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Multisender authentication codes allow a group of senders to construct an authenticated message for a receiver such that the
receiver can verify the authenticity of the received message. In this paper, we construct one multisender authentication code from
polynomials over finite fields. Some parameters and the probabilities of deceptions of this code are also computed.

1. Introduction

Multisender authentication code was firstly constructed by
Gilbert et al. [1] in 1974. Multisender authentication system
refers towho a groupof senders, cooperatively send amessage
to a receiver; then the receiver should be able to ascertain
that the message is authentic. About this case, many scholars
and researchers had made great contributions to multisender
authentication codes, such as [2–6].

In the actual computer network communications, mul-
tisender authentication codes include sequential model and
simultaneous model. Sequential model is that each sender
uses his own encoding rules to encode a source state orderly,
the last sender sends the encoded message to the receiver,
and the receiver receives themessage and verifies whether the
message is legal or not. Simultaneousmodel is that all senders
use their own encoding rules to encode a source state, and
each sender sends the encoded message to the synthesizer,
respectively; then the synthesizer forms an authenticated
message and verifies whether the message is legal or not. In
this paper, we will adopt the second model.

In a simultaneous model, there are four participants: a
group of senders 𝑈 = {𝑈

1
, 𝑈
2
, . . . , 𝑈

𝑛
}, the key distribution

center, he is responsible for the key distribution to senders
and receiver, including solving the disputes between them, a
receiver 𝑅, and a synthesizer, where he only runs the trusted
synthesis algorithm. The code works as follows: each sender
and receiver has their own Cartesian authentication code,

respectively. Let (𝑆, 𝐸
𝑖
, 𝑇
𝑖
; 𝑓
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) be the senders’

Cartesian authentication code, (𝑆, 𝐸
𝑅
, 𝑇; 𝑔) be the receiver’s

Cartesian authentication code, ℎ : 𝑇
1
× 𝑇
2
× ⋅ ⋅ ⋅ × 𝑇

𝑛
→

𝑇 be the synthesis algorithm, and 𝜋
𝑖

: 𝐸 → 𝐸
𝑖
be a

subkey generation algorithm, where 𝐸 is the key set of the
key distribution center. When authenticating a message, the
senders and the receiver should comply with the protocol.
The key distribution center randomly selects an encoding
rule 𝑒 ∈ 𝐸 and sends 𝑒

𝑖
= 𝜋
𝑖
(𝑒) to the 𝑖th sender 𝑈

𝑖
(𝑖 =

1, 2, . . . , 𝑛), secretly; then he calculates 𝑒
𝑅
by 𝑒 according to

an effective algorithm and secretly sends 𝑒
𝑅
to the receiver

𝑅. If the senders would like to send a source state 𝑠 to the
receiver 𝑅, 𝑈

𝑖
computes 𝑡

𝑖
= 𝑓
𝑖
(𝑠, 𝑒
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) and

sends 𝑚
𝑖
= (𝑠, 𝑡

𝑖
) (𝑖 = 1, 2, . . . , 𝑛) to the synthesizer through

an open channel. The synthesizer receives the message 𝑚
𝑖
=

(𝑠, 𝑡
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) and calculates 𝑡 = ℎ(𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑛
) by the

synthesis algorithm ℎ and then sends message 𝑚 = (𝑠, 𝑡) to
the receiver; he checks the authenticity by verifying whether
𝑡 = 𝑔(𝑠, 𝑒

𝑅
) or not. If the equality holds, the message is

authentic and is accepted. Otherwise, the message is rejected.
We assume that the key distribution center is credible, and

though he know the senders’ and receiver’s encoding rules, he
will not participate in any communication activities. When
transmitters and receiver are disputing, the key distribution
center settles it. At the same time, we assume that the system
follows the Kerckhoff principle in which, except the actual
used keys, the other information of the whole system is
public.
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In a multisender authentication system, we assume that
the whole senders are cooperative to form a valid message;
that is, all senders as a whole and receiver are reliable. But
there are some malicious senders who together cheat the
receiver; the part of senders and receiver are not credible, and
they can take impersonation attack and substitution attack.
In the whole system, we assume that {𝑈

1
, 𝑈
2
, . . . , 𝑈

𝑛
} are

senders, 𝑅 is a receiver, 𝐸
𝑖
is the encoding rules set of the

sender 𝑈
𝑖
, and 𝐸

𝑅
is the decoding rules set of the receiver

𝑅. If the source state space 𝑆 and the key space 𝐸
𝑅
of receiver

𝑅 are according to a uniform distribution, then the message
space𝑀 and the tag space𝑇 are determined by the probability
distribution of 𝑆 and 𝐸

𝑅
. 𝐿 = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑙
} ⊂ {1, 2, . . . , 𝑛},

𝑙 < 𝑛, 𝑈
𝐿

= {𝑈
𝑖
1

, 𝑈
𝑖
2

, . . . , 𝑈
𝑖
𝑙

}, 𝐸
𝐿

= {𝐸
𝑈
𝑖1

, 𝐸
𝑈
𝑖2

, . . . , 𝐸
𝑈
𝑖
𝑙

}.
Now consider that let us consider the attacks from malicious
groups of senders. Here, there are two kinds of attack.

