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From the 2003 severe acute respiratory syndrome (SARS) epidemic, to the 2009 swine-origin influenza A (H1N1) pandemic, to
the projected highly pathogenic avian influenza A event, emerging infectious diseases highlight the importance of computational
epidemiology to assess potential intervention policies. Hence, an important and timely research goal is a general-purpose and
extendable simulation model that integrates two major epidemiological factors—age group and population movement—and
substantial amounts of demographic, geographic, and epidemiologic data. In this paper, we describe a model that we have named
FLUed for Four-layer Universal Epidemic Dynamics that integrates complex daily commuting network data into multiple age-
structured compartmental models. FLUed has four contact structures for simulating the epidemic dynamics of emerging infectious
diseases, assessing the potential efficacies of various intervention policies, and identifying the potential impacts of spatial-temporal
epidemic trends on specific populations. We used data from the seasonal influenza A and 2009 swine-origin influenza A (H1N1)
epidemics to validate model reliability and suitability and to assess the potential impacts of intervention policies and variation in
initial outbreak areas for novel/seasonal influenza A in Taiwan. We believe that the FLUed model represents an effective tool for
public health agencies responsible for initiating early responses to potential pandemics.

1. Introduction

After emerging in Mexico in April 2009, the swine-origin
influenza A (H1N1) virus rapidly spread to more than
200 countries, causing over 18,449 laboratory-confirmed
deaths August 1, 2010 [1]. According to the World Health
Organization (WHO) [2], up to two billion people may be
susceptible to the next highly pathogenic avian influenza A
(H5N1) virus, and the mortality rate could be as high as
65%. A novel influenza virus is inevitable yet impossible to
predict, and health officials can only guess where, when,
and in what form the virus will emerge, or how it might
threaten the health of individuals [3]. From the 2003 severe
acute respiratory syndrome (SARS) epidemic, to the 2009
swine-origin influenza A (H1N1) pandemic, to the projected

highly pathogenic avian influenza A (H5N1, H7N9) event,
emerging infectious diseases highlight the importance of
computational epidemiology for assessing potential interven-
tion policies [4, 5]. Thus, epidemic simulation models that
integrate epidemiological factors with substantial amounts
of statistical data represent a timely research topic attracting
considerable resources.

To date, public health officials and computational epide-
miologists have focused on two modeling factors: age group
and population movement [6–11]. Since individuals in the
same-age group tend to have similar postinfection symptoms
and epidemic characteristics,many researchers use this factor
to capture heterogeneity in epidemic models of emerging
infectious diseases, to assess the potential efficacies of various
intervention policies, and to identify the potential impacts
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of temporal epidemic trends on specific populations [6–
12]. For example, the Mexican population segment that
was most affected by the 2009 swine-origin influenza A
(H1N1) virus consisted of youth below the age of 15—of all
individuals affected by the first infection wave, 61% were
children and 29% adults [13, 14]. By contrast, SARS symptoms
in children during the 2003 outbreak were mild and short-
lived [15]. Results from serological analyses indicate that
levels of antibodies against the SARS coronavirus were higher
in children than those in adults in both infected and healthy
children [16].

Population movement is another important factor in
modeling epidemic dynamics and spreading situations. Over
the past three decades, many countries have experienced
a rapid increase in the number of commuters for work
and other purposes, especially among young adults [17]—a
phenomenon perceived as supporting the spread of viruses
over long distances [18]. Commuting is marked by strong
spatial-temporal regularity; regardless of travel distance or
time, most commuters stick to repetitive patterns that allow
researchers to study the epidemic dynamics and clustering
effects of emerging infectious diseases [5, 19, 20], as well as
intervention policy activation timing and targeting [21–24].
For example, Viboud et al. [25] analyzed seasonal influenza
data for various American states from 1972 to 2002 to
determine the influence of interstate commuting on seasonal
influenza epidemic dynamics and found a stronger correla-
tion between regional infection spread and rate of residence-
workplace movement than that of geographic distance. In
other words, higher commuting frequency increases the
likelihood of a larger number of seasonal influenza cases for
any given year. According to their results, if the initial case
occurs in a state that has a large population and large volume
of outbound traffic, then the seasonal influenza will quickly
affect all the fifty states, but if it occurs in a sparsely populated
state with a small volume of outbound traffic, the potential
for spreading to all states will be significantly less. In addition
to providing a foundation for empirically verifying the ways
that commuting networks affect seasonal influenza epidemic
dynamics, Viboud et al.’s findings also verify that transporta-
tion networks and commuting populations strongly influence
seasonal influenza outbreak scale and expansion speed.

The two most commonly used methods for modeling
epidemic dynamics are network based and compartmental
based. Each has its own limitations [22, 26, 27]. A compart-
mental model is suitable for discussing dynamic variation
across individuals in the same compartment but weak in
terms of modeling individual heterogeneity and addressing
human commuting patterns. Any two individuals in a com-
partment are assumed to have direct contact and interaction,
which is not true in the real world. Furthermore, since
movement and activity are location dependent, phenomena
cannot be simulated by a compartmental model that assumes
a homogeneous population distribution. By contrast, net-
work models are appropriate for introducing individual
heterogeneity, but they are computation intensive and time-
consumingwhen simulating the behaviors of individualswith
multiple attributes in large-scale social environments. Many
efforts have been made to match individual and population

behaviors with heterogeneity and computation requirements
when simulating epidemic dynamics and assessing interven-
tion policies [28–30].

