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Stabilization of a class of systemswith time delay is studied using adaptive control.With the help of the “error to error” technique and
the separated “descriptor form” technique, the memory state-feedback controller is designed.The adaptive controller designed can
guarantee asymptotical stability of the closed-loop system via a suitable Lyapunov-Krasovskii functional. Some sufficient conditions
are derived for the stabilization together with the linear matrix inequality (LMI) design approach. Finally, the effectiveness of the
proposed control design methodology is demonstrated in numerical simulations.

1. Introduction

Time delay is one of the instability sources for various systems
in practice. With the aid of memoryless state-feedback con-
trollers, Choi and Chung [1] extended the Riccati equation
approach to uncertain dynamic systems with time-varying
delay in both the system state and control. Since that,
considerable attention has been devoted to the problem of
delay-dependent stability analysis and controller design for
time-delay systems; see, for example, Fridman [2, 3], where
the functional was based on the “descriptor form,” Liu et al.
[4] and He et al. [5], where free weighting matrix technique
and Leibniz-Newton formula were utilized to reduce the
conservativeness, Park and Jeong [6], where delay-upper-
bounded state was exploited, and Tian and Zhou [7], where
a less conservative conclusion was investigated on neural
networks by integral inequality and taking delay upper bound
into account. By constructing thewhole state-space trajectory
solution, De la Sen [8] investigated the stabilization problems
for time-delay time-invariant systems and switched dynamic
systems with incommensurate point delays. Some robust
controllers for uncertain time-delay systems can also be seen
in Tsai et al. [9], Han [10], Chen et al. [11], and Zheng et al.
[12], where some different kinds of functional were employed
to design controllers. Apparently, the memory state-feedback
controller is less conservative than the memoryless one [4],

as the former can take delayed states into account. However,
the memory control results in the mentioned results require
precise information of the time delay; that is, the time-delay
parameter must be known exactly. If this crucial piece of
information is not available, the memory control schemes
developed so far cannot be implemented. For these papers
mentioned above, only stability analysis can be pursued for
systems with unknown time-delay parameter. To the best
of the authors’ knowledge, few results have been reported
to design memory controllers with unknown time-delay
parameter. Jiang et al. [13] provided a type of memory
controller with adaptation to the unknown delay parameter;
however, the estimate value of the unknown delay was limited
to be larger than its real value, which results in the adaptive
regulation being unavailable in practice. The bound of the
unknown delay was not used to construct the adaptive con-
troller, which is an important factor in leading conservatism.
In addition, the LMIs seem unsolvable. Specifically, unknown
matrixes like 𝑃 and 𝑃−1 exist in the same LMI. On the other
hand, the aforementioned results have not considered the
time-delay effect which is actually very common in input.The
problem of memory state-feedback controllers for systems
with control input delay and available adaptation to unknown
time-delay parameter remains open, which motivates the
research in this paper.
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The main contributions of this paper can be illustrated
in the following two aspects: (1) for the unknown time-delay
parameter, a new adaptive strategy design method is pro-
posed, considering both the current estimate value and
the bound of the time-delay; (2) this work simultaneously
constructs a memory controller for a class of systems, which
are delayed in the system state, control input, and system
matrix.

This paper is organized as follows: in Section 2, we
first formulate the problem of the memory controller and
adaptive regulation for a class of time-delay systems of
a particularly complex nature, since the unknown delay
parameter exists in the system state, control input, and system
matrix. A lemma is provided to introduce the novel kind
of adaptive idea, which can be described as the error to
error adaptive technique. In Section 3, for the stabilization
problem, by using the function based on “descriptor form”
and the technique of separation, the memory controller and
the adaptive regulation for the unknown delay parameter can
be obtained despite the delayed control input. The bound of
the unknown delay parameter is considered in the adaptive
strategy, which guarantees the less conservatism. The esti-
mate value is not limited to be larger than the real value;
what is more is that it is contained in the memory controller,
and thus the conservatism can be reduced further. All the
necessary matrixes can be obtained by calculating a solvable
LMI. In Section 4, a numerical example is presented to
demonstrate the effectiveness of the design method. Finally,
several formulations are collected in the appendices.

2. Problem Statements

Consider the following class of time-delay systems as follows:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐴 (𝜏
1

) 𝑥 (𝑡 − 𝜏
1

) + 𝐵𝑢 (𝑡 − 𝜏
2

) ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−max (𝜏
1

, 𝜏
2

) , 0] ,

(1)

where 𝑥(𝑡) ∈ 𝑅𝑛 is the state vector and 𝑢(𝑡) ∈ 𝑅𝑛1 is the
control input vector. 𝐴, 𝐵 are known constant matrices with
appropriate dimensions, and 𝐴(𝜏

1

) is the matrix depending
on 𝜏
1

. 𝜏
2

≥ 0 is the time delay in control input with known
value. 𝜏

1

≥ 0 is the time delay in system state which is
not known exactly, but the upper bound 𝜏∗

1

and the lower
bound 𝜏

1∗

are available. 𝜙(𝑡) ∈ 𝐶[−𝜏, 0] is a given continuous
vector-valued initial function of system (1). Moreover, there
exists a positive constant ℎ

1

such that 0 < 𝜏∗
1

≤ ℎ
1

≤ 𝜏
1∗

holds. Generally, the value ℎ
1

can be chosen as themean value
between 𝜏∗

1

and 𝜏
1∗

; that is, ℎ
1

= (𝜏
∗

1

+ 𝜏
1∗

)/2.

Assumption 1. The system matrix 𝐴(𝜏
1

) is composed of a
constant matrix 𝐴

1

and a matrix 𝐴
2

(𝜏
1

) which is linear with
𝜏
1

; that is,

𝐴 (𝜏
1

) = 𝐴
1

+ 𝜏
1

𝐴
2

(𝜏
1

) . (2)

Remark 2. The system matrix 𝐴(𝜏
1

) is a function of the state
delay, which can be seen in the model of measuring intensity
for nuclear physics system obtained by [14]. So the problem

of stabilization for this type of systems is of some practical
significance, and the difficulty in constructing controllers is
obvious.