The opponent’s impersonation attack to receiver:𝑈
𝐿
, after

receiving their secret keys, encode a message and send it to
the receiver. 𝑈

𝐿
are successful if the receiver accepts it as

legitimate message. Denote by 𝑃
𝐼
the largest probability of

some opponent’s successful impersonation attack to receiver;
it can be expressed as

𝑃
𝐼
= max
𝑚∈𝑀

{

{𝑒𝑅 ∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑚}


𝐸𝑅



} . (1)

The opponent’s substitution attack to the receiver: 𝑈
𝐿

replace 𝑚 with another message 𝑚
, after they observe a

legitimatemessage𝑚.𝑈
𝐿
are successful if the receiver accepts

it as legitimate message; it can be expressed as

𝑃
𝑆
= max
𝑚∈𝑀

{

max
𝑚

̸= 𝑚∈𝑀


{𝑒
𝑅
∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑚,𝑚


}


{𝑒𝑅 ∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑚}



} . (2)

There might be 𝑙 malicious senders who together cheat
the receiver; that is, the part of senders and the receiver
are not credible, and they can take impersonation attack.
Let 𝐿 = {𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑙
} ⊂ {1, 2, . . . , 𝑛}, 𝑙 < 𝑛 and 𝐸

𝐿
=

{𝐸
𝑈𝑖
1

, 𝐸
𝑈𝑖
2

, . . . , 𝐸
𝑈𝑖
𝑙

}. Assume that 𝑈
𝐿

= {𝑈
𝑖
1

, 𝑈
𝑖
2

, . . . , 𝑈
𝑖
𝑙

},
after receiving their secret keys, send a message 𝑚 to the
receiver 𝑅;𝑈

𝐿
are successful if the receiver accepts it as legiti-

mate message. Denote by 𝑃
𝑈
(𝐿) the maximum probability of

success of the impersonation attack to the receiver. It can be
expressed as

𝑃
𝑈
(𝐿)

=max
𝑒
𝐿
∈𝐸
𝐿

max
𝑒
𝐿
∈𝑒
𝑈

{
max
𝑚∈𝑀

{𝑒𝑅∈𝐸𝑅 | 𝑒𝑅⊂𝑚, 𝑝 (𝑒
𝑅
, 𝑒
𝑃
) ̸=0}


{𝑒𝑅 ∈ 𝐸

𝑅
| 𝑝 (𝑒
𝑅
, 𝑒
𝑃
) ̸=0}



} .

(3)

Notes.𝑝(𝑒
𝑅
, 𝑒
𝑃
) ̸= 0 implies that any information 𝑠 encoded by

𝑒
𝑇
can be authenticated by 𝑒

𝑅
.

In [2], Desmedt et al. gave two constructions for MRA-
codes based on polynomials and finite geometries, respec-
tively. To construct multisender or multireceiver authenti-
cation by polynomials over finite fields, many researchers
have done much work, for example, [7–9]. There are other

constructions of multisender authentication codes that are
given in [3–6]. The construction of authentication codes
is combinational design in its nature. We know that the
polynomial over finite fields can provide a better algebra
structure and is easy to count. In this paper, we construct
one multisender authentication code from the polynomial
over finite fields. Some parameters and the probabilities of
deceptions of this code are also computed. We realize the
generalization and the application of the similar idea and
method of the paper [7–9].

2. Some Results about Finite Field

Let 𝐹
𝑞
be the finite field with 𝑞 elements, where 𝑞 is a power

of a prime 𝑝 and 𝐹 is a field containing 𝐹
𝑞
; denote by 𝐹

∗

𝑞
be

the nonzero elements set of 𝐹
𝑞
. In this paper, we will use the

following conclusions over finite fields.

Conclusion 1. A generator 𝛼 of 𝐹
∗

𝑞
is called a primitive

element of 𝐹
𝑞
.

Conclusion 2. Let 𝛼 ∈ 𝐹
𝑞
; if some polynomials contain 𝛼 as

their root and their leading coefficient are 1 over 𝐹
𝑞
, then the

polynomial having least degree among all such polynomials
is called a minimal polynomial over 𝐹

𝑞
.

Conclusion 3. Let |𝐹| = 𝑞
𝑛, then 𝐹 is an 𝑛-dimensional

vector space over 𝐹
𝑞
. Let 𝛼 be a primitive element of 𝐹

𝑞

and 𝑔(𝑥) the minimal polynomial about 𝛼 over 𝐹
𝑞
; then

dim𝑔(𝑥) = 𝑛 and 1, 𝛼, 𝛼
2
, . . . , 𝛼

𝑛−1 is a basis of 𝐹. Further-
more, 1, 𝛼, 𝛼2, . . . , 𝛼𝑛−1 is linear independent, and it is equal
to 𝛼, 𝛼

2
, . . . , 𝛼

𝑛−1
, 𝛼
𝑛 (𝛼 is a primitive element, 𝛼 ̸= 0) is also

linear independent; moreover, 𝛼𝑝, 𝛼𝑝
2

, . . . , 𝛼
𝑝
𝑛−1

, 𝛼
𝑝
𝑛

is also
linear independent.

Conclusion 4. Consider (𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
)
𝑚

= (𝑥
1
)
𝑚

+

(𝑥
2
)
𝑚

+ ⋅ ⋅ ⋅ + (𝑥
𝑛
)
𝑚, where 𝑥

𝑖
∈ 𝐹
𝑞
, (1 ≤ 𝑖 ≤ 𝑛) and 𝑚 is a

nonnegative power of character 𝑝 of 𝐹
𝑞
.

Conclusion 5. Let𝑚 ≤ 𝑛. Then, the number of𝑚×𝑛matrices
of rank𝑚 over 𝐹

𝑞
is 𝑞𝑚(𝑚−1)/2∏𝑛

𝑖=𝑛−𝑚+1
(𝑞
𝑖
− 1).

More results about finite fields can be found in [10–12].

