(19), [𝑇𝑥
∗
, +∞) ⊑ 𝐼∗. The minimality of 𝐼∗ in 𝑆 forces that

[𝑇𝑥
∗
, +∞) = 𝐼∗ and so we have 𝑥

∗
= 𝑇𝑥
∗
. Finally by (25), 𝑥

∗

is a least fixed point of 𝑇 in [𝑥
0
, +∞) and 𝑥

∗
≺ 𝑥
∗. The proof

is complete.

Theorem 7. Let (𝑋, 𝑑, ≺) be a complete partially ordered cone
metric space over a total order minihedral and continuous cone
𝑃 of a normed vector space 𝐸. Let 𝜑 : 𝑋 → 𝐸 be a sequentially
continuous vector functional and let 𝑇 : 𝑋 → 𝑋 be a single-
valued mapping. Assume that there exists 𝑥

0
∈ 𝑋 such that 𝜑 is

bounded above on (−∞, 𝑦
0
], 𝑇 is increasing on (−∞, 𝑦

0
], and

𝑇𝑦
0
≺ 𝑦
0
. Then 𝑇 has a minimal fixed point 𝑥

∗
and a largest

fixed point in 𝑥∗ in (−∞, 𝑥
0
] such that 𝑥

∗
≺ 𝑥∗.

Proof. By Theorem 4 and Remark 5, 𝑇 has a minimal fixed
point in 𝑥

∗
∈ (−∞, 𝑦

0
]. Set

𝑆 = {𝐽 = (−∞, 𝑥] : 𝑥 ∈ (−∞, 𝑦
0
] , 𝑇𝑥 ≺ 𝑥, 𝐹 ⊆ 𝐽} . (26)

Define a relation ⊑
𝑆
on 𝑆 as follows:

𝐽
1
⊑
𝑆
𝐽
2
⇐⇒ 𝐽

1
⊆ 𝐽
2
, (27)

for all 𝐽
1
, 𝐽
2
∈ 𝑆, then ⊑

𝑆
is a partial order on 𝑆. In an

analogy to the proof ofTheorem 4, we can prove (𝑆, ⊑
𝑆
) has a

minimal element (−∞, 𝑥∗] and 𝑥∗ is a largest fixed point of
𝑇 in (−∞, 𝑦

0
]. The proof is complete.

Theorem 8. Let (𝑋, 𝑑, ≺) be a complete partially ordered cone
metric space over a total order minihedral and continuous cone
𝑃 of a normed vector space 𝐸. Let 𝜑 : 𝑋 → 𝐸 be a sequentially
continuous mapping and let 𝑇 : 𝑋 → 𝑋 be a single-valued
mapping. Assume that there exists 𝑥

0
, 𝑦
0
∈ 𝑋 with 𝑥

0
≺ 𝑦
0

such that 𝑇 is increasing on [𝑥
0
, 𝑦
0
] and 𝑥

0
≺ 𝑇𝑥
0
, 𝑇𝑦
0
≺ 𝑦
0
.

Then 𝑇 has a largest fixed point 𝑥∗ and a least fixed point 𝑥
∗

in [𝑥
0
, 𝑦
0
] such that 𝑥

∗
≺ 𝑥∗.

Proof. For all 𝑥 ∈ [𝑥
0
, 𝑦
0
], by (1) we have 𝜑(𝑦

0
) ⪯ 𝜑(𝑥) ≺

𝜑(𝑥
0
); that is, 𝜑 is bounded on [𝑥

0
, 𝑦
0
]. In an analogy to the

proof of Theorem 3, we can prove 𝑇 has a maximal fixed
point and a minimal fixed point in [𝑥