We consider the following feedback controller withmem-
ory, with all time delays known:

𝑢 (𝑡) = 𝐾
1

𝑥 (𝑡) + 𝐾
2

𝑥 (𝑡 − 𝜏
1

) + 𝜏
1

𝐾
3

𝑥 (𝑡 − 𝜏
1

) . (3)

If the time-delay constant 𝜏
1

of system (1) is not known
exactly, which has been introduced above, our main result
on memory feedback controller with adaptation to delay
parameter for system (1) is presented as follows:

𝑢 (𝑡) = 𝐾
1

𝑥 (𝑡) + 𝐾
2

𝑥 (𝑡 − 𝑎
1

𝜏
1

(𝑡) − (𝜏
1

(𝑡) − ℎ
1

)
2

)

+ (𝑎
1

𝜏
1

(𝑡) + (𝜏
1

(𝑡) − ℎ
1

)
2

)

× 𝐾
3

𝑥 (𝑡 − 𝑎
1

𝜏
1

(𝑡) − (𝜏
1

(𝑡) − ℎ
1

)
2

) ,

(4)

where 𝜏
1

(𝑡) is the estimate value of the unknown delay
parameter 𝜏

1

, satisfying ̇̂𝜏
1

(𝑡)[2(𝜏
1

(𝑡) − ℎ
1

) + 𝑎
1

] ≤ 0, for all
𝑡 ≥ 0. By using past state information, (𝑎

1

𝜏
1

(𝑡) + (𝜏
1

(𝑡) −

ℎ
1

)
2

)𝐾
3

𝑥(𝑡 − 𝑎
1

𝜏
1

(𝑡) − (𝜏
1

(𝑡) − ℎ
1

)
2

) in the controller (4) is
designed for 𝜏

1

𝐴
2

(𝜏
1

) in system (1); thus the controller allows
for the property of the time-delay system.The constants 𝑎

1

, ℎ
1

and the matrices𝐾
𝑖

(𝑖 = 1, 2, 3) wait to be determined.
The objective of this paper is to stabilize the system (1)

by using the controller (4), obtaining the adaptation law for
𝜏
1

(𝑡), which is everywhere time differentiable, at the same
time. In order to prove our results, we introduce the following
lemmas.

Lemma 3 (see [15]). Given matrices 𝑋 and 𝑌 with the
appropriate dimensions,

𝑋
𝑇

𝑌 + 𝑌
𝑇

𝑋 ≤ 𝑋
𝑇

𝑇𝑋 + 𝑌
𝑇

𝑇
−1

𝑌, ∀𝑇 > 0. (5)

Lemma 4. Considering the following gain adaptive law for the
estimator

̇̂𝜏
1

(𝑡) = − [2 (𝜏
1

(𝑡) − ℎ
1

) + 𝑎
1

]𝑚 (𝑡) , (6)

where 𝑎
1

and ℎ
1

are positive constants and𝑚(𝑡) ≥ 0 is a positive
derivative function, which will be determined later. If we choose
𝑎
1

and ℎ
1

with the following equations:

ℎ
1

= √ℎ
1

+ ℎ
2

1

, 𝑎
1

= 2(√ℎ
1

+ ℎ
2

1

− ℎ
1

) , (7)

then 𝜏
1

(𝑡) is bounded, and 𝑎
1

𝜏
1

(𝑡) + (𝜏
1

(𝑡) − ℎ
1

)
2 can be

bounded with ℎ
1

.

Proof. From (6), it is obvious that 𝜏
1

(𝑡) satisfies ̇̂𝜏
1

(𝑡)[2(𝜏
1

(𝑡)−

ℎ
1

) + 𝑎
1

] ≤ 0, for all 𝑡 ≥ 0.
Let us prove the boundedness of 𝜏

1

(𝑡), for which a
Lyapunov function can be constructed as 𝑉(𝜏

1

(𝑡)) = 𝜏
2

1

(𝑡)/2.
The time derivative of 𝑉(𝜏

1

(𝑡)) along the adaptive strategy of
(6) is

̇
𝑉 (𝜏
1

(𝑡)) = −𝜏
1

(𝑡) [2 (𝜏
1

(𝑡) − ℎ
1

) + 𝑎
1

]𝑚 (𝑡) . (8)
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If 𝜏
1

(𝑡) > (2ℎ
1

− 𝑎
1

)/2, it results in
̇
𝑉 (𝜏
1

(𝑡)) < 𝜏
1

(𝑡)𝑚 (𝑡) ≤ 0, (9)

which implies the boundedness of 𝜏
1

(𝑡) at (2ℎ
1

− 𝑎
1

)/2. If
𝜏
1

(𝑡) ≤ (2ℎ
1

− 𝑎
1

)/2, together with (8), we have
̇
𝑉 (𝜏
1

(𝑡)) ≥ 𝜏
1

(𝑡)𝑚 (𝑡) ≥ 0. (10)

Therefore, 𝜏
1

(𝑡) is increased only when it is less than (2ℎ
1

−

𝑎
1

)/2. Once 𝜏
1

(𝑡) = (2ℎ
1

− 𝑎
1

)/2, 𝜏
1

(𝑡) will be fixed at this
value. Then from (7) yields

𝜏
1

(𝑡) =
2ℎ
1

− 𝑎
1

2
=

2√ℎ
1

+ ℎ
2

1

− 2(√ℎ
1

+ ℎ
2

1

− ℎ
1

)

2
= ℎ
1

.

(11)
It can also be obtained that if 𝜏

1

(𝑡) is fixed at (2ℎ
1

− 𝑎
1

)/2, the
value of 𝑎

1

𝜏
1

(𝑡)+(𝜏
1

(𝑡) − ℎ
1

)
2 can also be bounded as follows:

𝑎
1

𝜏
1

(𝑡) + (𝜏
1

(𝑡) − ℎ
1

)
2

= 𝑎
1

2ℎ
1

− 𝑎
1

2
+ (

2ℎ
1

− 𝑎
1

2
− ℎ
1

)

2

=
4𝑎
1

ℎ
1

− 𝑎
2

1

4

=
𝑎
1

(4ℎ
1

− 𝑎
1

)

4

= ℎ
2

1

− ℎ
2

1

= ℎ
1

+ ℎ
2

1

− ℎ
2

1

= ℎ
1

.

(12)

This completes the proof.