3. Construction

Let the polynomial 𝑝
𝑗
(𝑥) = 𝑎

𝑗1
𝑥
𝑝
𝑛

+ 𝑎
𝑗2
𝑥
𝑝
(𝑛−1)

+ ⋅ ⋅ ⋅ +

𝑎
𝑗𝑛
𝑥
𝑝
(1 ≤ 𝑗 ≤ 𝑘), where the coefficient 𝑎

𝑖𝑙
∈ 𝐹
𝑞
,

(1 ≤ 𝑙 ≤ 𝑛), and these vectors by the composition of their
coefficient are linearly independent. The set of source states
𝑆 = 𝐹

𝑞
; the set of 𝑖th transmitter’s encoding rules 𝐸

𝑈
𝑖

=

{𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖

∈ 𝐹
∗

𝑞
} (1 ≤ 𝑖 ≤ 𝑛); the set

of receiver’s encoding rules 𝐸
𝑅

= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼),

where 𝛼 is a primitive element of 𝐹
𝑞
}; the set of 𝑖th transmit-

ter’s tags 𝑇
𝑖
= {𝑡
𝑖
| 𝑡
𝑖
∈ 𝐹
𝑞
} (1 ≤ 𝑖 ≤ 𝑛); the set of receiver’s

tags 𝑇 = {𝑡 | 𝑡 ∈ 𝐹
𝑞
}.
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Define the encoding map 𝑓
𝑖
: 𝑆 × 𝐸

𝑈
𝑖

→ 𝑇
𝑖
, 𝑓
𝑖
(𝑠, 𝑒
𝑈
𝑖

) =

𝑠𝑝
1
(𝑥
𝑖
) + 𝑠
2
𝑝
2
(𝑥
𝑖
) + ⋅ ⋅ ⋅ + 𝑠

𝑘
𝑝
𝑘
(𝑥
𝑖
), 1 ≤ 𝑖 ≤ 𝑛.

The decoding map 𝑓 : 𝑆 × 𝐸
𝑅

→ 𝑇, 𝑓(𝑠, 𝑒
𝑅
) = 𝑠𝑝

1
(𝛼) +

𝑠
2
𝑝
2
(𝛼) + ⋅ ⋅ ⋅ + 𝑠

𝑘
𝑝
𝑘
(𝛼).

The synthesizing map ℎ : 𝑇
1
× 𝑇
2
× ⋅ ⋅ ⋅ × 𝑇

𝑛
→ 𝑇,

ℎ(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) = 𝑡
1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑛
.

The code works as follows.
Assume that 𝑞 is larger than, or equal to, the number of

the possible message and 𝑛 ≤ 𝑞.

3.1. Key Distribution. The key distribution center randomly
generates 𝑘 (𝑘 ≤ 𝑛) polynomials 𝑝

1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑘
(𝑥),

where 𝑝
𝑗
(𝑥) = 𝑎

𝑗1
𝑥
𝑝
𝑛

+ 𝑎
𝑗2
𝑥
𝑝
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝑎
𝑗𝑛
𝑥
𝑝
(1 ≤ 𝑗 ≤ 𝑘),

and make these vectors by composed of their coefficient is
linearly independent, it is equivalent to the column vectors

of the matrix (

𝑎
11
𝑎
21
⋅⋅⋅ 𝑎
𝑘1

𝑎
12
𝑎
22
⋅⋅⋅ 𝑎
𝑘2

...
...
...
...

𝑎
1𝑛
𝑎
2𝑛
⋅⋅⋅ 𝑎
𝑘𝑛

) is linearly independent. He

selects 𝑛 distinct nonzero elements 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
∈ 𝐹
𝑞
again

and makes 𝑥
𝑖
(1 ≤ 𝑖 ≤ 𝑛) secret; then he sends privately

𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
) to the sender 𝑈

𝑖
(1 ≤ 𝑖 ≤ 𝑛). The

key distribution center also randomly chooses a primitive
element 𝛼 of 𝐹

𝑞
satisfying 𝑥

1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
= 𝛼 and sends

𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼) to the receiver 𝑅.

3.2. Broadcast. If the senderswant to send a source state 𝑠 ∈ 𝑆

to the receiver 𝑅, the sender 𝑈
𝑖
calculates 𝑡

𝑖
= 𝑓
𝑖
(𝑠, 𝑒
𝑈
𝑖

) =

𝐴
𝑠
(𝑥
𝑖
) = 𝑠𝑝

1
(𝑥
𝑖
)+𝑠
2
𝑝
2
(𝑥
𝑖
)+ ⋅ ⋅ ⋅+𝑠

𝑘
𝑝
𝑘
(𝑥
𝑖
), 1 ≤ 𝑖 ≤ 𝑛 and then

sends 𝐴
𝑠
(𝑥
𝑖
) = 𝑡
𝑖
to the synthesizer.

3.3. Synthesis. After the synthesizer receives 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
, he

calculates ℎ(𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
) = 𝑡
1
+ 𝑡
2
+ ⋅ ⋅ ⋅ + 𝑡

𝑛
and then sends

𝑚 = (𝑠, 𝑡) to the receiver 𝑅.

3.4. Verification. When the receiver 𝑅 receives 𝑚 = (𝑠, 𝑡), he
calculates 𝑡 = 𝑔(𝑠, 𝑒

𝑅
) = 𝐴

𝑠
(𝛼) = 𝑠𝑝

1
(𝛼) + 𝑠

2
𝑝
2
(𝛼) + ⋅ ⋅ ⋅ +

𝑠
𝑘
𝑝
𝑘
(𝛼). If 𝑡 = 𝑡

, he accepts 𝑡; otherwise, he rejects it.
Next, we will show that the above construction is a well

defined multisender authentication code with arbitration.

Lemma 1. Let 𝐶
𝑖
= (𝑆, 𝐸

𝑃
𝑖

, 𝑇
𝑖
, 𝑓
𝑖
); then the code is an A-code,

1 ≤ 𝑖 ≤ 𝑛.