0
, 𝑦
0
] by investigating

the existence of maximal element and minimal element,
respectively, in 𝐷

1
= {𝑥 ∈ [𝑥

0
, 𝑦
0
] : 𝑥 ≺ 𝑇𝑥} and 𝐷

2
=

{𝑥 ∈ [𝑥
0
, 𝑦
0
] : 𝑇𝑥 ≺ 𝑥}. Let

𝑆
1
= {𝐼 = [𝑥, 𝑦

0
] : 𝑥 ∈ [𝑥

0
, 𝑦
0
] , 𝑥 ≺ 𝑇𝑥, 𝐺 ⊆ 𝐼} ,

𝑆
2
= {𝐽 = [𝑥

0
, 𝑥] : 𝑥 ∈ [𝑥

0
, 𝑦
0
] , 𝑇𝑥 ≺ 𝑥, 𝐺 ⊆ 𝐽} ,

(28)

where 𝐺 = {𝑥 ∈ [𝑥
0
, 𝑦
0
] : 𝑇𝑥 = 𝑥} is nonempty. Define ⊑

1
on

𝑆
1
and ⊑

2
on 𝑆
2
, respectively, by

𝐼
1
⊑
1
𝐼
2
⇐⇒ 𝐼

1
⊆ 𝐼
2
, ∀𝐼

1
, 𝐼
2
∈ 𝑆
1
,

𝐽
1
⊑
2
𝐽
2
⇐⇒ 𝐽

1
⊆ 𝐽
2
, ∀𝐽

1
, 𝐽
2
∈ 𝑆
2
,

(29)

then it is easy to check that ⊑
1
and ⊑

2
are partial orders on 𝑆

1

and 𝑆
2
, respectively. In an analogy to the proof ofTheorem 4,

we can prove (𝑆
1
, ⊑
1
) has a minimal element 𝐼

∗
= [𝑥
∗
, 𝑦
0
]

and (𝑆
2
, ⊑
2
) has a minimal element 𝐽

∗
= [𝑥
0
, 𝑦
∗
]. By the

definitions of 𝑆
1
and 𝑆
2
, we have 𝑥

∗
, 𝑦∗ ∈ [𝑥

0
, 𝑦
0
],

𝑥
∗
≺ 𝑥 ≺ 𝑦

∗
, (30)

𝑥
∗
≺ 𝑇𝑥
∗
≺ 𝑇𝑦
∗
≺ 𝑦
∗
. (31)

Moreover by (30) and the increasing property of𝑇 on [𝑥
0
, 𝑦
0
],

for all 𝑥 ∈ 𝐺, we have

𝑥
0
≺ 𝑇𝑥
0
≺ 𝑇𝑥
∗
≺ 𝑥 ≺ 𝑇𝑦

∗
≺ 𝑇𝑦
0
≺ 𝑦
0
, (32)

and so by (31),

𝑥
∗
≺ 𝑇𝑥
∗
≺ 𝑇 (𝑇𝑥

∗
) ≺ 𝑇 (𝑇𝑦

∗
) ≺ 𝑇𝑦

∗
≺ 𝑦
∗
. (33)

From (32) and (33) we have that [𝑇𝑥
∗
, 𝑦
0
] ∈ 𝑆
1
, [𝑥
0
, 𝑇𝑦∗] ∈

𝑆
2
, and

[𝑇𝑥
∗
, 𝑦
0
] ⊑
1
𝐼
∗
, [𝑥

0
, 𝑇𝑦
∗
] ⊑
2
𝐽
∗
, (34)

which implies [𝑇𝑥
∗
, 𝑦
0
] = 𝐼

∗
and [𝑥

0
, 𝑇𝑦∗] = 𝐽

∗
by the

minimality of 𝐼
∗
and 𝐽
∗
.Thismeans that𝑇𝑥

∗
= 𝑥
∗
and𝑇𝑦∗ =

𝑦∗. Hence 𝑥
∗
is the least fixed point and 𝑦∗ is the largest fixed

point of 𝑇 in [𝑥
0
, 𝑦
0
] by (31). The proof is complete.
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Remark 9. Theorems 3–8 are extensions of [4, Theorems 3
and 4] and [2, Theorems 3, 4, and 5] to the case of cone
metric spaces. It is worth mentioning that in Theorems 4, 7,
and 8, not only the existence of maximal and minimal fixed
points but also the existence of largest and least fixed points
is obtained.ThereforeTheorems 4, 7, and 8 are still new even
in the case of metric space and hence they indeed improve [2,
Theorems 3, 4, and 6].

Now we give an example to demonstrate Theorem 3.