Remark 5. 𝜏
1

(𝑡) is the estimate value of the unknown delay
constant 𝜏

1

, satisfying ̇̂𝜏
1

(𝑡)[2(𝜏
1

(𝑡) − ℎ
1

) + 𝑎
1

] ≤ 0. Then
̇̂𝜏
1

(𝑡)[𝜏
1

(𝑡) − ℎ
1

] ≤ 0 can be obtained by fixing ℎ
1

and 𝑎
1

in Lemma 4. Apparently, the difference between 𝜏
1

(𝑡) and ℎ
1

determines the variation of 𝜏
1

(𝑡). So the adaptive strategy for
𝜏
1

(𝑡) is based on a novel type of adaptive idea, which can be
described as error to error adaptive technique. This adaptive
strategy imposes no limitation on the estimate value. It also
guarantees 𝜏

1

(𝑡) always in its bound; that is, 0 < 𝜏∗
1

≤ 𝜏
1

(𝑡) ≤

𝜏
1∗

, for 𝜏
1

(𝑡) can be fixed at ℎ
1

.

3. Main Results

Using the controller (4), the closed-loop system (1) can be
written as

�̇� (𝑡) = 𝐴𝑥 (𝑡) + [𝐴
1

+ 𝜏
1

𝐴
2

(𝜏
1

)] 𝑥 (𝑡 − 𝜏
1

)

+ 𝐵𝐾
1

𝑥 (𝑡 − 𝜏
2

)

+ [𝐵𝐾
2

+ (𝑎
1

𝜏
1

(𝑡 − 𝜏
2

)

+ (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

) 𝐵𝐾
3

] 𝑥

× (𝑡 − 𝜏
2

− 𝑎
1

𝜏
1

(𝑡 − 𝜏
2

)

− (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

) ,

𝑥 (𝑡) = 𝜙 (𝑡) , ∀𝑡 ∈ [−𝜏, 0] ,

(13)

where 𝜏 = max(𝜏∗
1

, 𝜏
2

1

+2𝜏
∗

1

(√ℎ
1

+ ℎ
2

1

−ℎ
1

)+𝜏
2

). Considering
the “descriptor form” in [2, 3], we can rewrite (13) as

�̇� (𝑡) = 𝑦 (𝑡) + 𝑧 (𝑡) ,

𝑦 (𝑡) = 𝐴𝑥 (𝑡) + [𝐴
1

+ 𝜏
1

𝐴
2

(𝜏
1

)] 𝑥 (𝑡 − 𝜏
1

) ,
(14)

where

𝑧 (𝑡) = 𝐵𝐾
1

𝑥 (𝑡 − 𝜏
2

)

+ [𝐵𝐾
2

+ (𝑎
1

𝜏
1

(𝑡 − 𝜏
2

)

+ (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

) 𝐵𝐾
3

]

× 𝑥 (𝑡 − 𝜏
2

− 𝑎
1

𝜏
1

(𝑡 − 𝜏
2

)

− (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

)

(15a)

which yields consequently

𝑦 (𝑡) + 𝑧 (𝑡) = [𝐴 + 𝐴
1

+ 𝜏
1

𝐴
2

(𝜏
1

) + 𝐵𝐾] 𝑥 (𝑡)

− [𝐴
1

+ 𝜏
1

𝐴
2

(𝜏
1

)] ∫

𝑡

𝑡−𝜏

1

(𝑦 (𝑠) + 𝑧 (𝑠)) 𝑑𝑠

− 𝐵𝐾
1

∫

𝑡

𝑡−𝜏

2

(𝑦 (𝜉) + 𝑧 (𝜉)) 𝑑𝜉

− 𝐵𝐾
2

∫

𝑡

𝑡−𝜏

3

(𝑦 (𝑠) + 𝑧 (𝑠)) 𝑑𝑠

− 𝜏
4

𝐵𝐾
3

∫

𝑡

𝑡−𝜏

4

(𝑦 (𝑠) + 𝑧 (𝑠)) 𝑑𝑠

(16a)

with 𝐾 = 𝐾
1

+ 𝐾
2

+ 𝜏
3

𝐾
3

, and 𝜏
3

= 𝜏
4

= 𝜏
2

+ 𝑎
1

𝜏
1

(𝑡 − 𝜏
2

) +

(𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2.

Remark 6. By separating the “descriptor form” �̇�(𝑡) into
two parts 𝑦(𝑡) and 𝑧(𝑡), the specific adaptive regulation
constructed later can be obtained in spite of the control input
delay.

For systems (15a) and (16a), we consider the following
Lyapunov-Krasovskii functional as

𝑉 (𝑥
𝑡

) = 𝑉
1

(𝑥
𝑡

) + 𝑉
2

(𝑥
𝑡

) +
𝑙

2
[2 (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

) + 𝑎
1

]
2

,

(17)

where𝑉
1

(𝑥
𝑡

) = 𝑥
𝑇

𝑃𝑥 = [𝑥
𝑇

(𝑦 + 𝑧)
𝑇

] 𝐸𝑃
𝑇

[
𝑥

𝑦+𝑧

],𝐸 = [ 𝐼 0
0 0

],
𝑃 = [

𝑃 𝑃

1

0 𝑃

2

],

𝑉
2

(𝑥
𝑡

) =

3

∑

𝑖=1

∫

0

−𝜏

𝑖

∫

𝑡

𝑡+𝜃

(𝑦 (𝑠) + 𝑧 (𝑠))
𝑇

× 𝐴
𝑇

𝑖

𝑄
−1

𝑖

𝐴
𝑖

(𝑦 (𝑠) + 𝑧 (𝑠)) 𝑑𝑠 𝑑𝜃

+ 𝜏
4

∫

0

−𝜏

4

∫

𝑡

𝑡+𝜃

(𝑦 (𝑠) + 𝑧 (𝑠))
𝑇

× 𝐴
𝑇

4

𝑄
−1

4

𝐴
4

(𝑦 (𝑠) + 𝑧 (𝑠)) 𝑑𝑠 𝑑𝜃,

(18)
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with 𝐴
1

= 𝐴
1

+ 𝜏
1

𝐴
2

(𝜏
1

), 𝐴
2

= 𝐵𝐾
1

, 𝐴
3

= 𝐵𝐾
2

, 𝐴
4

= 𝐵𝐾
3

,
𝐴
5

= 𝜏
4

𝐴
4

, 𝑙 > 0, ℎ
1

> 0, and 𝑎
1

> 0 being constants, and
matrices 𝑃 > 0, 𝑄

𝑖

> 0 (𝑖 = 1, 2, 3, 4) are waiting to be
determined.

