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This paper provides sufficient conditions for the existence and uniqueness of positive solutions to a singular differential system with
integral boundary value. The emphasis here is that the boundary conditions are coupled and this is where the main novelty of this
work lies. By mixed monotone method, the existence and uniqueness results of the problem are established. An example is given

to demonstrate the main results.

1. Introduction

In recent years, differential system has been studied exten-
sively in the literature (see, for instance, [1-17] and their ref-
erences). Most of the results told us that the equations had at
least single and multiple positive solutions. In papers [6], the
authors obtained some of the newest results for differential
system with four-point coupled boundary conditions. But
there is no result on the uniqueness of solution in them.

In this paper, we discuss the existence and uniqueness of
the positive solutions for a new class of boundary value prob-
lems of singular differential system. Precisely, we consider the
following problem:

") = f(tx(@),y®), te(0,1),

" ()= g(t,x®),y (), te(0,1),
1 @

1
x(0) = L yOdat),  y(0)= L x (OB (t),

x(1)=y(1) =0,

where o and S are right continuous on [0, 1), left continuous
att = 1, and nondecreasing on [0, 1], with «(0) = (0) = 0;
jol u(s)da(s) and JOI u(s)dp(s) denote the Riemann-Stieltjes
integrals of u with respect to « and f3, respectively; f €
C((0,1) x [0,+00) x (0,+00),[0,+00)), g € C((0,1) x
(0,+00) x [0, +00), [0, +00)); that is, f(t, x, y) may be singu-
laratt =0,f = 1,and y = 0 and g(¢, x, y) may be singular at
t =0,t = 1,and x = 0. By a positive solution of the system (1),
we mean that (x, y) € (C[0, 1] NC*(0,1))x(C[0,1]1nC*(0, 1)),
(x, y) satisfies (1), and x > 0 and y > 0 on [0, 1).

2. Preliminaries

For each u € E := C[0, 1], we write |lu|| = max{|u(t)| : t €
[0,1]}. Clearly, (E, || - ||) is a Banach space. Similarly, for each
(x,y) € E x E, we write ||(x, y)Il, = max{[lx|, | yl}. Clearly,
(E X E, | -l) is a Banach space.

Throughout this paper, we shall use the following nota-
tion:

t(l-s), 0<t<s<l,

(2)
s(I-t), 0<s<t<l.

k(t,s)z{



It is well known that k(t,s) is the Green function of the
following second order boundary value problem:

—x"(t)=0, 0<t<l,

3)
x(0) =x(1)=0,

and k(t, s) is nonnegative continuous function. It is easy to
verify that for ¢, s € [0,1] x [0, 1],

k(t,t)k(s,s)=t(1—1t)s(l—ys)
<k(,s)<t(l-t)(ors(l-ys)).
We first list the following assumptions for convenience.

(Hy) f € C((0,1)x[0, +00)x(0, +00), [0, +00)), f (£, X, y) is
nondecreasing in x and nonincreasing in y, and there
exist A}, y; € [0, 1) such that

Mf(txy) < fbexy), Vxoy>0, ce(0,1), (5
fltxey)<c™ftxy),
g € C((0,1)x(0, +00) x[0, +00), [0, +00)), g(t, x, y) is

nonincreasing in x and nondecreasing in y, and there
exist A,, 4, € [0, 1) such that

Vx,y >0, ce(0,1); (6)

Mg(t,xy)<g(txey), Vxy>0,ce(0,1), (7)

gtex,y)<c*g(t,x,y), Vx,y>0, ce(0,1). (8)

(H,) 0 < jol ft,1,1 - t)dt < +00, 0 < jol g(t,1-t,1)dt <

+00.