This paper has four objectives: (a) to describe a general-
purpose1 and extendable2 model that integrates multiple age-
structured compartmental models into complex daily com-
muting network data for simulating the epidemic dynamics
and spreading situations of newly emerging infectious dis-
eases; (b) to use data from the 2008-2009 seasonal influenza
A and 2009 swine-origin influenza A (H1N1) epidemics to
estimatemodel parameters; (c) to assess the potential impacts
of different intervention policies and initial outbreak areas on
theTaiwan-wide dynamics of the 2009 swine-origin influenza
A (H1N1) epidemic, including intervention activation time
and decreased transmission rate; and (d) to apply two
quantitative indicators to assess the performances of different
intervention policies. Our results not only support the use
of the proposed four-layer framework for computational
epidemiology applications but also support the framework’s
potential utility for intervention policy assessments.

2. The Model

To perform detailed analyses of the specific epidemic dynam-
ics and spreading situations of emerging infectious diseases
in individual countries, we developed a general-purpose
and extendable model that we named Four-layer Universal
EpidemicDynamics, or FLUed.3 FLUeduses amix ofmultiple
age-structured compartmental models and daily commuting
networks to capture complex demographic, geographic, and
biological properties, including population movement and
epidemiological progression. As shown in Figure 1, layer 1
individuals in a defined location are organized according to
age; a compartmental model is used to simulate the epidemic
dynamics of each age group. A location can be defined as
a region, town, city, county, or state, but all the locations
must be of the same type. The layer 2 focus is on contact
patterns among age groups in the same location. Population
density and commuting volume between any two locations
are added to layer 3 to study the effects of crossregional
interaction. A geographic information system (GIS) user
interface is integrated into layer 4 to visualize daily national
commuting networks, with nodes4 representing locations
and links representing daily commutes between them.

The model’s concept framework consists of simula-
tion flow (blue box), transportation, and census databases
respectively, obtained from the Republic of China (ROC)
Transportation Institute and Interior Ministry (red box) and
data flow relationships (green box) among the four FLUed
model layers, internal data structures, and external databases
(Figure 2) [34]. Most data sets consist of spatial locations
and census information, which are used to establish geo-
graphic and demographic categories; each model parameter
belongs to at least one of the two. Since our layer 1 focus
is on epidemiological progression at an individual level, we
used standard expert-based parameters5 in compartmental
models associated with emerging infectious diseases instead
of the transportation or census databases [21]. In layer 2, the
numbers of individuals in each location and percentages of
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Figure 2: FLUed model implementation framework.

individuals in each age group were determined from census
data. Layer 3 information on the numbers of individuals
commuting between locations on a daily basis were taken
from the R.O.C. transportation database.The layer 4 national
commuting network was constructed with information from
the same transportation database and a GIS.

Two methods were used to input and alter model param-
eters: a GUI simulation console (Figure 3) and input files (i.e.,
Excel spreadsheet files containing data for the scenario being
analyzed). Default values for each model parameter were

automatically loaded at startup. Model parameters initialized
at the beginning of each simulation were (a) initial outbreak
conditions, including the name of the location and number of
infected persons in an age group identified by the surveillance
system; (b) epidemiological parameters at different layers,
including transmission, latent, and removal rates according
to an age-structured compartmental model for each age
group, contact rates between age groups, and regional contact
probabilities between locations; and (c) GIS output maps
and time-series charts for locations of interest and severity
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Figure 3: FLUed model simulation console.

indicators to be monitored (e.g., daily infected cases, daily
new cases, and epidemic velocity6 and acceleration rate7).
Daily epidemiological progressions were monitored in terms
of the sizes and locations of red dots on a GIS map, curves
on time-series charts, and output panels showing numbers of
infected individuals at different times in different locations.

We used a modified Susceptible-Latent-Infectious-Re-
moved (SLIR) compartmental model to represent different
infection stages among individuals in the same-age group
in the same location. Individual epidemiological status was
initially set at Susceptible (vulnerable to infection but not yet
infected), followed by Latent (infected but unable to infect
others), Infectious (capable of infecting other individuals),
and Removed (i.e., recovered, deceased, or otherwise not
posing any further threat).The numbers of pathogens carried
by Susceptible-to-Latent hosts were initially insufficient for
active transmission to other Susceptible hosts but eventually
reached levels causing hosts to become Infectious to begin
infecting other Susceptible hosts and to move toward a
Removed status.

The dynamics of the four epidemiological statuses over
time are expressed as (1a)–(1d). They have five features: (a)
discrete time interval 𝑑𝑡 is assumed to be one day; (b) at
time 𝑡, the population of interest is divided into four com-
partments—𝑆(𝑡), 𝐿(𝑡), 𝐼(𝑡), and 𝑅(𝑡)—corresponding to the
four epidemiological statuses; since our SLIR model is a
closed system, 𝑆(𝑡) + 𝐿(𝑡) + 𝐼(𝑡) +𝑅(𝑡) =𝑁, with𝑁 a constant
representing the entire population; (c) transmission rate 𝛽
is a constant representing how fast Susceptible individuals
become infected and acquire a Latent status; (d) latent rate
𝜃 is a constant used to determine transformation speed from
Latent to Infected; and (e) removal rate 𝛼 is a constant used to
determine transformation speed from Infected to Recovered.
Consider

𝑑𝑆 (𝑡)

𝑑𝑡
= −

𝛽𝑆 (𝑡) 𝐼 (𝑡)

𝑁
, (1a)

𝑑𝐿 (𝑡)

𝑑𝑡
= − 𝜃𝐿 (𝑡) +

𝛽𝑆 (𝑡) 𝐼 (𝑡)

𝑁
, (1b)

𝑑𝐼 (𝑡)

𝑑𝑡
= − 𝛼𝐼 (𝑡) + 𝜃𝐿 (𝑡) , (1c)

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝛼𝐼 (𝑡) . (1d)