Remark 7. It is easy to see that 𝑉
1

(𝑥
𝑡

) = 𝑥
𝑇

𝑃𝑥 > 0 and
𝑉
2

(𝑥
𝑡

) ≥ 0. From (13), (15a), and (16a), it is not difficult
to observe that if the norm of 𝑥(𝑡) diverges to infinity, then
𝑉
1

(𝑥
𝑡

) will also diverge to infinity. If 𝐴
𝑖

for 𝑖 = 1, 2, 3, 4 are
singular, thus 𝑉

2

(𝑥
𝑡

) = 0. Otherwise, the norms of 𝑦(𝑡) and
𝑧(𝑡) are also infinite when the norm of 𝑥(𝑡) is unbounded,
resulting in 𝑉

2

(𝑥
𝑡

) diverging to infinity. Thus the Lyapunov-
Krasovskii functional𝑉(𝑥

𝑡

) defined in (17) can be guaranteed
to be radially unbounded, that is, a well-posed candidate
Lyapunov functional.

Hence, the derivative of 𝑉
1

(𝑥
𝑡

) along the systems (15a)
and (16a) is given by

�̇�
1

(𝑥
𝑡

) = 2𝑥
𝑇

𝑃 (𝑦 + 𝑧)

= 2 [𝑥
𝑇

(𝑦 + 𝑧)
𝑇

] [
𝑃 𝑃
1

0 𝑃
2

] [
𝑦 + 𝑧

0
]

= 2 [𝑥
𝑇

(𝑦 + 𝑧)
𝑇

] [
𝑃 𝑃
1

0 𝑃
2

]

× {[
𝑦 + 𝑧

𝐴𝑥 − 𝑦 − 𝑧
] + [

0

𝜏
1

𝐴
2

(𝜏
1

) 𝑥
]

−

3

∑

𝑖=1

[
0

𝐴
𝑖

]∫

𝑡

𝑡−𝜏

𝑖

(𝑦 (𝑠) + 𝑧 (𝑠)) 𝑑𝑠

− [
0

𝐴
5

]∫

𝑡

𝑡−𝜏

4

(𝑦 (𝑠) + 𝑧 (𝑠)) 𝑑𝑠}

= 2 [𝑥
𝑇

(𝑦 + 𝑧)
𝑇

] [
𝑃 𝑃
1

0 𝑃
2

] [
𝑦 + 𝑧

𝐴𝑥 − 𝑦 − 𝑧
] −

5

∑

𝑖=1

𝜂
𝑖

,

(19)

where 𝐴 = 𝐴 + 𝐴
1

+ 𝐵𝐾, 𝜂
5

(𝑡) = −2 [𝑥
𝑇

(𝑦 + 𝑧)
𝑇

]

𝑃 [
0

𝐼

] 𝜏
1

𝐴
2

(𝜏
1

)𝑥,

𝜂
𝑖

(𝑡) = −2∫

𝑡

𝑡−𝜏

𝑖

[𝑥
𝑇

(𝑦 + 𝑧)
𝑇

] 𝑃 [
0

𝐼
]𝐴
𝑖

× (𝑦 (𝑠) + 𝑧 (𝑠)) 𝑑𝑠 (𝑖 = 1, 2, 3) ,

𝜂
4

(𝑡) = −2∫

𝑡

𝑡−𝜏

4

[𝑥
𝑇

(𝑦 + 𝑧)
𝑇

] 𝑃 [
0

𝐼
]𝐴
5

× (𝑦 (𝑠) + 𝑧 (𝑠)) 𝑑𝑠.

(20)

By means of Lemma 3, we have

𝜂
𝑖

≤ 𝜏
𝑖

[𝑥
𝑇

(𝑦 + 𝑧)
𝑇

] 𝑃 [
0

𝐼
]𝑅
𝑖

[0 𝐼] 𝑃
𝑇

[
𝑥

𝑦 + 𝑧
]

+ ∫

𝑡

𝑡−𝜏

𝑖

(𝑦 (𝑠) + 𝑧 (𝑠))
𝑇

𝐴
𝑇

𝑖

𝑅
−1

𝑖

𝐴
𝑖

(𝑦 (𝑠) + 𝑧 (𝑠)) 𝑑𝑠,

(21)

𝜂
4

≤ 𝜏
2

4

[𝑥
𝑇

(𝑦 + 𝑧)
𝑇

] 𝑃 [
0

𝐼
]𝑅
4

[0 𝐼] 𝑃
𝑇

[
𝑥

𝑦 + 𝑧
]

+ 𝜏
4

∫

𝑡

𝑡−𝜏

4

(𝑦 (𝑠) + 𝑧 (𝑠))
𝑇

𝐴
𝑇

4

𝑅
−1

4

𝐴
4

(𝑦 (𝑠) + 𝑧 (𝑠)) 𝑑𝑠,

(22)

𝜂
5

≤ 𝜏
1

[𝑥
𝑇

(𝑦 + 𝑧)
𝑇

] 𝑃 [
0

𝐼
]𝑄
5

[0 𝐼] 𝑃
𝑇

[
𝑥

𝑦 + 𝑧
]

+ 𝜏
1

𝑥
𝑇

(𝐴
2

(𝜏
1

))
𝑇

𝑄
−1

5

𝐴
2

(𝜏
1

) 𝑥.