(H;) x; >0, x, >0, k > 0, where

1 1
KI:J (1-t)dat), Kzzj (-0 dB(),
0 0

)
K =1-KK,.
Remark 1. By (H,) and (H,), we can get
1
0< J ft,1-t1)dt < +oo,
’ (10)

1
0<J g(t, 1,1 -1t)dt < +oo.
0

Remark 2. (i) (5) and (6) imply that
fltex,y) <M f(txy), VYoy>0,c>1, (1)

flbxy) < f(txcy),

Conversely, (11) implies (5) and (12) implies (6).
(ii) (7) and (8) implies that

Vx,y >0, ¢> 1. (12)

g(tex,y) < c’lzg(t, xy), VYx,y>0,c>1, (13)
g(t.x,y) <cg(t,x,cy), VYx,y>0,c>1.  (14)

Conversely, (13) implies (7) and (14) implies (8).
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Lemma 3. Assume that (H;) holds. Let u,v € L[0,1]NnC(0, 1);
then the system of BVPs

"W =u), -y ®=v@E), te(0,1),

1 1
0= | yOda®),  yO=| x@dpe), 09

0
x()=y(1)=0
has integral representation

1 1

x(t) = L G, (t,5) u(s)ds + L H, (t ) v (s)ds,

1 1 (16)
() = JO G, (t,5) v (s)ds + L H, (65)u(s)ds,
where
G, (bs) = @ Ll k(s 1) dB(T) +k(bs),
H, (ts) = % Ll k(s,7)dec (1),
L . (17)
G, (t,s) = % j k(s,7)de () + k (t,s),
0

Ll
H, (t,5) = % L k(s,7) dB (7).

Proof. It is easy to see that (15) is equivalent to the system of
integral equations

x(t)=x(0)(1—t)+J-Olk(t,s)u(s)ds, te[o,1], (18)

1

v (1) =y(0)(1—t)+J k(t,s)v(s)ds,

0

tef0,1]. (19)

Integrating (18) and (19) with respect to df(t) and d«(t), re-
spectively, on [0, 1] gives

1 1
j *(®)dB (1) =x(0)J (1-1)dB (1)
0 0

+ “:k (t,s)u(s)dsdp(t),

1 1 (20)
| yoda®y =y [ a-nda
0 0
N ”;k (t,5) v (s) ds dat (£).
Therefore,
1
B k(t,s)u(s)dsdfB(t)
(o 2)e-( |
1/ \y ” k(t,s) v (s) ds dax (£)
' (21)
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and so
G- (T )
y©0)) x\ 1 -x,
Substituting (22) into (18) and (19), we have
X =" (i ) ” k(t,5)u(s)dsdB (t)
+ 17” k(t,s)v(s)dsdua(t)
1
+ J k(t,s)u(s)ds,

y = jj k(t,9)u(s) dsdp ()

A Ca)) ” k(t,s)v(s)dsda(t)
K

1
+ J k(t,s)v(s)ds,
0

which is equivalent to the system (16).
Remark 4. From (4) and (H;), for t € [0, 1], we have
Gi(t,s) < ps(1—s)(or p(1-1)),
H, (t,5) < ps(1-5) (or p(1-1),
i=1,2,
G ts)zv(l-t)s(1-5s),
H;(t,s)z2v(1-t)s(1-5),
i=1,2,

where

2|2

leﬁ D41, —J dac(1) +1,

Ll dp(), L j da(n).

J T(1-1)dp (1),

p:max{

X =

—

v:min{

2|2
o

22

J T(1-71)da (1),

(=]

Ll

J r(1-7)dB (),

0

J-l'r(l—'r)doc(r)}

Ea i
S

Hlk (t,5) u(s)dsdB (1)

Q

Ulk (t,s)v(s)dsdua(t)
0

(22)

(23)

(24)

(25)

Denote
P={(x,y) e EXE:x(t)2y(1-1)|(x, »)|,>

y(®) =2y (1 =0)|(x )], t € [0,1]},

where y = v/p € (0,1). It can be easily seen that P is a cone

(26)

in E x E. For any real constant r > 0, define P, = {(x, y) € P:
G, I, < 7.
Define an operator T : P\ {6} — P by
T(x,y) = (Ty (%), T, (x. ¥)), (27)

where operators T}, T, : P\ {0} —» Q =
[0, 1]} are defined by

{ueE|u(t) =0,tc¢

1
T, (x, y) (t) = L G, (t,s) f (s, x(s), y(s))ds

1
+ L H, (t,5) g (s, x(s),y(s))ds

tel0,1],
1
T, (x, y) (t) = L G, (t,5)g(s,x(s),y(s))ds
1
+ J H, (t,s) f (s, x(s),y(s))ds, te[0,1].
0
(28)