Example 10. Let𝑋 = {1, 2, 3, 4}, 𝐸 = R2 with the norm ‖𝑢‖ =

√𝑢2
1
+ 𝑢2
2
for all 𝑢 = (𝑢

1
, 𝑢
2
) ∈ R2 and 𝑃 = R2

+
. Clearly, 𝑃

is a strongly minihedral and continuous cone of 𝐸. Define a
mapping 𝑑 : R ×R → 𝑃 by

𝑑 (𝑥, 𝑦) = (
𝑥 − 𝑦

 ,
𝑥 − 𝑦


1/2
) , ∀𝑥, 𝑦 ∈ R, (35)

then (R, 𝑑) is a complete cone metric space over 𝑃 and hence
(𝑋, 𝑑) is a complete cone metric subspace of (R, 𝑑). Define a
vector functional 𝜑 : [1, +∞) → 𝐸 by

𝜑 (𝑥) = (
6

𝑥
,
3√2 + 2√3

√𝑥
) , (36)

for all 𝑥 ∈ [1, +∞). For arbitrary 𝑥 ∈ [1, +∞), let {𝑥
𝑛
} ⊆

[1, +∞) be a sequence such that 𝑥
𝑛

𝑑

→ 𝑥, then 𝑥
𝑛

|⋅|

→ 𝑥 and
hence ‖𝜑(𝑥

𝑛
) − 𝜑(𝑥)‖ → 0, that is, lim

𝑛→∞
𝜑(𝑥
𝑛
) = 𝜑(𝑥).

This means that 𝜑 : [1, +∞) → 𝐸 is sequentially continuous;
in particular, 𝜑 : 𝑋 → 𝐸 is sequentially continuous. From
(35) and (36) it is easy to check that

1 ≺ 1, 1 ≺ 2, 1 ≺ 3, 1 ≺ 4,

2 ≺ 2, 2 ≺ 3, 2 ≺ 4,

3 ≺ 3, 3 ⊀ 4, 4 ≺ 4, 4 ⊀ 3,

(37)

where ≺ is the partial order defined by (1). Let 𝑇 : 𝑋 → 2
𝑋

be a set-valued mapping such that

𝑇1 = {3, 4} , 𝑇2 = {1, 3} ,

𝑇3 = {1, 2, 3, 4} , 𝑇4 = {1, 2, 3} .
(38)

Fix 𝑥
0
= 2, then [𝑥

0
, +∞) = {𝑥 ∈ 𝑋 : 2 ≺ 𝑥} = {2, 3, 4} by

(37), and so 𝑇𝑥
0
∩ [𝑥
0
, +∞) = {3} ̸= 0. For 𝑥, 𝑦 ∈ [𝑥

0
, +∞), if

𝑥 ≺ 𝑦 and 𝑥 ̸= 𝑦, then we have only two cases: 𝑥 = 2 ≺ 3 = 𝑦

and 𝑥 = 2 ≺ 4 = 𝑦 by (37). Fix 𝑥 = 2 and 𝑦 = 3, for all 𝑢 ∈ 𝑇𝑥,
there exists V = 3, 4 ∈ 𝑇𝑦 such that 𝑢 ≺ V. Fix 𝑥 = 2 and𝑦 = 4,
for all 𝑢 ∈ 𝑇𝑥, there exists V = 3 ∈ 𝑇𝑦 such that 𝑢 ≺ V. This
means that 𝑇 : 𝑋 → 2

𝑋 is increasing on [𝑥
0
, +∞). Therefore

all the conditions of Theorem 3 are satisfied and hence 𝑇 has
a fixed point 3 ∈ [𝑥

0
, +∞).

Fix 𝑥 = 4; for all 𝑦 ∈ 𝑇4, we have 𝑥 = 4 ⊀ 𝑦 by (37);
that is, (2) is not satisfied. Therefore the existence of fixed
points could not be obtained by generalized Caristi’s fixed
point theorems in cone metric spaces of [1, 3].
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“Fixed point theorems for convex contraction mappings on
cone metric spaces,” Mathematical and Computer Modelling,
vol. 54, no. 9-10, pp. 2020–2026, 2011.
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