A system dynamics flowchart for the first layer of the
FLUed model is shown in Figure 4. Note our modification in
consideration of self-motivated hospitalization (i.e., individ-
uals who visit hospitals or clinics during infectious disease
outbreaks regardless of their infection status). Depending
on diagnostic accuracy, some self-motivated individuals are
confirmed as Infectious and receive medical treatment in
advance, thus altering transmission and removal rates for
certain populations. We added three features to integrate this
factor into themodel: (a) a real number investigation constant
𝑠 (0 ≤ 𝑠 ≤ 1.0) representing the percentage of a pop-
ulation that goes to a hospital or clinic before becoming ill;
(b) a real number detection constant 𝑐 (0 ≤ 𝑐 ≤ 1.0) used
to determine the percentage of a population confirmed as
Infectious; and (c) a time delay constant 𝑇, indicating the
amount of time between a patient with symptoms visiting a
hospital or clinic and the time an infection is confirmed. The
default values of parameters 𝑠 and 𝑐 are both 0.6,meaning that
60% of the infected population is prone to visiting hospitals
or clinics for medical advice, and 60% of those visitors are
correctly diagnosed as carrying the pathogen. The default
value of parameter 𝑇 is 3, meaning that it takes three days
to confirm that a hospital or clinic patient with symptoms
is infected. In our simulations, the numbers of correctly
diagnosed patients were equal to the numbers of confirmed
real-world cases identified by emerging infectious disease
surveillance systems.

In consideration of preventive health care efforts, we
added a feature in which 𝐿 status individuals are moved to
either an 𝐼

1
(infected and prone to visiting hospitals or clinics

formedical advice) or 𝐼
2
(infected but not prone) status based

on whether or not they visit a hospital or clinic; this feature
is expressed as investigation proportion 𝑠. 𝐼

1
individuals are

identified as either 𝐼
11

(correctly diagnosed as carrying the
pathogen) or 𝐼

12
(incorrectly diagnosed—in other words,

false negatives); this feature is expressed as detection propor-
tion 𝑐. Note that regardless of positive or negative diagnoses,
a 𝑇 period of time must elapse prior to confirmation. For
individuals who are correctly diagnosed with influenza, some
medical treatments and public health practices can control
symptoms, prevent further complications, and stop them
from spreading the virus to their families, friends, classmates,
and coworkers. Correctly diagnosed patients in simulations
are the equivalent of confirmed cases in real-world influenza
surveillance systems. Thus, the difference between 𝐼

11
and

either 𝐼
2
, or 𝐼
12

statuses is the transmission rate. 𝐼
11
, 𝐼
12

and
𝐼
2
all eventually change to status 𝑅.The extended SLIRmodel

can be expressed as (2a)–(2h). Consider

𝑑𝑆 (𝑡)

𝑑𝑡
= −

𝑆 (𝑡) (𝛽
2
𝐼
2
(𝑡) + 𝛽

11
𝐼
11
(𝑡) + 𝛽

12
𝐼
12
(𝑡))

𝑁
, (2a)

𝑑𝐿 (𝑡)

𝑑𝑡
= − 𝜃𝐿 (𝑡) +

𝑆 (𝑡) (𝛽
2
𝐼
2
(𝑡) + 𝛽

11
𝐼
11
(𝑡) + 𝛽

12
𝐼
12
(𝑡))

𝑁
,

(2b)
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𝑑𝐼
11
(𝑡)
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= − 𝛼
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𝐼
11
(𝑡) + 𝑐𝐼

1
(𝑡 − 𝑇) , (2f)

𝑑𝐼
12
(𝑡)

𝑑𝑡
= − 𝛼

12
𝐼
12
(𝑡) + (1 − 𝑐) 𝐼

1
(𝑡 − 𝑇) , (2g)

𝑑𝑅 (𝑡)

𝑑𝑡
= 𝛼
11
𝐼
11
(𝑡) + 𝛼

12
𝐼
12
(𝑡) + 𝛼

2
𝐼
2
(𝑡) . (2h)

Depending on age range, individual infection proper-
ties differ in terms of epidemiological parameters such as
transmission and removal rates. We considered two age-
related features: the transmission rates 𝛽

11𝑝𝑞
, 𝛽
12𝑝𝑞

, and 𝛽
2𝑝𝑞

,
which represent cross-age group infections and the relative
age group percentage 𝜒

𝑝
, which affects the potential for

cross-age infections. To distinguish among parameters for
individuals in different age groups, we also added a subscript
to each (2a)–(2h) parameter (with the exception of 𝑇)—for
example, we changed parameter 𝑆(𝑡) to 𝑆

𝑝
(𝑡) for age group

𝑝. We assumed three age groups: children (birth to 14),
adults (15 to 64), and seniors (65 and older). Transmission
rates between age groups were differentiated to capture the
complexity of infections across them. We added two sub-
scripts to transmission rate 𝛽 to create 𝛽

𝑝𝑞
: 𝑝 for the age of

an infectious individual, and 𝑞 for the age of the individual
being infected (Figure 5). Epidemiological parameters used
in the first layer were also used to model infections across age
groups.

To construct layer 2 of the FLUed model, we revised (2a)
and (2b) to (3a) and (3b), respectively, without making any
other changes to the (2a)–(2h) subequations. Consider

𝑑𝑆
𝑝

𝑑𝑡
= −
𝑆
𝑝
𝜒
𝑝
𝜒
𝑝
(𝛽
2𝑝𝑝
𝐼
2𝑝
+ 𝛽
11𝑝𝑝
𝐼
11𝑝
+ 𝛽
12𝑝𝑝
𝐼
12𝑝
)

𝑁
𝑝

−
𝑆
𝑝
∑
𝑞 ̸= 𝑝
𝜒
𝑞
𝜒
𝑝
(𝛽
2𝑞𝑝
𝐼
2𝑞
+ 𝛽
11𝑞𝑝
𝐼
11𝑞
+ 𝛽
12𝑞𝑝
𝐼
12𝑞
)

𝑁
𝑞

,

(3a)

𝑑𝐿
𝑝

𝑑𝑡
= −
𝜃
𝑝
𝐿
𝑝
+ 𝑆
𝑝
𝜒
𝑝
𝜒
𝑝
(𝛽
2𝑝𝑝
𝐼
2𝑝
+ 𝛽
11𝑝𝑝
𝐼
11𝑝
+ 𝛽
12𝑝𝑝
𝐼
12𝑝
)

𝑁
𝑝

+
𝑆
𝑝
∑
𝑞 ̸= 𝑝
𝜒
𝑞
𝜒
𝑝
(𝛽
2𝑞𝑝
𝐼
2𝑞
+ 𝛽
11𝑞𝑝
𝐼
11𝑞
+ 𝛽
12𝑞𝑝
𝐼
12𝑞
)

𝑁
𝑞

.