Now we claim that T'(x, y) is well defined for (x, y) € P\ {6}.
In fact, since (x, y) € P\ {0}, we can see that

Y=yl =x®,

y () < ||(x )],

Let c be a positive number such that ||(x, ¥)||,;/c < 1and ¢ > 1.
From (H,) and Remark 2, we have

fltx@®),y®) < f(tey|x )], 1-1)
Alf(tl Y” J’)"l —t))

RO DA SRR
glt.x®),y®) <M (y|(xy)) " f B 1L1-0).
(30)

Hence, for any ¢ € [0, 1], by Remark 4 and equation (30), we
get

T; (x, y) (t)

(29)
te[0,1].

J f(s,x(s), y(s))ds+pj g(s,x(s),y(s)ds
P (e )™ [ 611 9ds

+ pc e (y]|(x, y)|,) L g(s,1-s1)ds

<400, i=1,2.
(31)

Thus, T is well defined on P\ {6}.



Lemma 5. Assume that (H,), (H,), and (H;) hold. Then, for
any0 < a <b < +co, T: (P,\P,) — P isa completely
continuous operator.

Proof. Firstly, we show that T(P, \ P,) ¢ P. By Remark 4, for
7,t,5 € [0, 1], we obtain

Gi(t9) z2y(1-1)G;(1,9),
H;(t,s) 2y (1 -t)H;(1,5),
i=1,2,
H, (t,s)2y(1-1G,(T,s), (32)
G, (t,s) zy(1-t)H,(1,s),
Hy(t,5) 2y(1-1) G, (7,9),
G, (t,5) 2 y(1-1t)H, (1,5).

Hence, for (x, y) € Fb \ P,,t € [0, 1], we have
1
T, (x, y) (t) = .[0 G, (t,9) f(s,x(s), y(s))ds

1
+ Jo H,(t,s)g(s,x(s),y(s)ds

1
>yp(l-t) L G, (1,5) f (s,x(5), y(s))ds

1
+y(1-t) L Hy(1,5) g (s,x(s), y(s))ds

=y(1-0T,(x,y) (1), Vrelol],

1
T, (x, y) (t) = L G, (t,s) f (s, x(s),y(s))ds
1
+ Jo H, (t,s) g (s,x(s),y(s))ds
1
>yp(l-t) L H, (1,3) f (s,x(s), y(s))ds

1
#71-0) | 619 g(sx(9,y() ds
=y(1-0T,(xy)(r), Vrelo1].
(33)

Then T,(x, y)(t) > y(1 = OIT,(x, y)ll and Ty(x, y)(©) =
y(1 = HIT,(x »I; that is, Ty(x, ¥)#) = p(1 - t)
(T (x, ), T, (x, ¥))lI;. In the same way, we can prove that
T, (x, y)(t) = y(1 = )T} (x, y), T, (x, ¥)Il,. Therefore, T(P, \
P)cP.

Next, we prove that T is a compact operator. That is,
for any bounded subset V' ¢ P, \ P,, we show that T(V)
is relatively compact in E x E. Since V. ¢ P, \ P, is a
bounded subset, there exists a constant ¢ > 1 such that
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l(x, Y)II;, = max{||lx|, | ylI} < c for all (x, y) € V. Notice that,
for any (x, y) € V, we have

IT (x, y)||, = max{|T, (x, y)|, |, (= M|} B9

and from (H,), (H,), Remarks 2 and 4, (16), and (18), we
obtain

T; (x, y) (t)

1 1
SPJ f(s’x(s),y(S))dHPJ g(s,x(s),y(s))ds
0 0

1
< pc i (pa) ™ L f(s,1,1=s)ds

1
+ pc2the (pa) Jo g(s,1-s1)ds

<+00, i=1,2.

(35)

Therefore, T (V) is uniformly bounded.

In the following, we shall show that T(V) is equicontinu-
ouson [0, 1].