(23)

Note that

[𝑥
𝑇

(𝑦 + 𝑧)
𝑇

] 𝑃 [
0

𝐼
]𝑅
𝑖

[0 𝐼] 𝑃
𝑇

[
𝑥

𝑦 + 𝑧
]

= 𝑥
𝑇

𝑃
1

𝑅
𝑖

𝑃
𝑇

1

𝑥 + 2𝑥
𝑇

𝑃
1

𝑅
𝑖

𝑃
𝑇

2

(𝑦 + 𝑧)

+ (𝑦 + 𝑧)
𝑇

𝑃
2

𝑅
𝑖

𝑃
𝑇

2

(𝑦 + 𝑧)

= 𝑥
𝑇

𝑃
1

𝑅
𝑖

𝑃
𝑇

1

𝑥 + 2𝑥
𝑇

𝑃
1

𝑅
𝑖

𝑃
𝑇

2

(𝑦 + 𝑧)

+ 2𝑧
𝑇

𝑃
2

𝑅
𝑖

𝑃
𝑇

2

𝑦 + 𝑦
𝑇

𝑃
2

𝑅
𝑖

𝑃
𝑇

2

𝑦

+ 𝑧
𝑇

𝑃
2

𝑅
𝑖

𝑃
𝑇

2

𝑧, 𝑖 = 3, 4,

(24)

𝜏
3

= 𝜏
2

+ 𝑎
1

𝜏
1

(𝑡 − 𝜏
2

) + (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

=
1

4
{[2 (𝜏

1

(𝑡 − 𝜏
2

) − ℎ
1

) + 𝑎
1

]
2

− 𝑎
2

1

+ 4ℎ
1

𝑎
1

} + 𝜏
2

,

𝜏
2

4

= [𝜏
2

+ 𝑎
1

𝜏
1

(𝑡 − 𝜏
2

) + (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

]
2

= 𝜏
2

2

+ 𝑎
2

1

(𝜏
1

(𝑡 − 𝜏
2

))
2

+ (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
4

+ 2𝜏
2

𝑎
1

𝜏
1

(𝑡 − 𝜏
2

) + 2𝜏
2

(𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

+ 2𝑎
1

𝜏
1

(𝑡 − 𝜏
2

) (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

= 𝑎
2

1

(𝜏
1

(𝑡 − 𝜏
2

))
2

+ (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
4

+ 2𝑎
1

𝜏
1

(𝑡 − 𝜏
2

) (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

+ 𝜏
2

1

2
{[2 (𝜏

1

(𝑡 − 𝜏
2

) − ℎ
1

) + 𝑎
1

]
2

− 𝑎
2

1

+ 4ℎ
1

𝑎
1

} .

(25)

Besides,

𝑑 (∫
0

−𝜏

𝑖

∫
𝑡

𝑡+𝜃

�̇�(𝑠)
𝑇

𝐴
𝑇

𝑖

𝑄
−1

𝑖

𝐴
𝑖

�̇� (𝑠) 𝑑𝑠 𝑑𝜃)

𝑑𝑡

= ̇𝜏
𝑖

(𝑡) ∫

𝑡

𝑡−𝜏

𝑖

�̇�(𝑠)
𝑇

𝐴
𝑇

𝑖

𝑄
−1

𝑖

𝐴
𝑖

�̇� (𝑠) 𝑑𝑠

+ ∫

0

−𝜏

𝑖

[�̇�(𝑡)
𝑇

𝐴
𝑇

𝑖

𝑄
−1

𝑖

𝐴
𝑖

�̇� (𝑡)

− �̇�(𝑡 + 𝜃)
𝑇

𝐴
𝑇

𝑖

𝑄
−1

𝑖

𝐴
𝑖

�̇� (𝑡 + 𝜃)] 𝑑𝜃, 𝑖 = 1, 2, 3,

𝑑 (∫
0

−𝜏

4

∫
𝑡

𝑡+𝜃

𝜏
4

(𝑡) �̇�(𝑠)
𝑇

𝐴
𝑇

4

𝑄
−1

4

𝐴
4

�̇� (𝑠) 𝑑𝑠 𝑑𝜃)

𝑑𝑡

= ̇𝜏
4

(𝑡) ∫

𝑡

𝑡−𝜏

4

𝜏
4

(𝑡) �̇�(𝑠)
𝑇

𝐴
𝑇

4

𝑄
−1

4

𝐴
4

�̇� (𝑠) 𝑑𝑠
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+ ∫

0

−𝜏

4

𝜏
4

(𝑡) [�̇�(𝑡)
𝑇

𝐴
𝑇

4

𝑄
−1

4

𝐴
4

�̇� (𝑡)

− �̇�(𝑡 + 𝜃)
𝑇

𝐴
𝑇

4

𝑄
−1

4

𝐴
4

�̇� (𝑡 + 𝜃)] 𝑑𝜃

+ ∫

0

−𝜏

4

∫

𝑡

𝑡+𝜃

̇𝜏
4

(𝑡) �̇�(𝑠)
𝑇

𝐴
𝑇

4

𝑄
−1

𝑖

𝐴
4

�̇� (𝑠) 𝑑𝑠 𝑑𝜃.

(26)

Since ̇̂𝜏
1

(𝑡)[2(𝜏
1

(𝑡) − ℎ
1

) + 𝑎
1

] ≤ 0, that is, ̇̂𝜏
1

(𝑡 − 𝜏
2

)[2(𝜏
1

(𝑡 −

𝜏
2

) − ℎ
1

) + 𝑎
1

] ≤ 0, and

̇𝜏
3

(𝑡) = ̇𝜏
4

(𝑡)

=

𝑑 (𝜏
2

+ 𝑎
1

𝜏
1

(𝑡 − 𝜏
2

) + (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

)

𝑑𝑡

= 𝑎
1

̇̂𝜏
1

(𝑡 − 𝜏
2

) + 2 (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

) ̇̂𝜏
1

(𝑡 − 𝜏
2

)

= ̇̂𝜏
1

(𝑡 − 𝜏
2

) [𝑎
1

+ 2 (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)] ,

(27)

we can have

�̇�
2

(𝑥
𝑡

) ≤

3

∑

𝑖=1

[𝜏
𝑖

(𝑦 (𝑡) + 𝑧 (𝑡))
𝑇

𝐴
𝑇

𝑖

𝑄
−1

𝑖

𝐴
𝑖

(𝑦 (𝑡) + 𝑧 (𝑡))

− ∫

𝑡

𝑡−𝜏

𝑖

(𝑦 (𝑠) + 𝑧 (𝑠))
𝑇

𝐴
𝑇

𝑖

𝑄
−1

𝑖

𝐴
𝑖

× (𝑦 (𝑠) + 𝑧 (𝑠)) 𝑑𝑠]

+ 𝜏
2

4

(𝑡) �̇�(𝑡)
𝑇

𝐴
𝑇

4

𝑄
−1

4

𝐴
4

�̇� (𝑡)

− 𝜏
4

(𝑡) ∫

0

−𝜏

4

�̇�(𝑡 + 𝜃)
𝑇

𝐴
𝑇

4

𝑄
−1

4

𝐴
4

�̇� (𝑡 + 𝜃) 𝑑𝜃.