(3b)

In layer 3 we focused on the impacts of daily commuting
between locations on the epidemic dynamics of emerging
infectious diseases. This layer reflects three assumptions8:
(a) emerging infectious viruses are transmitted via airborne
droplets, and commuters are capable of infecting other
individuals along their standard routes; (b) according to
census statistics obtained from the ROC Interior Ministry,
hosts commute over longer distances than individuals who
stay at home or travel to local centers such as schools and
tend to come into contact with individuals in the same-age
group along their routes and at their destinations; and (c)
higher contact frequencies exist among individuals in more
densely populated areas. Accordingly, layer 3 consists of four
features associated with daily commuting: (a) 𝜎(𝑝), a binary
value denoting whether age group 𝑝 is the commuter age
group (our assumption was that children and seniors are less
likely than adults to commute on a daily basis, making adults
the most likely carriers of pathogens between locations);
(b) 𝑤

𝑗,𝑖
, indicating how many individuals commute from

location 𝑗 to location 𝑖 on a daily basis; (c) 𝜂𝑖, a weighting
factor representing the average number of contacts among
individuals in location 𝑖 on a daily basis; and (d) 𝑑𝑖, a relative
density representing the location 𝑖 population as a percentage
of the population of the largest location in the commuting
network.

For all 𝑖 and 𝑗 locations in a commuting network 𝑤,
we used a geodemographic weight equation, 𝜎(𝑝)𝑑𝑖𝜂𝑖(𝑤

𝑗,𝑖
/

∑
𝑘 ̸= 𝑗
𝑤
𝑗,𝑘
), to measure the effects of commuting on 𝑖 and

𝑗 population interactions. The term 𝑤
𝑗,𝑖
/∑
𝑘 ̸= 𝑗
𝑤
𝑗𝑘

is the
ratio of commuters between locations 𝑗 and 𝑖 to commuters
between 𝑗 and all other locations. If location 𝑖 is a large
urban center, 𝑤

𝑗,𝑖
/∑
𝑘 ̸= 𝑗
𝑤
𝑗,𝑘

will be large; if 𝑖 is a suburb or
rural location, it will be small. Public health policies involving
transportation can be tested by changing contact rates among
population centers in the third layer.
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Figure 6 presents the system dynamics flowchart for the
FLUed model’s third layer; to construct it we, respectively,
revised (3a) and (3b) to (4a) and (4b). Note the addition of
a geodemographic weight factor on the third line of each
equation. All other (2a)–(2h) subequations are identical.
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Based on national short- and long-distance commuting
data, network nodes can represent individual towns and
link attributes can represent geodemographic weights and
commuting volumes between any two towns. As shown
in Figure 7, layer 4 of the FLUed model consists of 409



Journal of Applied Mathematics 7

Confirmed
(I11)

Susceptible

(S)

Latent

(L)

Infectious
(I0)

Investigated
(I1)

Not investigated
(I2)

Misdiagnosed
(I12)

Removed

(R)

(S) (L) (R)

Removed

𝛽11

𝛽11

𝛽12

N 𝜃 s

c 𝛼11

𝛼12

N 𝜃 s

c 𝛼11

𝛼12

𝛼2

𝛼2

𝛽2

Susceptible Latent Infectious
(I0)

Investigated
(I1)

Not investigated
(I2)

Confirmed
(I11)

Misdiagnosed
(I12)

𝛽2𝛽12

𝜒, d, 𝜂,W

𝜒, d, 𝜂,W

Location i
(adults)

Location j
(adults)
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Figure 7: National commuting network in Taiwan.

towns and 19,014 links that can be manipulated to test the
effects of various transport intervention policies, popula-
tion movement strategies, and commuting restrictions. After
combining the four layers, the model can be expressed as
(5a)–(5h). Model parameters and their default values are
listed in Table 1. The simulation time complexity of the
model is 𝑂(𝛼2𝑛𝑘𝜏), a low-order polynomial function in
which 𝛼 denotes the number of age groups, 𝑛 the number of
commuting network nodes, 𝑘 the average degree of the daily

commuting network, and 𝜏 the total number of time steps in
an epidemic simulation experiment. One has the following:
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Figure 8: Comparison of actual and simulated results for (a) weekly new infected cases and (b) cumulative cases normalized for 2008-2009
seasonal influenza A.
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3. Model Validation and Intervention
Policy Evaluation

We used case data confirmed by the Taiwan Centers for
Disease Control (TCDC) for 2008-2009 seasonal influenza

A and 2009 swine-origin influenza A (H1N1) to estimate
FLUed model parameters and to test model reliability and
generalizability.We calibrated parameters for both influenzas
to create small ranges based on parameters normally used in
extended compartmental model settings [16]. Parameter and
value summaries are given in Table 1. The transmission rates
𝛽
𝑖

11𝑝𝑝
, 𝛽𝑖
12𝑝𝑝

, and 𝛽𝑖
2𝑝𝑝

were directional between age groups.
Results from applying the FLUed model using the Table 1
parameter settings for both influenzas are shown in Figures 8
and 9, respectively. Actual and simulated case data are shown
in weekly units.