For (x, y) € V, t € [0, 1], using Lemma 3, we have

T, (x, y) (t)
1

= L G, (t,5) f (s, x(s), y(s))ds

1
+ Jo H, (t,5)g(s,x(s), y(s))ds

K (1—t

=D [T ) £ (ox (). 79) ds

K 0

t
+Ls(l—t)f(s,x(s),y(s))ds

1
+J t(1=3s)f(s,x(s),y(s))ds

t

_ 1 1
+ % L (L k(s,T)doc(T))g(s,x(s),y(s))ds_
(36)

Differentiating with respect to ¢ and combining (H,) and
(H,), we obtain

IT,(x. )" @)

([ k@) £ sx0. @) s

0

- L sf(s,x(s),y(s))ds

1
a9 £ 620,y @)
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1 (!

L

<2
K Jo

+ J sf(s,x(s),y(s))ds
0

1
J k(s,7)da (T)> g(s,x(s),y(s)ds

0

1
J k(s,t)dp (T))f(s,x(s) Ly (s))ds

0

1
+ L (1=3) f(s,x(s),y(s))ds

K Jo 0

L1 Jl (Jl k(s, 1) da (r))g(s,x(s),y(S))dS

1
< M (pa) (% L f(s,1,1-5)ds

t
+J sf(s,1,1-s)ds

0

1
+J (1—5)f(s,1,1—s)ds>

1
+ f—)clfr“z(ya)w2 J g(s,1-s1)ds=:K(t).
K 0
(37)

Exchanging the integral order, we have

Jl K () dt

0

1
_ C/\1+.“1(ya)_.“1 (PKI J f(S, 1,1- S) ds

& o
1

+ZJ 5(1—5)f(s,1,1—5)ds)
0

1
+ /—)c)‘zwz(ya)_“2 J. g(s,1—s,8)ds < +00.
K 0

(38)

From the absolute continuity of the integral, we know that
T,(V) is equicontinuous on [0, 1]. Thus, according to the
Ascoli-Arzela theorem, T, (V) is a relatively compact set. In
the same way, we can prove that T, (V) is relatively compact.
Therefore, T (V) is relatively compact.

Finally, it remains to show that T is continuous. We
need to prove only that T,,T, P,\ P, — Q are
continuous. Suppose that (x,,, y,,), (X0, ¥,) € B, \ P,
and [(x,,, y,,) — (X y)l;, — 0 (m — o0). Let L =
sup{ll(x,,,» ¥,)ll;» m = 0,1,2,...}. Then we may still choose
positive constants ¢ such that L/c < 1 and ¢ > 1. From (H,)
and Remark 2, we get

F(6x ),y @) < M (ya) ™ f (11,1 - 1),
m=0,1,2...,

gt x,, (1), v, ®) < (ya) gt 1-11),
m=0,1,2...,

|T1 (% Ym) () = T} (x5 ¥5) (t)|

1
<=p Jo |f (5,2, (8) 5 ¥ (5))
-f (5’ %0 (8)5 Yo (S))l ds

1
tp JO 19 (5%, (8) s Y (5))
=95, %0 (), 5 (5))| ds.
(39)

For any € > 0, by (H,), there exists a positive number
6 € (0,1/2) such that

J pcMH (pa) ™ f (s, 1,1 - s)ds < £
[0,8]u[1-8,1] 4
(40)

J pc e (ya) 2 g (5,1 - 5, 1) ds < £
[0,6]u[1-8,1] 4

On the other hand, for (x, y) € Fb \P,andt € [§,1 - 6], we
have
ayd < x(t), y(t) <b. (41)

Since f(t,x,y) and g(t,x, y) are uniformly continuous in
[8,1 — 8] x [ay$, b] x [ayd, b], we have

Um £ (6%, (0, 3 (1) = f (%0 (), 30 )]
= lim_|g(t:x, (6), 7 () = g (t:x0 (£), 3 (1))

=0
(42)

holds uniformly on ¢t € [§,1 — §]. Then the Lebesgue
dominated convergence theorem yields that

1-6
J, 1 (55 93 9) = £ (53050, 3 )] ds = 0

1-6
[, 1965 620 9) = 9 (530 9 3 (D] ds =

m — +0o.
(43)