Proof. (1) For any 𝑒
𝑈
𝑖

∈ 𝐸
𝑈
𝑖

, 𝑠 ∈ 𝑆, because 𝐸
𝑈
𝑖

= {𝑝
1
(𝑥
𝑖
),

𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈ 𝐹
∗

𝑞
}, so 𝑡

𝑖
= 𝑠𝑝
1
(𝑥
𝑖
) + 𝑠
2
𝑝
2
(𝑥
𝑖
) + ⋅ ⋅ ⋅ +

𝑠
𝑘
𝑝
𝑘
(𝑥
𝑖
) ∈ 𝑇
𝑖
= 𝐹
𝑞
. Conversely, for any 𝑡

𝑖
∈ 𝑇
𝑖
, choose 𝑒

𝑈
𝑖

=

{𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈ 𝐹
∗

𝑞
}, where 𝑝

𝑗
(𝑥) = 𝑎

𝑗1
𝑥
𝑝
𝑛

+

𝑎
𝑗2
𝑥
𝑝
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝑎
𝑗𝑛
𝑥
𝑝
(1 ≤ 𝑗 ≤ 𝑘), and let 𝑡

𝑖
= 𝑓
𝑖
(𝑠, 𝑒
𝑈
𝑖

) =

𝑠𝑝
1
(𝑥
𝑖
) + 𝑠
2
𝑝
2
(𝑥
𝑖
) + ⋅ ⋅ ⋅ + 𝑠

𝑘
𝑝
𝑘
(𝑥
𝑖
); it is equivalent to

(𝑥
𝑝
𝑛

𝑖
, 𝑥
𝑝
𝑛−1

𝑖
, . . . , 𝑥

𝑝

𝑖
)(

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

)(

𝑠

𝑠
2

...
𝑠
𝑘

) = 𝑡
𝑖
.

(4)

It follows that

(

(

𝑥
𝑝
𝑛

1
𝑥
𝑝
𝑛−1

1
⋅ ⋅ ⋅ 𝑥
𝑝

1

𝑥
𝑝
n

2
𝑥
𝑝
𝑛−1

2
⋅ ⋅ ⋅ 𝑥
𝑝

2

...
...

...
...

𝑥
𝑝
𝑛

𝑛
𝑥
𝑝
𝑛−1

𝑛
⋅ ⋅ ⋅ 𝑥
𝑝

𝑛

)

)

× (

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

)(

𝑠

𝑠
2

...
𝑠
𝑘

) = (

𝑡
1

𝑡
2

...
𝑡
𝑛

).

(5)

Denote

𝐴 = (

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

),

𝑋 = (

𝑥
𝑝
𝑛

1
𝑥
𝑝
𝑛−1

1
⋅ ⋅ ⋅ 𝑥
𝑝

1

𝑥
𝑝
𝑛

2
𝑥
𝑝
𝑛−1

2
⋅ ⋅ ⋅ 𝑥
𝑝

2

...
...

...
...

𝑥
𝑝
𝑛

𝑛
𝑥
𝑝
𝑛−1

𝑛
⋅ ⋅ ⋅ 𝑥
𝑝

𝑛

),

𝑆 = (

𝑠

𝑠
2

...
𝑠
𝑘

), 𝑡 = (

𝑡
1

𝑡
2

...
𝑡
𝑛

).

(6)

The above linear equation is equivalent to 𝑋𝐴𝑆 = 𝑡,
because the column vectors of 𝐴 are linearly independent,
𝑋 is equivalent to a Vandermonde matrix, and 𝑋 is inverse;
therefore, the above linear equation has a unique solution, so
𝑠 is only defined; that is, 𝑓

𝑖
(1 ≤ 𝑖 ≤ 𝑛) is a surjection.

(2) If 𝑠 ∈ 𝑆 is another source state satisfying 𝑠𝑝
1
(𝑥
𝑖
) +

𝑠
2
𝑝
2
(𝑥
𝑖
)+⋅ ⋅ ⋅+𝑠

𝑘
𝑝
𝑘
(𝑥
𝑖
) = 𝑠

𝑝
1
(𝑥
𝑖
)+𝑠
2
𝑝
2
(𝑥
𝑖
)+⋅ ⋅ ⋅+𝑠

𝑘
𝑝
𝑘
(𝑥
𝑖
) =

𝑡
𝑖
, and it is equivalent to (𝑠 − 𝑠


)𝑝
1
(𝑥
𝑖
) + (𝑠
2
− 𝑠
2
)𝑝
2
(𝑥
𝑖
) + ⋅ ⋅ ⋅ +

(𝑠
𝑘
− 𝑠
𝑘
)𝑝
𝑘
(𝑥
𝑖
) = 0, then

(𝑥
𝑝
𝑛

𝑖
, 𝑥
𝑝
𝑛−1

𝑖
, . . . , 𝑥

𝑝

𝑖
)

× (

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

)(

𝑠 − 𝑠


𝑠
2
− 𝑠
2

...
𝑠
𝑘
− 𝑠
𝑘

) = 0.

(7)
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Thus

(

(

𝑥
𝑝
𝑛

1
𝑥
𝑝
𝑛−1

1
⋅ ⋅ ⋅ 𝑥
𝑝

1

𝑥
𝑝
n

2
𝑥
𝑝
𝑛−1

2
⋅ ⋅ ⋅ 𝑥
𝑝

2

...
...

...
...

𝑥
𝑝
𝑛

𝑛
𝑥
𝑝
𝑛−1

𝑛
⋅ ⋅ ⋅ 𝑥
𝑝

𝑛

)

)

× (

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

)(

𝑠 − 𝑠


𝑠
2
− 𝑠
2

...
𝑠
𝑘
− 𝑠
𝑘

) = (

0

0

...
0

).

(8)

Similar to (1), we know that the homogeneous linear equation
𝑋𝐴𝑆 = 0 has a unique solution; that is, there is only zero
solution, so 𝑠 = 𝑠

. So, 𝑠 is the unique source state determined
by 𝑒
𝑈
𝑖

and 𝑡
𝑖
; thus, 𝐶

𝑖
(1 ≤ 𝑖 ≤ 𝑛) is an A-code.

Lemma 2. Let 𝐶 = (𝑆, 𝐸
𝑅
, 𝑇, 𝑔); then the code is an A-code.