Statistical correlation coefficient (CC) and coefficient
efficiency (CE) test results of the two influenzas were 0.86 and
0.74 for the 2008-2009 seasonal influenzaA and 0.77 and 0.36
for the 2009 swine-origin influenza A (H1N1), respectively.
Figure 8 presents a plot of newly infected case fractions
for the 2008-2009 seasonal influenza A in Taiwan between
September 2008 and April 2009, normalized to total cases.
Higher CC and CE values for 2008-2009 seasonal influenza
A explain the similarities between the two epidemic curves.
In Figure 9, we plotted fractions of new infected cases for
the 2009 swine-origin influenza A (H1N1) from week 25 to
week 52, also normalized to total cases. As shown in that
figure, the number of actual cases decreased between weeks
37 and 48, followed by an increasing trend, thus resulting
in a lower CE value. This dual-wave pattern is similar to
global diffusion patterns associated with international travel
[35–38]. The second wave in Figure 9 also coincides with
Taiwan’s usual influenza season. In the temperate regions
of the northern hemisphere, most influenza activity occurs
from November through April. In their equivalents in the
southern hemisphere, it occurs from April through October,
while in the tropics all influenza viruses circulate at low levels,
year round [39]. Thus, researchers pay special attention to
travel patterns in the two hemispheres during their respective
influenza seasons [40] since close contact among large num-
bers of individuals on airplanes and in airports puts travelers



Journal of Applied Mathematics 11

0

2

4

6

8

10

12

14

25 28 31 34 37 40 43 46 49 52

N
ew

 in
fe

ct
ed

 ca
se

s (
%

)

Time (week number from July to December 2009)

2009 swine-origin influenza A (H1N1)
Simulated result

(a)

0

20

40

60

80

100

25 28 31 34 37 40 43 46 49 52

Cu
m

ul
at

iv
e c

as
es

 (%
)

Time (week number from July to December 2009)

2009 Swine-origin Influenza A (H1N1)
Simulated result

(b)

Figure 9: Comparison of actual and simulated results for (a) weekly new infected cases and (b) cumulative cases normalized for 2009 swine-
origin influenza A (H1N1).
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Figure 10: Simulation results under various transmission rates. (a) New weekly infected cases at different transmission rates. (b) Cumulative
new infected cases at different transmission rates. (c) Comparison of new infected cases at epidemic curve peak at different transmission
rates. (d) Comparison of week number at epidemic curve peak at different transmission rates.
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Figure 11: (a) New infected cases at epidemic curve peak according to various intervention policy scenarios at different reduced transmission
rates. (b) Total number of infected cases according to various intervention policy scenarios at different reduced transmission rates. (c) Week
number of epidemic curve peaks according to various intervention policy scenarios at different reduced transmission rates.

at higher risk of contracting influenza [39, 41]. Transmission
is greatly accelerated when influenza spreads to the world’s
50 largest airports, which account for approximately 70%
of all airline passengers [42]. Since we did not incorporate
international travel, our FLUed model failed to capture the
second wave; however, it did capture the peak period for the
first (primary) wave.

Next, we evaluated the impacts of transmission rate re-
duction (Figure 10 and Table 2(a)) and the effects of var-
ious intervention policy scenarios on different reduced

transmission rates (Figure 11) using the previously described
model parameters. As shown in Figure 12, special emphases
were placed on the peak numbers of infected cases (also
called “new infected cases at epidemic curve peak”) and
the time of peak infection (also called “week number of
epidemic curve peak”). Public health officials have two goals:
reducing the peak numbers of infected cases and delaying
peak infection times. Both efforts are aimed at extending time
for allocating and rearranging limited epidemic prevention
and medical resources such as vaccines, antivirus drugs,
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Figure 12: Dual-intervention policy evaluation index (peak num-
bers of infected cases and time of peak).
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Figure 13: Epidemic peak week numbers for Taipei urban and
Taichung rural areas.

medical personnel, and hospital negative pressure isolation
beds, as well as for obtaining support from neighboring
cities/countries to resolve issues tied to inadequate medical
resources.

According to the weekly fraction data for new infected
cases shown in Figure 10(a), epidemic scale and curve peak
height were negatively affected by decreased transmission
rate. As shown in Figure 10(b), the cumulative number of
infection cases decreased nonlinearly as transmission rate
decreased. Results of our comparisons of curve peaks for
new infected cases at different transmission rates are shown
in Figure 10(c); the peak for the original transmission rate
shown in Table 1 is at the leftmost part of the graph.
As shown, the transmission rate should be reduced by at
least 50% to improve peak number suppression; an obvious
decrease in peak number occurred at a 70% transmission
rate reduction. Week numbers for epidemic curve peaks at
different transmission rates are shown in Figure 10(d); note

the nonlinear increases as transmission rate decreased—a
positive and significant result for public health policymakers.

Data from various intervention scenario simulations are
shown in Figures 11(a)–11(c). No differences in new infected
cases at peak epidemic curve or total infected cases were
observed for different intervention activation times (Figures
11(a) and 11(b)). However, epidemic curve peak week number
was significantly delayed from 20 to 51 when intervention
activation time was set prior to 50 cumulative cases with a
minimum 70% reduction in transmission rate (Figure 11(c)).
Activation time exerted a much weaker effect on peak timing
at a 30% or lower transmission rate decrease. Our simulation
results suggest that a reduced transmission rate between 50
and 90% was required for this intervention policy to have a
positive effect on the 2009 swine-origin influenza A (H1N1)
pandemic. It had little effect on a reduced transmission rate
of 30% or lower, while incurring significant social costs. Our
data indicate that intervention activation time did not result
in a significantly reduced number of total infected cases or
new infected cases at the epidemic curve peak but did have an
obvious effect in terms of delayed peak time—apositive result
for public health policy determination and preparation.