(28)

Let 𝑅
𝑖

= 𝑄
𝑖

(𝑖 = 1, . . . , 4), according to (17)–(28), the
following inequalities are obvious by means of Schur com-
plement:

�̇� (𝑥
𝑡

) ≤ 𝑥(𝑡)
𝑇

Ξ
0

𝑥 (𝑡) + [𝑎
1

+ 2 (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)]

× {𝑙 ̇̂𝜏
1

(𝑡 − 𝜏
2

) +
1

4
[𝑎
1

+ 2 (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)]

× 𝑧
𝑇

𝑃
2

(𝑄
3

+ 2𝜏
2

𝑄
4

) 𝑃
𝑇

2

𝑧} ,

(29)

where

𝑥(𝑡)
𝑇

= [𝑥
𝑇

𝑦
𝑇

𝑧
𝑇

] , Ξ
0

= [

[

Ξ
11

Ξ
12

Ξ
13

∗ Ξ
22

Ξ
23

∗ ∗ Ξ
33

]

]

,

Ξ
11

= 𝑃
1

𝐴 + 𝐴
𝑇

𝑃
𝑇

1

+

5

∑

𝑖=1

𝜏
𝑖

𝑃
1

𝑄
𝑖

𝑃
𝑇

1

+ 𝜏
1

(𝐴
2

(𝜏
1

))
𝑇

𝑄
−1

5

𝐴
2

(𝜏
1

) ,

Ξ
12

= 𝑃 − 𝑃
1

+ 𝐴
𝑇

𝑃
𝑇

2

+

5

∑

𝑖=1

𝜏
𝑖

𝑃
1

𝑄
𝑖

𝑃
𝑇

2

= Ξ
13

,

𝜏
𝑖

= 𝜏
𝑖

𝑖 = 1, 2, 3, 𝜏
4

= 𝜏
2

4

, 𝜏
5

= 𝜏
1

,

Ξ
23

=

5

∑

𝑖=1

𝜏
𝑖

𝑃
2

𝑄
𝑖

𝑃
𝑇

2

− 𝑃
2

− 𝑃
𝑇

2

+

4

∑

𝑖=1

𝜏
𝑖

𝐴
𝑇

𝑖

𝑄
−1

𝑖

𝐴
𝑖

= Ξ
22

,

Ξ
33

=

2

∑

𝑖=1

𝜏
𝑖

𝑃
2

𝑄
𝑖

𝑃
𝑇

2

+ 𝜏
1

𝑃
2

𝑄
5

𝑃
𝑇

2

− 𝑃
2

− 𝑃
𝑇

2

+

3

∑

𝑖=1

𝜏
𝑖

𝐴
𝑇

𝑖

𝑄
−1

𝑖

𝐴
𝑖

+ [
1

4
(4ℎ
1

𝑎
1

− 𝑎
2

1

) + 𝜏
2

] 𝑃
2

,

𝑄
3

𝑃
𝑇

2

+ 𝜏
6

𝑃
2

𝑄
4

𝑃
𝑇

2

+ 𝜏
4

𝐴
𝑇

4

𝑄
−1

4

𝐴
4

,

𝜏
6

= 𝜏
4

− 𝜏
2

1

2
[2(𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

) + 𝑎
1

]
2

.

(30)

Results can be obtained as follows.

Theorem8. Consider the time-delay system (1)with unknown
time-delay parameter 𝜏

1

; the system (1) can be stabilized by
the state-feedback controller (4) if there exist matrices 𝑈

𝑖

(𝑖 =

1, 2, 3) and positive-definite matrices 𝑋, 𝑄
𝑖

(𝑖 = 1, . . . , 4)

such that the linear matrix inequalities (32) hold, with the
parameters 𝑎

1

and ℎ
1

selected as (7) in Lemma 4. Moreover,
the adaptive strategy about the unknown delay constant 𝜏

1

can
be obtained from (31), and the feedback gains of the controller
(4) are given by𝐾

𝑖

= 𝑈
𝑖

𝑋
−1

(𝑖 = 1, 2, 3).

Proof. Consider the following adaptive control:

̇̂𝜏
1

(𝑡 − 𝜏
2

) = −
1

4𝑙
[𝑎
1

+ 2 (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)] 𝑧
𝑇

𝑃
2

× (𝑄
3

+ 2𝜏
2

𝑄
4

) 𝑃
𝑇

2

𝑧.That is,

̇̂𝜏
1

(𝑡) = −
1

4𝑙
[𝑎
1

+ 2 (𝜏
1

(𝑡) − ℎ
1

)]𝑚 (𝑡) ,

(31)

where𝑚(𝑡) = 𝑧(𝑡 + 𝜏
2

)
𝑇

𝑃
2

(𝑄
3

+ 2𝜏
2

𝑄
4

)𝑃
𝑇

2

𝑧(𝑡 + 𝜏
2

) satisfying
the adaptive strategy as (6) in Lemma 4. Thus by using
(29), we have �̇�(𝑥

𝑡

) ≤ 𝑥
𝑇

(𝑡)Ξ
0

𝑥(𝑡). So if 𝑆 def
= Ξ
0

< 0,
under the action of the controller (4), the system (1) will
be asymptotically stable. The most important work of the
memory feedback control problem is how to solve the matrix
inequality 𝑆 < 0. Obviously, there exists 𝑆(𝜏

1

) ≤ 𝑆(𝜏
∗

1

), for
𝜏
1

≤ 𝜏
∗

1

. So 𝑆(𝜏∗
1

) < 0 can guarantee �̇�(𝑥
𝑡

) < 0 satisfied,
which means that the time-delay system (8) is asymptotically
stabilizable by using feedback controller (4). Let Ξ def

= 𝑆(𝜏
∗

1

),
and consider the Lyapunov matrix 𝑃 with 𝐸𝑃𝑇 = 𝑃𝐸. In
this case, we can suggest that the 𝑃

1

and 𝑃
2

in 𝑃 can be
substituted as 𝑃

1

= 𝑛
1

/𝑛
2

𝑃 and 𝑃
2

= 1/𝑛
2

𝑃, where 𝑛
1

and 𝑛
2

are real scalars. In this way, we can solve the above problem;
furthermore, bymaking 𝑛

1

and 𝑛
2

line search parameters (i.e.,
plain search), we anticipate that less conservative conditions
are given. Now before and after multiplying both sides of
Ξ < 0 by diag (𝑋

1

𝑋
2

𝑋
3

), where 𝑋
1

= 𝑃
−1

1

= 𝑛
2

/𝑛
1

𝑋,
𝑋
2

= 𝑋
3

= 𝑃
−1

2

= 𝑛
2

𝑋, and 𝑋 = 𝑃
−1. After substituting
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ℎ
1

= √ℎ
1

+ ℎ
2

1

and 𝑎
1

= 2(√ℎ
1

+ ℎ
2

1

− ℎ
1

) into Ξ < 0,
the following linear matrix inequalities can be obtained by
applying Schur complement.