Proof. (1) For any 𝑠 ∈ 𝑆, 𝑒
𝑅
∈ 𝐸
𝑅
, from the definition of 𝑒

𝑅
,

we assume that 𝐸
𝑅

= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼), where 𝛼 is a

primitive element of 𝐹
𝑞
}, 𝑔(𝑠, 𝑒

𝑅
) = 𝑠𝑝

1
(𝛼) + 𝑠

2
𝑝
2
(𝛼) + ⋅ ⋅ ⋅ +

𝑠
𝑘
𝑝
𝑘
(𝛼) ∈ 𝑇 = 𝐹

𝑞
; on the other hand, for any 𝑡 ∈ 𝑇, choose

𝑒
𝑅
= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼), where 𝛼 is a primitive element

of 𝐹
𝑞
}, 𝑔(𝑠, 𝑒

𝑅
) = 𝑠𝑝

1
(𝛼) + 𝑠

2
𝑝
2
(𝛼) + ⋅ ⋅ ⋅ + 𝑠

𝑘
𝑝
𝑘
(𝛼) = 𝑡; it is

equivalent to

(𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, ⋅ ⋅ ⋅ , 𝛼
𝑝
)

× (

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

)(

𝑠

𝑠
2

...
𝑠
𝑘

) = 𝑡,

𝐴 = (

𝑎
11

𝑎
21

⋅ ⋅ ⋅ 𝑎
𝑘1

𝑎
12

𝑎
22

⋅ ⋅ ⋅ 𝑎
𝑘2

...
...

...
...

𝑎
1𝑛

𝑎
2𝑛

⋅ ⋅ ⋅ 𝑎
𝑘𝑛

);

(9)

that is, (𝛼𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝
)𝐴(

𝑠

𝑠
2

...
𝑠
𝑘

) = 𝑡. From Conclusion

3, we know that (𝛼𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝
) is linearly independent

and the column vectors of 𝐴 are also linearly independent;
therefore, the above linear equation has unique solution, so 𝑠

is only defined; that is, 𝑔 is a surjection.

(2) If 𝑠 is another source state satisfying 𝑡 = 𝑔(𝑠

, 𝑒
𝑅
), then

(𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝
)𝐴(

𝑠


𝑠
2

...
𝑠
𝑘

)

= (𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝
)𝐴(

𝑠

𝑠
2

...
𝑠
𝑘

);

(10)

that is, (𝛼𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝
)𝐴(

[
[

[

𝑠


𝑠
2

...
𝑠
𝑘

]
]

]

− [

[

𝑠

𝑠
2

...
𝑠
𝑘

]

]

) = 0. Sim-

ilar to (1), we get that the homogeneous linear equation
(𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝
)𝐴(𝑆

− 𝑆) = 0 has a unique solution; that

is, there is only zero solution, so 𝑆 = 𝑆
; that is, 𝑠 = 𝑠

. So,
𝑠 is the unique source state determined by 𝑒

𝑅
and 𝑡; thus,

𝐶 = (𝑆, 𝐸
𝑅
, 𝑇, 𝑔) is an A-code.

At the same time, for any valid𝑚 = (𝑠, 𝑡), we have known
that 𝛼 = 𝑥

1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
, and it follows that 𝑡 = 𝑠𝑝

1
(𝛼) +

𝑠
2
𝑝
2
(𝛼)+⋅ ⋅ ⋅+𝑠

𝑘
𝑝
𝑘
(𝛼) = 𝑠𝑝

1
(𝑥
1
+𝑥
2
+⋅ ⋅ ⋅+𝑥

𝑛
)+𝑠
2
𝑝
2
(𝑥
1
+𝑥
2
+

⋅ ⋅ ⋅ + 𝑥
𝑛
) + ⋅ ⋅ ⋅ + 𝑠

𝑘
𝑝
𝑘
(𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
). We also have known

that 𝑝
𝑗
(𝑥) = 𝑎

𝑗1
𝑥
𝑝
𝑛

+𝑎
𝑗2
𝑥
𝑝
(𝑛−1)

+ ⋅ ⋅ ⋅ + 𝑎
𝑗𝑛
𝑥
𝑝
(1 ≤ 𝑗 ≤ 𝑘); from

Conclusion 4, (𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
)
𝑝
𝑚

= (𝑥
1
)
𝑝
𝑚

+ (𝑥
2
)
𝑝
𝑚

+ ⋅ ⋅ ⋅ +

(𝑥
𝑛
)
𝑝
𝑚

, where𝑚 is a nonnegative power of character 𝑝 of 𝐹
𝑞
,

andwe get𝑝
𝑗
(𝑥
1
+𝑥
2
+⋅ ⋅ ⋅+𝑥

𝑛
) = 𝑝
𝑗
(𝑥
1
)+𝑝
𝑗
(𝑥
2
)+⋅ ⋅ ⋅+𝑝

𝑗
(𝑥
𝑛
);

therefore, 𝑡 = 𝑠𝑝
1
(𝛼) + 𝑠

2
𝑝
2
(𝛼) + ⋅ ⋅ ⋅ + 𝑠

𝑘
𝑝
𝑘
(𝛼) = (𝑠𝑝

1
(𝑥
1
) +

𝑠
2
𝑝
2
(𝑥
1
)+⋅ ⋅ ⋅+𝑠

𝑘
𝑝
𝑘
(𝑥
1
))+(𝑠𝑝

1
(𝑥
2
)+𝑠
2
𝑝
2
(𝑥
2
)+⋅ ⋅ ⋅+𝑠

𝑘
𝑝
𝑘
(𝑥
2
))+

⋅ ⋅ ⋅+(𝑠𝑝
1
(𝑥
𝑛
)+𝑠
2
𝑝
2
(𝑥
𝑛
)+ ⋅ ⋅ ⋅+𝑠

𝑘
𝑝
𝑘
(𝑥
𝑛
)) = 𝑡
1
+𝑡
2
+⋅ ⋅ ⋅+𝑡

𝑛
= 𝑡,

and the receiver 𝑅 accepts𝑚.