Thus, for above € > 0, there exists a natural number N, for
m > N; we have

1-6
[, PLF (66020 ) = £ (550 (9 g @) s < 5

1-0
[, 1o (5% 903 ) = 9530 3o )] s < 5.
(49



It follows from (39)-(44) that when m > N
“Tl (xm’ ym) - Tl (xO’ )’o)"

1
<[ 1F (53 902 ) = 7 (550 () 0 ()] ds

1
#1055 670 (9) = 9 50 9,30 )] ds

< pcM i (pa) ™ f (s, 1,1 - 5) ds

J[O,(S]U[I—B,l]

+ J pc e (ya) ™ g (s,1 -5, 1) ds
[0,81U[1-6,1]

1-8
o T MERNE)
S

-9 (5’ X0 (8)> Yo (S))| ds

1-6
T CEMERAE)
8

ACENORN (S))| ds < e.
(45)

This implies that T} : P, \ P, — Q is continuous. Similarly,
we can prove that T, : P, \ P, — Q is continuous. So, T :
P,\ P, — Pis continuous. Summingup, T : P, \ P, — Pis
completely continuous. O

Our main tool of this paper is the following cone com-
pression and expansion fixed point theorem.

Lemma 6 (see [18]). Let E be a Banach space and P a cone
in E. Suppose that Oy and Q, are two bounded open subsets
of Ewithf € O, 0, ¢ O, IfT: PN (Q,\Q,) — Pisa
completely continuous operator satisfying

ITx| =[x, for x € PNoQ,,

(46)

ITx|| < llxll,  for x € PN 0C,,

then T has a fixed point in PN (Q, \ Q).

3. Main Results
In this section, we present our main results.

Theorem 7. Suppose that conditions (H,), (H,), and (H;)
hold. Then, if A, + uy < 1l and A, + pu, < 1, the differential
system (1) has a unique positive solution (x*, y*).

Proof. We divide the rather long proof into three steps.

(i) The differential system (1) has at least one positive
solution (x*, y™).
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Choose 1, R such that

YV 2 1
0 < 7 < min (—ylj s(1-5s)
4 0
1/(1-1y) 1
xf(s,l—s,l)ds) ,5}>

RZmax{<pjlf(s,1,1—s)ds
0

1 1/(1-max{A;,1,}) 1
+pJ-Og(s,l—s,l)ds> ,—,2}.

14
(47)

Clearly0 < r <1 < R.ByLemma5,T : Py \ P, — Pis
completely continuous.

Extend T (denote T yet) to T : P, — P which is com-
pletely continuous.

Then, for (x, y) € OP,, we have

ry(1-t)<x(t), y@)<r, tel0,1]. (48)

By Remarks 1 and 2, (H,), and (H,), we get

1
Ty 02 5 [ 59 f(syr-9.m)ds
y (!
> ZJ s(1=s) f(s,yr(1-s),1)ds
’ (49)
1
> z—l}yA‘rAl L s(1-s)f(s,1-5s1)ds

sr=|(xy), i=L2 te [02]
This guarantees that
IT G )y 2 1G9 V(xy) €0P. (50)
On the other hand, for (x, y) € 0Py, we have
Ry(1-t)<x(1),

y() <R, te[0,1]. (51

Therefore,
T; (x, ) ()

1
< pJO f(s,R,yR(1-5))ds

1
+pJ’0 g(s,yR(1-5),R)ds
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1 1
<pJ f(s,R,l—s)d5+pJ g(s,1-s,R)ds
0 0
1 1
SpRAIJ f(s,l,l—s)ds+pRAZJ g(s,1-s1)ds
0 0

1
< pRmax{/\l,)tz} <J f(S, L1-5) ds
0

1
+J g(s,l—s,l)ds)
0

i=1,2 tel01].

R=(x )l

(52)

This guarantees that

"T (x, J’)Hl <

By the complete continuity of T', (50) and (53), and Lemma 6,
we obtain that T has a fixed point (x*,y*) in Pg \ P..
Consequently, (1) has a positive solution (x*, ") in Py \ P,.