Consider

Ξ̃ =

[
[
[
[

[

Ξ Ξ̃
1

⋅ ⋅ ⋅ Ξ̃
5

Ξ̃
𝑇

1

M
1

... d
Ξ̃
𝑇

5

M
5

]
]
]
]

]

< 0, (32)

where Ξ̃
𝑇

1

= [0 𝑛
2

𝐴
1

𝑋 𝑛
2

𝐴
1

𝑋], Ξ̃
𝑇

𝑖+1

=

[0 𝑛
2

𝐵
2

𝑈
𝑖

𝑛
2

𝐵
2

𝑈
𝑖

0
1

⋅ ⋅ ⋅ 0
𝑖

], 𝑖 = 1, 2, 3,𝑀
𝑖

= −(𝜏
∗

𝑖

)
−1

𝑄
𝑖

,
𝑖 = 1, 2, 3, 𝜏∗

2

= 𝜏
2

, 𝑀
4

= −(𝜏
∗

4

)
−1

𝑄
4

, 𝑀
5

= −(𝜏
∗

1

)
−1

𝑄
5

,
Ξ̃
𝑇

5

= [𝑛
2

/𝑛
1

𝐴
2

(𝜏
1

)𝑋 0
1

⋅ ⋅ ⋅ 0
6

], 𝑈
𝑗

= 𝐾
𝑗

𝑋, 𝑗 = 1, 2,

Ξ = [

Ξ

11
Ξ

12
Ξ

13

∗ Ξ

22
Ξ

23

∗ ∗ Ξ

33

], Ξ
11

= 𝑛
2

/𝑛
1

(𝐴 + 𝐴
1

)𝑋 + 𝑛
2

/𝑛
1

∑
3

𝑖=1

𝐵
2

𝑈
𝑖

+

𝑛
2

/𝑛
1

𝑋(𝐴 + 𝐴
1

)
𝑇

+ 𝑛
2

/𝑛
1

∑
3

𝑖=1

(𝐵
2

𝑈
𝑖

)
𝑇

+ ∑
5

𝑖=1

𝜏
∗

𝑖

𝑄
𝑖

, Ξ
12

=

𝑛
2

/𝑛
1

(𝑛
2

− 𝑛
1

)𝑋 + 𝑛
2

/𝑛
1

𝑋(𝐴 + 𝐴
1

)
𝑇

+ 𝑛
2

/𝑛
1

∑
3

𝑖=1

(𝐵
2

𝑈
𝑖

)
𝑇

+

∑
5

𝑖=1

𝜏
∗

𝑖

𝑄
𝑖

= Ξ
13

, Ξ
23

= ∑
5

𝑖=1

𝜏
∗

𝑖

𝑄
𝑖

− 2𝑛
2

𝑋 = Ξ
22

, and
Ξ
33

= ∑
2

𝑖=1

𝜏
∗

𝑖

𝑄
𝑖

+ 𝜏
∗

5

𝑄
5

− 2𝑛
2

𝑋+ (ℎ
1

+ 𝜏
2

)𝑄
3

+ 𝜏
∗

6

𝑄
4

. 𝜏
𝑖

= 𝜏
𝑖

,
𝑖 = 1, 2, 3, 𝜏

5

= 𝜏
1

, 𝜏
4

= 𝜏
2

4

, and 𝜏
6

= 𝜏
4

− 𝜏
2

(1/2)

[2(𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

) + 𝑎
1

]
2.

The linear matrix inequality (32) can be directly solved by
LMI toolbox in MATLAB software, and the matrices 𝑈

𝑖

(𝑖 =

1, 2, 3) and positive-definite matrices 𝑋, 𝑄
3

, and 𝑄
4

can also
be acquired. Consequently, we have 𝐾

𝑖

= 𝑈
𝑖

𝑋
−1

(𝑖 = 1, 2, 3).

Remark 9. For the value of 𝜏∗
3

, 𝜏∗
4

, and 𝜏∗
6

see Appendices.The
LMI provided here is solvable, while, as for the results in Jiang
et al. [13], unknownmatrixes like 𝑃 and 𝑃−1 exist in the same
LMI, resulting in the LMI unsolvable.

4. Numerical Example

We consider a system with the same structure as (1), and the
model matrices are

𝐴 = [
−4 14

−15 −3
] , 𝐴

1

= [
−1 0

0 −1
] ,

𝐴
2

= [
−1 0

0 −1
] , 𝐵 = [

8

1
] .

(33)

The known time delay in control input is 𝜏
2

= 0.008. We
consider the following uncertainty in the time delay 𝜏

1

: 𝜏
1

∈

[0.2, 0.3]; that is, the upper bound 𝜏∗
1

= 0.3, the lower
bound 𝜏

1∗

= 0.2, and ℎ
1

is selected as (𝜏∗
1

+ 𝜏
1∗

)/2 = 0.25.