From Lemmas 1 and 2, we know that such construction of
multisender authentication codes is reasonable and there are
𝑛 senders in this system. Next, we compute the parameters
of this code and the maximum probability of success in
impersonation attack and substitution attack by the group of
senders.

Theorem 3. Some parameters of this construction are
|𝑆| = 𝑞, |𝐸

𝑈
𝑖

| = [𝑞
𝑘(𝑘−1)/2

∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖
− 1)] (

𝑞−1

1
) =

[𝑞
𝑘(𝑘−1)/2

∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖
− 1)](𝑞 − 1) (1 ≤ 𝑖 ≤ 𝑛), |𝑇

𝑖
| = 𝑞 (1 ≤

𝑖 ≤ 𝑛), |𝐸
𝑅
| = [𝑞

𝑘(𝑘−1)/2
∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖
− 1)]𝜑(𝑞 − 1), |𝑇| = 𝑞.

Where 𝜑(𝑞 − 1) is the 𝐸𝑢𝑙𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 of 𝑞 − 1, it represents
the number of primitive element of 𝐹

𝑞
here.

Proof. For |𝑆| = 𝑞, |𝑇
𝑖
| = 𝑞, and |𝑇| = 𝑞, the results

are straightforward. For𝐸
𝑈
𝑖

, because𝐸
𝑈
𝑖

={𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . ,

𝑝
𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈ 𝐹
∗

𝑞
}, where 𝑝

𝑗
(𝑥) = 𝑎

𝑗1
𝑥
𝑝
𝑛

+ 𝑎
𝑗2
𝑥
𝑝
(𝑛−1)

+ ⋅ ⋅ ⋅ +

𝑎
𝑗𝑛
𝑥
𝑝
(1 ≤ 𝑗 ≤ 𝑘), and these vectors by the composition of

their coefficient are linearly independent, it is equivalent to

the columns of 𝐴 = (

𝑎
11
𝑎
21
⋅⋅⋅ 𝑎
𝑘1

𝑎
12
𝑎
22
⋅⋅⋅ 𝑎
𝑘2

...
...
...
...

𝑎
1𝑛
𝑎
2𝑛
⋅⋅⋅ 𝑎
𝑘𝑛

) is linear independent.
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From Conclusion 5, we can conclude that the number of 𝐴
satisfying the condition is 𝑞

𝑘(𝑘−1)/2
∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖
− 1). On the

other hand, the number of distinct nonzero elements 𝑥
𝑖
(1 ≤

𝑖 ≤ 𝑛) in 𝐹
𝑞
is ( 𝑞−1
1

) = 𝑞 − 1, so |𝐸
𝑈
𝑖

| = [𝑞
𝑘(𝑘−1)/2

∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖
−

1)](𝑞 − 1). For 𝐸
𝑅
, 𝐸
𝑅

= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼), where 𝛼

is a primitive element of 𝐹
𝑞
}. For 𝛼, from Conclusion 1, a

generator of𝐹∗
𝑞
is called a primitive element of𝐹

𝑞
, |𝐹∗
𝑞
| = 𝑞−1;

by the theory of the group, we know that the number of
generator of 𝐹∗

𝑞
is 𝜑(𝑞−1); that is, the number of 𝛼 is 𝜑(𝑞−1).

For 𝑝
1
(𝑥), 𝑝
2
(𝑥), . . . , 𝑝

𝑘
(𝑥). From above, we have confirmed

that the number of these polynomials is 𝑞𝑘(𝑘−1)/2∏𝑛
𝑖=𝑛−𝑘+1

(𝑞
𝑖
−

1); therefore, |𝐸
𝑅
| = [𝑞

𝑘(𝑘−1)/2
∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖
− 1)]𝜑(𝑞 − 1).

Lemma 4. For any 𝑚 ∈ 𝑀, the number of 𝑒
𝑅
contained 𝑚 is

𝜑(𝑞 − 1).

Proof. Let 𝑚 = (𝑠, 𝑡) ∈ 𝑀, 𝑒
𝑅

= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼),

where 𝛼 is a primitive element of 𝐹
𝑞
} ∈ 𝐸

𝑅
. If 𝑒
𝑅

⊂ 𝑚,
then 𝑠𝑝

1
(𝛼) + 𝑠

2
𝑝
2
(𝛼) + ⋅ ⋅ ⋅ + 𝑠

𝑘
𝑝
𝑘
(𝛼) = 𝑡 ⇔ (𝛼

𝑝
𝑛

, 𝛼
𝑝
𝑛−1

,

. . . , 𝛼
𝑝
)𝐴(

𝑠

𝑠
2

...
𝑠
𝑘

) = 𝑡. For any 𝛼, suppose that there is

another 𝐴
 such that (𝛼

𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝
)𝐴

(

𝑠

𝑠
2

...
𝑠
𝑘

) = 𝑡,

then (𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝
)(𝐴 − 𝐴


)(

𝑠

𝑠
2

...
𝑠
𝑘

) = 0, because

𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝 is linearly independent, so (𝐴−𝐴


)(

𝑠

𝑠
2

...
𝑠
𝑘

) =

0, but (

𝑠

𝑠
2

...
𝑠
𝑘

) is arbitrarily; therefore, 𝐴 − 𝐴


= 0; that is,

𝐴 = 𝐴
, and it follows that 𝐴 is only determined by 𝛼.

Therefore, as 𝛼 ∈ 𝐸
𝑅
, for any given 𝑠 and 𝑡, the number of

𝑒
𝑅
contained in𝑚 is 𝜑(𝑞 − 1).

Lemma 5. For any𝑚 = (𝑠, 𝑡) ∈ 𝑀 and𝑚

= (𝑠

, 𝑡

) ∈ 𝑀 with

𝑠 ̸= 𝑠
, the number of 𝑒

𝑅
contained𝑚 and𝑚

 is 1.