We compared differences among 2009 swine-origin
influenza A (H1N1) initial outbreak areas and their effects
on subsequent spreading (Figure 13, Tables 2 and 3). The
Da’an district of Taipei was identified as a high-density hybrid
area of businesses and residences, and the Wuri district of
Taichung was identified as a low-density rural area. In the
first (pre-swine-origin virus) scenario, the epidemic curve
peaks appeared quickly when initial outbreaks occurred in
Da’an rather than Wuri. The Taichung peak was significantly
delayedwhen the transmission rate was reduced to 30%. Both
locations had approximately the same number of new cases,
but Da’an had a much larger number of total cases. After
reducing the transmission rate from 50% to 30%, Wuri had
a much later peak week, with no effect from intervention
activation time on the total number of cases or newly
infected cases in either location.These results suggest that less
densely populated initial outbreak areas are more sensitive
to intervention activation time—that is, the combination of
early activation time and lower transmission rate leads to
significant delays in epidemic curve peaks in less densely
populated locations.

In addition to using peak infected case numbers and peak
infection times, we also applied two quantitative indicators
[31] to assess the performances of different intervention
policies: prevention effect (6) and cost-efficacy (7). According
to the first of these equations, the critical preventive effect
indicator value is 1; we set this value at >1 to produce better
effects since certain policies actually support the spread of an
infectious disease at values of <1. We believe public health
experts can identify optimal interventions by comparing
different policies at this level. The cost-efficacy indicator in
(7) was used to assess prevention effects per user-defined unit
cost; its value was purposefully made positive to produce
better effects (negative preventive effects occur at values
below 0). Public health officials can use the same benchmark
to make decisions regarding the best activation times for var-
ious intervention policies by concurrently comparing their
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Table 2: Observation index values according to different policy activation scenarios during swine-originH1N1 influenzaA outbreak in Taipei.

Activation time Evaluation index Transmission rate reduction (%)
0%9 30% 50% 70% 90%

(a) Scenario number 1
Pre-virus appearance

Total cases 1,784,044 1,407,752 1,108,520 485,761 8
New infected cases at epidemic curve peak 171,329 113,898 64,926 12,231 8
Week number of epidemic curve peak 20 26 36 77 ∞

(New infected cases at epidemic curve
peak/total cases of basic epidemic curve) 9.60% 6.38% 3.64% 0.69% 0%

(Total cases of epidemic curve/total cases of
basic epidemic curve) 100% 78.90% 62.14% 27.23% 0%

(b) Scenario number 2
After 50 cases are
diagnosed

Total cases 1,784,044 1,409,827 1,108,794 487,425 855
New infected cases at epidemic curve peak 171,329 114,120 65,235 12,468 155
Week number of epidemic curve peak 20 24 30 51 7
(New infected cases at epidemic curve
peak/total cases of basic epidemic curve) 9.60% 6.40% 3.66% 0.70% 0%

(Total cases of epidemic curve/total cases of
basic epidemic curve) 100% 79.02% 62.15% 27.32% 0.05%

(c) Scenario number 3
After 100 cases are
diagnosed

Total cases 1,784,044 1,410,263 1,108,993 488,900 1,991
New infected cases at epidemic curve peak 171,329 113,532 65,314 12,604 349
Week number of epidemic curve peak 20 24 29 47 8
(New infected cases at epidemic curve
peak/total cases of basic epidemic curve) 9.60% 6.36% 3.66% 0.71% 0%

(Total cases of epidemic curve/total cases of
basic epidemic curve) 100% 79.05% 62.16% 27.40% 0.11%

(d) Scenario number 4
After 200 cases are
diagnosed

Total cases 1,784,044 1,410,782 1,109,355 491,563 4,599
New infected cases at epidemic curve peak 171,329 114,191 65,442 12,883 818
Week number of epidemic curve peak 20 23 28 42 9
(New infected cases at epidemic curve
peak/total cases of basic epidemic curve) 9.60% 6.40% 3.67% 0.72% 0%

(Total cases of epidemic curve/total cases of
basic epidemic curve) 100% 79.08% 62.18% 27.55% 0.26%

(e) Scenario number 5
After 400 cases are
diagnosed

Total cases 1,784,044 1,411,273 1,109,893 496,246 10,000
New infected cases at epidemic curve peak 171,329 114,185 65,669 13,408 1,680
Week number of epidemic curve peak 20 23 27 38 10
(New infected cases at epidemic curve
peak/total cases of basic epidemic curve) 9.60% 6.40% 3.68% 0.75% 0%

(Total cases of epidemic curve/total cases of
basic epidemic curve) 100% 79.11% 62.21% 27.82% 0.56%

9In Tables 2 and 3, the “0%” subcolumn in the “Transmission rate reduction” column refers to the baseline scenario—that is, in the absence of any intervention
policies for comparison purposes. To clarify the table, we have retained the experiment results in Scenario #1.

preventive effects and cost-efficacy indicators. To activate
an appropriate intervention policy at an optimal time, its
preventive effect indicator must be as large as possible, and
its cost-efficacy indicator must be as large as possible and
positive. Consider

Prevention effect PE (policy 𝑝)

=
Total infected cases without activating any strategy

Total infected cases with 𝑝 activated

∈ [0,∞] ,

(6)

Cost-efficacy CE (policy 𝑝)
= (Total infected cases without activating any policy
−Total infected cases with 𝑝 activated)

× (Total consumed resource costs of 𝑝)−1

∈ [−∞, +∞] .

(7)

After establishing prevention-effect and cost-efficacy def-
initions and usages, we used the two quantitative indicators
and the parameters listed in Table 1 to compare five interven-
tion policies at two initial outbreak areas (Da’an and Wuri)
and on three policy application dates (weeks 1, 4, and 8
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Figure 14: Relationships of five intervention policies and the FLUed-related variables.