V(x,y) € OPy. (53)

(ii) Suppose that (x, y) is a positive solution of the
differential system (1).

Then there exist real numbers 0 < m < 1 such that
1
ml-t)<x(@t)<—(1-1),
m

(54)

m(l-t)<y(B)< ~(1-1), Veel[o1].
m

From Lemma 5, we know that (x, y) € P\ {6}. So, we have

el @-0<x®,  yO <[, 65

Let ¢ be a constant such that [|(x, )Il;/c < L and ¢ > 1/y. By
Lemma 3, we get

x(t)sP(l—t)Llf( (G0 I )ds

+p(1—t)ng<s,M(l—s),C)dS

< CA1+,MI

1
(G ) -1 JO f(s,1,1-s)ds

1
w7 ()] -1 JO g(s1-s1)ds
=C(1-t), telo,1].
(56)

In the same way, we can prove that y(t) < C(1 - t),
t € [0,1]. Then we may pick out m such that m =
min{yl|(x, y)I;, 1/C, 1/2}, which implies that (54) holds.

(iii) The differential system (1) has a unique positive
solution (x*, y™).

Assuming the contrary, we find that the differential
system (1) has a positive solution (x,, y,) different from
(x*, ¥"). By (54), there exist §,,8, > 0, such that

5, (1-t)<x"(t), y*(t)s(si(l—t), vt € [0,1],
1
5,(-0<x, ), )< ai(l—t), vt € [0,1].
2
(57)
Hence, we have
8,8,x, (t) < x™(t) < ﬁx* (1),
8,37, (0¥ (B < 5 8 y. (0, 58)
vVt € [0,1].
Clearly, 6,6, # 1. Put
8" =sup {6 | 8x, (1) < x™ (t) < éx* ®,
(59)

Sy, 1)<y (1)< éy* (t),Vt € [0,1]}.
It is easy to see that 1 > 8" > 8,8, > 0, and

8 x, (t) < x” (t)S(%x ),
(60)

Sy <y 1)<3 y*(t) vt € [0,1].

So, by (H,), we have
fltx" ),y )= f (t,6*x* (1), %y* (t)>

> 8 M (L x, (), y, (1))
> 8 f(tx. (0, y, ),  ©
g(Lx" @),y ) 28 g (Lx, 1), y, (1)

> 6*09 (t’x* (f)’)’* (t)) >

where 0 = max{A, + y;, A, + p,} such that o < 1. Therefore,
we have

xT(t) =T, (", y") ()

1
= L G, (t,8) f (s, x" (5),y" (s))ds

1
+ L H, (t,s)g(s,x" (s),y" (s))ds
(62)

1
>6% L G, () f (s, %, (s), y. (s))ds
1
+ L H, (t,5) g (s, %, (5), . (5)) ds

=8"T, (x,,y.) () =8 x, (¢).



Similarly, we can get

y () =8y, (1),

*0 %

x, () =28 x" (1),

®0 % (63)

Y. ()28 "y (t).

Noticing that 0 < 8%, 0 < 1, we get to a contradiction with
the maximality of 8. Thus, the differential system (1) has a
unique positive solution (x*, y*). This completes the proof of
Theorem 7. O

4. An Example

In this section, we give an example to illustrate the usefulness
of our main results. Let us consider the singular differential
system with couple boundary value problem

" \/E " \3/7

NACED) R

x(1) = y(1) = 0, x(O):y<§>+y<%), (64)
1
yO = | xde,
0
Let
VX 7
t,x, = — t,.x, =Y
ftxy) Hia=D gbxy) =2
0, te'O,l),
173
alt) =11, te'l,l), (65)
1372
2, te 1,1],
2
1 1
ﬁ(t)ztz’ /\12!"2:5’ A2=H1=§;
then
7 11
K1=g> Ky =7, K=1_K1K2:E’
! 21
L1-5)d =B<_,_),
J, £ r1-9as=5(5 ¢ (66)

1
J‘ g(s,l—s,l)ds=B<1,l>.
0 2

So all conditions of Theorem 7 are satisfied for (64), and our
conclusion follows from Theorem 7.
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