Proof. Assume that 𝑒
𝑅

= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼), where

𝛼 is a primitive element of 𝐹
𝑞
} ∈ 𝐸

𝑅
. If 𝑒
𝑅

⊂ 𝑚 and
𝑒
𝑅

⊂ 𝑚
, then 𝑠𝑝

1
(𝛼) + 𝑠

2
𝑝
2
(𝛼) + ⋅ ⋅ ⋅ + 𝑠

𝑘
𝑝
𝑘
(𝛼) = 𝑡 ⇔

(𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝
)𝐴(

𝑠

𝑠
2

...
𝑠
𝑘

) = 𝑡, 𝑠𝑝
1
(𝛼) + 𝑠

2
𝑝
2
(𝛼) + ⋅ ⋅ ⋅ +

𝑠
𝑘
𝑝
𝑘
(𝛼) = 𝑡 ⇔ (𝛼

𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝
)𝐴(

𝑠


𝑠
2

...
𝑠
𝑘

) = 𝑡. It is

equivalent to (𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝
)𝐴(

𝑠−𝑠


𝑠
2
−𝑠
2

...
𝑠
𝑘
−𝑠
𝑘

) = 𝑡 − 𝑡
 because

𝑠 ̸= 𝑠
, so 𝑡 ̸= 𝑡

; otherwise, we assume that 𝑡 = 𝑡
 and

since 𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝 and the column vectors of 𝐴 both

are linearly independent, it forces that 𝑠 = 𝑠
; this is a

contradiction. Therefore, we get

(𝑡 − 𝑡

)
−1

[
[
[
[

[

(𝛼
𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝
)𝐴 (

𝑠 − 𝑠


𝑠
2
− 𝑠
2

...
𝑠
𝑘
− 𝑠
𝑘

)

]
]
]
]

]

= 1,

(∗)

since 𝑡, 𝑡
 is given, (𝑡 − 𝑡


)
−1 is unique, by equation (∗), for

any given 𝑠, 𝑠
 and 𝑡, 𝑡

, we obtain that (𝛼𝑝
𝑛

, 𝛼
𝑝
𝑛−1

, . . . , 𝛼
𝑝
)𝐴 is

only determined; thus, the number of 𝑒
𝑅
contained𝑚 and𝑚



is 1.

Lemma6. For any fixed 𝑒
𝑈
= {𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈

𝐹
∗

𝑞
} (1 ≤ 𝑖 ≤ 𝑛) containing a given 𝑒

𝐿
, then the number of 𝑒

𝑅

which is incidence with 𝑒
𝑈
is 𝜑(𝑞 − 1).

Proof. For any fixed 𝑒
𝑈

= {𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈

𝐹
∗

𝑞
} (1 ≤ 𝑖 ≤ 𝑛) containing a given 𝑒

𝐿
, we assume that

𝑝
𝑗
(𝑥
𝑖
) = 𝑎
𝑗1
𝑥
𝑝
𝑛

𝑖
+𝑎
𝑗2
𝑥
𝑝
(𝑛−1)

𝑖
+⋅ ⋅ ⋅+𝑎

𝑗𝑛
𝑥
𝑝

𝑖
(1 ≤ 𝑗 ≤ 𝑘, 1 ≤ 𝑖 ≤ 𝑛),

𝑒
𝑅
= {𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼), where 𝛼 is a primitive element

of 𝐹
𝑞
}. From the definitions of 𝑒

𝑅
and 𝑒
𝑈
and Conclusion 4,

we can conclude that 𝑒
𝑅
is incidence with 𝑒

𝑈
if and only if

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
= 𝛼. For any 𝛼, since Rank(1, 1, . . . , 1) =

Rank(1, 1, . . . , 1, 𝛼) = 1 < 𝑛, so the equation𝑥
1
+𝑥
2
+⋅ ⋅ ⋅+𝑥

𝑛
=

𝛼 always has a solution. From the proof of Theorem 3, we
know the number of 𝑒

𝑅
which is incident with 𝑒

𝑈
(i.e., the

number of all 𝐸
𝑅
) is [𝑞𝑘(𝑘−1)/2∏𝑛

𝑖=𝑛−𝑘+1
(𝑞
𝑖
− 1)] 𝜑(𝑞 − 1).

Lemma 7. For any fixed 𝑒
𝑈
= {𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈

𝐹
∗

𝑞
} (1 ≤ 𝑖 ≤ 𝑛) containing a given 𝑒

𝐿
and𝑚 = (𝑠, 𝑡), the num-

ber of 𝑒
𝑅
which is incidence with 𝑒

𝑈
and contained in𝑚 is 1.

Proof. For any 𝑠 ∈ 𝑆, 𝑒
𝑅

∈ 𝐸
𝑅
, we assume that 𝑒

𝑅
=

{𝑝
1
(𝛼), 𝑝
2
(𝛼), . . . , 𝑝

𝑘
(𝛼), where 𝛼 is a primitive element

of 𝐹
𝑞
}. Similar to Lemma 6, for any fixed 𝑒

𝑈
=

{𝑝
1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
), 𝑥
𝑖
∈ 𝐹
∗

𝑞
}, (1 ≤ 𝑖 ≤ 𝑛) containing

a given 𝑒
𝐿
, we have known that 𝑒

𝑅
is incident with 𝑒

𝑈
if and

only if

𝑥
1
+ 𝑥
2
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
= 𝛼. (11)

Again, with 𝑒
𝑅
⊂ 𝑚, we can get

𝑠𝑝
1
(𝛼) + 𝑠

2
𝑝
2
(𝛼) + ⋅ ⋅ ⋅ + 𝑠

𝑘
𝑝
𝑘
(𝛼) = 𝑡. (12)

By (11) and (12) and the property of 𝑝
𝑗
(𝑥) (1 ≤ 𝑗 ≤ 𝑘), we

have the following conclusion:

𝑠𝑝
1
(

𝑛

∑

𝑖=1

𝑥
𝑖
) + 𝑠
2
𝑝
2
(

𝑛

∑

𝑖=1

𝑥
𝑖
) + ⋅ ⋅ ⋅ + 𝑠

𝑘
𝑝
𝑘
(

𝑛

∑

𝑖=1

𝑥
𝑖
)

= 𝑡 ⇐⇒ (𝑝
1
(

𝑛

∑

𝑖=1

𝑥
𝑖
) , 𝑝
2
(

𝑛

∑

𝑖=1

𝑥
𝑖
) , . . . , 𝑝

𝑘
(

𝑛

∑

𝑖=1

𝑥
𝑖
))
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× (

𝑠

𝑠
2

...
𝑠
𝑘

)

= 𝑡 ⇐⇒ (

𝑛

∑

𝑖=1

𝑝
1
(𝑥
𝑖
) ,

𝑛

∑

𝑖=1

𝑝
2
(𝑥
𝑖
) , . . . ,

𝑛

∑

𝑖=1

𝑝
𝑘
(𝑥
𝑖
))(

𝑠

s2
...
𝑠
𝑘

)

=𝑡⇐⇒( (

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑛

, (

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑛−1

, . . . , (

𝑛

∑

𝑖=1

𝑥
𝑖
))𝐴(

𝑠

𝑠
2

...
𝑠
𝑘

)

= 𝑡 ⇐⇒ [(

𝑛

∑

𝑖=1

𝑝
1
(𝑥
𝑖
) ,

𝑛

∑

𝑖=1

𝑝
2
(𝑥
𝑖
) , . . . ,

𝑛

∑

𝑖=1

𝑝
𝑘
(𝑥
𝑖
))

−((

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑛

, (

𝑛

∑

𝑖=1

𝑥
𝑖
)

𝑛−1

, . . . , (

𝑛

∑

𝑖=1

𝑥
𝑖
))𝐴]

× (

𝑠

𝑠
2

...
𝑠
𝑘

) = 0,

(13)

because 𝑠 is any given. Similar to the proof of Lemma 4,
we can get (∑

𝑛

𝑖=1
𝑝
1
(𝑥
𝑖
), ∑
𝑛

𝑖=1
𝑝
2
(𝑥
𝑖
), . . . , ∑

𝑛

𝑖=1
𝑝
𝑘
(𝑥
𝑖
)) −

((∑
𝑛

𝑖=1
𝑥
𝑖
)
𝑛,(∑𝑛
𝑖=1

𝑥
𝑖
)
𝑛−1

, . . . ,(∑
𝑛

𝑖=1
𝑥
𝑖
))𝐴=0; that is, ((∑𝑛

𝑖=1
𝑥
𝑖
)
𝑛

,

(∑
𝑛

𝑖=1
𝑥
𝑖
)
𝑛−1

, . . . , (∑
𝑛

𝑖=1
𝑥
𝑖
))𝐴 = (∑

𝑛

𝑖=1
𝑝
1
(𝑥
𝑖
), ∑
𝑛

𝑖=1
𝑝
2
(𝑥
𝑖
), . . . ,

∑
𝑛

𝑖=1
𝑝
𝑘
(𝑥
𝑖
)), but 𝑝

1
(𝑥
𝑖
), 𝑝
2
(𝑥
𝑖
), . . . , 𝑝

𝑘
(𝑥
𝑖
) and 𝑥

𝑖
(1 ≤ 𝑖 ≤ 𝑛)

also are fixed; thus, 𝛼 and 𝐴are only determined, so the
number of 𝑒

𝑅
which is incident with 𝑒

𝑈
and contained in 𝑚

is 1.

Theorem 8. In the constructed multisender authentication
codes, if the senders’ encoding rules and the receiver’s decoding
rules are chosen according to a uniform probability distribu-
tion, then the largest probabilities of success for different types
of deceptions, respectively, are

𝑃
𝐼
=

1

𝑞𝑘(𝑘−1)/2∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞𝑖 − 1)

,

𝑃
𝑆
=

1

𝜑 (𝑞 − 1)
,

𝑃
𝑈
(𝐿) =

1

[𝑞𝑘(𝑘−1)/2∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞𝑖 − 1)] 𝜑 (𝑞 − 1)

.

(14)

Proof. By Theorem 3 and Lemma 4, we get

𝑃
𝐼
= max
𝑚∈𝑀

{

{𝑒𝑅 ∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑚}


𝐸𝑅



}

=
𝜑 (𝑞 − 1)

[𝑞𝑘(𝑘−1)/2∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞𝑖 − 1)] 𝜑 (𝑞 − 1)

=
1

𝑞𝑘(𝑘−1)/2∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞𝑖 − 1)

.

(15)

By Lemmas 4 and 5, we get

𝑃
𝑆
= max
𝑚∈𝑀

{

max
𝑚

̸= 𝑚∈𝑀


{𝑒
𝑅
∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑚,𝑚


}


{𝑒𝑅 ∈ 𝐸
𝑅
| 𝑒
𝑅
⊂ 𝑚}



}

=
1

𝜑 (𝑞 − 1)
.

(16)

By Lemmas 6 and 7, we get

𝑃
𝑈
(𝐿)

=max
𝑒
𝐿
∈𝐸
𝐿

max
𝑒
𝐿
∈𝑒
𝑈

{
max
𝑚∈𝑀

{𝑒𝑅 ∈ 𝐸
𝑅
| 𝑒
𝑅
⊂𝑚, 𝑝 (𝑒

𝑅
, 𝑒
𝑃
) ̸=0}


{𝑒𝑅 ∈ 𝐸

𝑅
| 𝑝 (𝑒
𝑅
, 𝑒
𝑃
) ̸=0}



}

=
1

[𝑞𝑘(𝑘−1)/2∏
𝑛

𝑖=𝑛−𝑘+1
(𝑞𝑖 − 1)] 𝜑 (𝑞 − 1)

.

(17)
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