0

10

20

30

40

50

#1 #2 #3 #4 #5 #1 #2 #3 #4 #5 #1 #2 #3 #4 #5
Public health policy

Pr
ev

en
tio

n 
eff

ec
t

Activated at the beginning
of October

Activated at the end of
October

Activated at the end of
November

Densely populated region
Sparsely populated region

(a)

0

0.4

0.8

1.2

1.6

2

#1 #2 #3 #4 #5 #1 #2 #3 #4 #5 #1 #2 #3 #4 #5
Public health policy

C
os

t-e
ffi

ca
cy

Densely populated region
Sparsely populated region

Activated at the beginning
of October

Activated at the end of
October

Activated at the end of
November

(b)

Figure 15: Comparisons of (a) prevention effects and (b) cost-efficacies among five intervention strategies.
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Table 3: Observation index values according to different policy activation scenarios during swine-origin H1N1 influenza A outbreak in
Taichung.

Activation time Evaluation index Transmission rate reduction (%)
0% 30% 50% 70% 90%

(a) Scenario number 1
Previrus appearance

Total cases 2,190,247 1,672,733 1,112,428 485,801 8
New infected cases at epidemic curve peak 172,083 114,556 64,551 12,186 8
Week number of epidemic curve peak 61 83 119 284 1
(New infected cases at epidemic curve
peak/total cases of basic epidemic curve) 7.86% 5.23% 2.95% 0.56% 0%

(Total cases of epidemic curve/total cases of
basic epidemic curve) 100% 76.37% 50.79% 22.18% 0%

(b) Scenario number 2
After 50 cases are
diagnosed

Total cases 2,190,247 1,672,266 1,117,265 487,030 767
New infected cases at epidemic curve peak 172,083 113,760 64,598 12,200 120
Week number of epidemic curve peak 61 73 93 180 28
(New infected cases at epidemic curve
peak/total cases of basic epidemic curve) 7.86% 5.19% 2.95% 0.56% 0%

(Total cases of epidemic curve/total cases of
basic epidemic curve) 100% 76.35% 51.01% 22.24% 0.04%

(c) Scenario number 3
After 100 cases are
diagnosed

Total cases 2,190,247 1,671,019 1,120,702 488,492 1,723
New infected cases at epidemic curve peak 172,083 113,672 64,430 12,194 273
Week number of epidemic curve peak 61 72 90 169 29
(New infected cases at epidemic curve
peak/total cases of basic epidemic curve) 7.86% 5.19% 2.94% 0.56% 0%

(Total cases of epidemic curve/total cases of
basic epidemic curve) 100% 76.29% 51.17% 22.30% 0.08%

(d) Scenario number 4
After 200 cases are
diagnosed

Total cases 2,190,247 1,674,627 1,125,289 491,418 3,668
New infected cases at epidemic curve peak 172,083 113,592 64,556 12,198 520
Week number of epidemic curve peak 61 71 88 158 32
(New infected cases at epidemic curve
peak/total cases of basic epidemic curve) 7.86% 5.19% 2.95% 0.56% 0%

(Total cases of epidemic curve/total cases of
basic epidemic curve) 100% 76.46% 51.38% 22.44% 0.17%

(e) Scenario number 5
After 400 cases are
diagnosed

Total cases 2,190,247 1,677,338 1,132,127 49,486 7,424
New infected cases at epidemic curve peak 172,083 112,155 64,605 12,188 1,057
Week number of epidemic curve peak 61 70 85 147 34
(New infected cases at epidemic curve
peak/total cases of basic epidemic curve) 7.86% 5.12% 2.95% 0.56% 0%

(Total cases of epidemic curve/total cases of
basic epidemic curve) 100% 76.58% 51.69% 22.67% 0.34%

following the first confirmed diagnosis) for the 2008-2009
seasonal influenza A outbreak. The five intervention policies
shown in Figure 14 were (a) vaccinating randomly chosen
individuals (see the following Pseudocode 1); (b) identifying
and inoculating individuals who had come into contact
with infected individuals; (c) using public relations tools to
strongly encourage hand washing and mask wearing by the
general public; (d) enforcing home quarantines for infected
individuals until they recover, including a minimum of eight
days for individuals coming into contact with them; and (e)
giving antiviral medicines to all individuals in advance of the
expected epidemic.

As shown in Figure 15 and Table 4, our simulation results
indicate that the two most effective policies were (a) and

(e), followed by (c). These policies were more effective
when activated as quickly as possible; fewer and smaller
differences in effect were noted when they were activated at
later dates (1-2 months after the optimum date). Our main
conclusions derived from the simulations were as follows: (a)
the combination of hand washing and mask wearing by the
general publicwas themost cost-effective policy and (b) using
antiviral medicines in advance was more cost-effective than
buying and using a mix of vaccines and anti-viral medicines.

4. Conclusion

Our goal in this paper was to integrate human commut-
ing networks into multiple age-structured compartmental
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Table 4: Comparisons of (a) prevention effects and (b) cost-efficacies among five intervention policies.

Initial outbreak
areas

Intervention policy
Policy activation time

The
beginning of
October

The end of
October

The end of
November

(a) Prevention
effects indicator

Da’an district of
Taipei City

1. Inoculate individuals at random 40.34 10.63 3.00
2. Locate and inoculate those who have come into
contact with infected individuals 2.16 1.98 1.62

3. Encourage hand washing and mask wearing by
the general public during flu pandemic 28.68 6.92 2.65

4. Quarantine infected individuals until complete
recovery. Home quarantine individuals who have
come into contact with them for a minimum of 8
days

1.84 1.67 1.45

5. Give antiviral medicines in advance for
prevention purposes 41.55 7.38 2.64

Wuri district of
Taichung City

1. Inoculate individuals at random 14.79 5.60 2.05
2. Locate and inoculate those who have come into
contact with infected individuals 3.85 3.00 2.14

3. Encourage hand washing and mask wearing by
the general public during flu pandemic 10.83 5.02 3.26

4. Quarantine infected individuals until complete
recovery. Home quarantine individuals who have
come into contact with them for a minimum of 8
days

1.86 1.80 1.46

5. Give antiviral medicines in advance for
prevention purposes 15.11 6.96 3.38

(b) Cost-efficacies
indicator

Da’an district of
Taipei City

1. Inoculate individuals at random 0.81 0.75 0.55
2. Locate and inoculate those who have come into
contact with infected individuals 0.45 0.41 0.32

3. Encourage hand washing and mask wearing by
the general public during flu pandemic 1.39 1.23 0.90

4. Quarantine infected individuals until complete
recovery. Home quarantine individuals who have
come into contact with them for a minimum of 8
days

0.01 0.01 0.01

5. Give antiviral medicines in advance for
prevention purposes 0.81 0.72 0.52

Wuri district of
Taichung City

1. Inoculate individuals at random 0.28 0.25 0.20
2. Locate and inoculate those who have come into
contact with infected individuals 0.22 0.20 0.16

3. Encourage hand washing and mask wearing by
the general public during flu pandemic 0.48 0.42 0.36

4. Quarantine infected individuals until complete
recovery. Home quarantine individuals who have
come into contact with them for a minimum of 8
days

0.01 0.01 0.01

5. Give antiviral medicines in advance for
prevention purposes 0.28 0.26 0.21

models to create a Four-layer Universal Epidemic Dynamics
model (FLUed). The proposed model is capable of providing
insights regarding the epidemic dynamics of emerging infec-
tious diseases according to various interventions involving
different initial outbreak locations, activation times, and

policy suites. We believe that the FLUed model represents
a convenient and effective tool for public health agencies
responsible for initiating early responses to potential pan-
demics and for assessing transport intervention policies in
outbreak locations. To build on this positive beginning, we
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(1) when policy is enacted do
(2) for each town 𝑖 in𝑇𝑜𝑤𝑛𝑠 do
(3) for each age group 𝑝 in 𝐴𝑔𝑒 𝑔𝑟𝑜𝑢𝑝𝑠𝑖 do
(4) 𝑆

𝑖

𝑝
← 𝑆
𝑖

𝑝
× (1 − 𝐶𝑜V𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑒𝑖

𝑝
)

(5) end loop
(6) end loop
(7) end

Pseudocode 1: Vaccinating randomly chosen individuals (parame-
ters list: Towns, Age groups, Coverage rate).

plan to expand the four-layer framework to make it suitable
for other acute diseases and to make it responsive to complex
human contact structures.

Although our focus in this pilot study was on two
influenza outbreaks in Taiwan, the FLUed framework is
transferrable to other situations. The SLIR compartmental
model in layer 1 represents a general epidemiological
model for all droplet-transmitted respiratory infections. To
simulate the dynamics of other infectious diseases, the SLIR
compartmentalmodel used in layer 1 can be replaced by other
models such as SIS (Susceptible-Infectious-Susceptible) and
SLIRS (Susceptible-Latent-Infectious-Removed-Susceptible).
Furthermore, the age group and commuting interactions in
layers 2 and 3 can be disassembled to meet the risk factor
requirements of other emerging infectious diseases. As
noted in an earlier section, the layer 4 network topology
can be modified to meet the needs of different scales of
link-node structures—for example, adding long-distance
transportation networks to determine the impacts of shutting
down railway or airline systems, or using different contact
structures (e.g., mosquito-human) to model dengue fever,
malaria, rabies, Japanese encephalitis, and other vector-
borne and human-animal contact diseases. We believe that
the FLUed model is suitable for detailed spreading scenario
experiments and classroom teaching demonstrations of
epidemiological issues associated with emerging infectious
diseases.
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Endnotes

1. A general-purpose epidemic simulation model must
be able to (a) provide insights regarding the epidemic
dynamics of emerging infectious diseases according to
various interventions involving different initial outbreak
locations, activation times, and policy suites; (b) assist
with understanding the properties and efficacies of
various intervention policies; (c) construct an effective,
low-cost, and executable suite of intervention policies;
and (d) reduce the difficulties and costs associated with
learning epidemiological concepts [43].

2. An extendable epidemic simulation model must be able
to alter the framework to make it suitable for other acute
diseases and to make it responsive to complex human
contact structures.

3. We used MathWorks MATLAB to create our proposed
FLUed model. The use of Microsoft Excel to organize
census and transportation data means that policy mak-
ers, public health professionals, and others who have less
experience in specialized computer software will be able
to generate various spreading scenarios with minimal
assistance. For source code matching specific research
requirements, please contact the corresponding author.

4. Nodes can represent any type of location or area chosen
by a transportation researcher once the appropriate data
are located and organized—for example, a region on an
island, a town/city in a county, a county in a state, or a
state in a nation.

5. In this paper, expert-based parameters are in a form
allowing public health experts and computational epi-
demiologists to concentrate on estimating epidemic sim-
ulation parameters using influenza surveillance weekly
report and related epidemic information provided by
Taiwan Centers for Disease Control (TCDC).

6. As used here, epidemic velocity is the same as isopathic
velocity, a term introduced by Berger and Luke [44]
to quantify epidemic diseases. An isopath is a contour
of constant disease level. As an epidemic progresses,
isopaths expand outward from the initial infection site.
Velocity is defined as the rate of isopathic movement in
a particular direction, expressed as units of distance per
time (e.g., miles/day).

7. Acceleration rate is defined as change in epidemic
velocity over time.

8. In our proposed model, these assumptions can easily be
changed using a GUI simulation console with specific
input files.
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