According to Lemma 4, we can select ℎ
1

= √ℎ
1

+ ℎ
2

1

=

0.559, and 𝑎
1

= 2(√ℎ
1

+ ℎ
2

1

− ℎ
1

) = 0.618. By applying
Theorem 8, the feasible solution can be obtained with 𝐾

1

=

[0.5501 −1.6962], 𝐾
2

= 1.0𝑒 − 006 ∗ [0.0806 −0.1576],
𝐾
3

= 1.0𝑒 − 005 ∗ [0.0575 −0.1365], and 𝑃
2

(𝑄
3

+ 𝑄
4

)𝑃
𝑇

2

=

[
0.0126 0.0026

0.0026 0.0006

]. Moreover 𝜏∗
4

= 𝜏
∗

= max{𝜏(𝜏
1

(𝑡 − 𝜏
2

) =

{𝜏
∗

1

, 𝜏
1∗

})} = 0.0623 can be obtained from Appendix B. And

the global minimum for LMI (32) is 𝑡min = −2.4706𝑒 − 007,
while by, the controller proposed in Jiang et al. [13], the global
minimum 𝑡min = −2.4292𝑒−008, whichmeans that our result
is less conservation. If the initial conditions are chosen as

𝜏
1

(−𝜏) = 0.2,

[
𝜙
1

(𝑡)

𝜙
2

(𝑡)
] =

[
[
[

[

2 sin 4𝜋 (𝑡 − 𝜏)
𝜏

−
3 sin 4𝜋 (𝑡 − 𝜏)

𝜏

]
]
]

]

, −𝜏 ≤ 𝑡 ≤ 0,

(34)

where 𝜏 = max(𝜏∗
1

, 𝜏
2

1

+ 𝜏
∗

1

𝑎
1

+ 𝜏
2

) = 𝜏
∗

1

= 0.3, and the
parameter 𝑙 is chosen as 𝑙 = 0.4, then the system state under
adaptivememory controller is shown in Figure 1. At this time,
the estimate value of the unknown time-delay parameter, that
is, 𝜏
1

(𝑡), is shown in Figure 2.

Remark 10. In Jiang et al. [13], 𝜏
1

(𝑡) was limited to be
larger than the real unknown value 𝜏

1

. However, since 𝜏
1

is unknown, it is difficult to satisfy the limitation. So the
memory controller with such 𝜏

1

(𝑡) cannot be implemented
as it was described. Besides, 𝜏

1

(𝑡) remains decreasing until
the system is stabilized. If the memory controller does not
performwell, 𝜏

1

(𝑡)will remain decreasing, which deteriorates
the function of the controller. In this paper, 𝜏

1

(𝑡) is main-
tained between the lower bound 𝜏

∗

and the upper bound
𝜏
∗, which is much easier to be implemented. With the error
to error adaptive technique, 𝜏

1

(𝑡) will always stay between
𝜏
∗

and 𝜏∗, so the memory controller with such 𝜏
1

(𝑡) can
allow for more information of the system, which reduces the
conservativeness.

5. Conclusions

In this paper, the problem of memory feedback con-
troller with adaptation to unknown time delay parameter is
addressed. The system investigated is with time delay in sys-
tem state, control input, and system matrix, and additionally
the state time-delay is unknown. By using a novel type of
adaptive strategy with the idea of error to error and separated
“descriptor form” functional technique, the estimate value
of the time-delay constant can always be reflected by the
feedback controller. Since more information in the system
is presented, the controller proposed in this paper is much
less conservative.Moreover, the adaptive strategy about time-
delay parameter can achieve that no limitation is imposed on
the estimate value, so it is more simple and convenient than
the existing adaptive controllers. The sufficient condition for
stabilization is presented in the form of LMI. To illustrate
efficiency of the proposed technique, a numerical example
has been provided.

Appendices

A. The Value of 𝜏∗
3

𝜏
3

= 𝜏
4

= 𝜏
2

+ 𝑎
1

𝜏
1

(𝑡 − 𝜏
2

) + (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2 as derivative of

𝜏
3

(𝑡) can be obtained for 𝜏
1

(𝑡 − 𝜏
2

) ∈ [𝜏
1∗

, 𝜏
∗

1

], and we have
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Figure 1: The system state under adaptive memory controller.
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Figure 2: The estimate value of the unknown time delay.

𝑑𝜏
3

(𝜏
1

(𝑡 − 𝜏
2

))/𝑑(𝜏
1

(𝑡 − 𝜏
2

)) = 2𝜏
1

(𝑡 − 𝜏
2

) − 2ℎ
1

+ 𝑎
1

= 0, so
𝜏
3

(𝑡) can achieve extremum when 𝜏
1

(𝑡 − 𝜏
2

) = (2ℎ
1

− 𝑎
1

)/2.
Furthermore, as 𝜏

3

((2ℎ
1

−𝑎
1

)/2) = 2 > 0, so 𝜏
3

(𝑡) can achieve
minimum when 𝜏

1

(𝑡 − 𝜏
2

) = (2ℎ
1

− 𝑎
1

)/2 = ℎ
1

. As a result,
the maximum for 𝜏

3

(𝑡), that is, 𝜏∗
3

= max{𝜏
3

(𝜏
1

(𝑡 − 𝜏
2

) =

{𝜏
∗

1

, 𝜏
1∗

})}.

B. The Value of 𝜏∗
4

Consider

𝜏
4

= 𝜏
2

4

= [𝜏
2

+ 𝑎
1

𝜏
1

(𝑡 − 𝜏
2

) + (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

]
2

= 𝜏
2

2

+ 𝑎
2

1

(𝜏
1

(𝑡 − 𝜏
2

))
2

+ (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
4

+ 2𝜏
2

𝑎
1

𝜏
1

(𝑡 − 𝜏
2

) + 2𝜏
2

(𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

+ 2𝑎
1

𝜏
1

(𝑡 − 𝜏
2

) (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

.

(B.1)

As it is well known that the value of third power of a
variable is difficult to obtain, since

𝜏
1

− ℎ
1

≤ 𝜏
∗

1

− ℎ
1

= 𝜏
∗

1

− √ℎ
1

+ ℎ
2

1

< 𝜏
∗

1

− ℎ
1

≤ 𝜏
1

, (B.2)

then substituting (B.2) into (B.1), we have

𝜏
2

4

≤ 𝜏
2

2

+ 𝑎
2

1

(𝜏
1

(𝑡 − 𝜏
2

))
2

+ 𝜏
4

1

+ 2𝜏
2

𝑎
1

𝜏
1

(𝑡 − 𝜏
2

)

+ 2𝜏
2

𝜏
2

1

+ 2𝑎
1

𝜏
1

(𝑡 − 𝜏
2

) (𝜏
1

(𝑡 − 𝜏
2

) − ℎ
1

)
2

≜ 𝜏.

(B.3)

By the similar deduction in Appendix A, we have the
following conclusion under two kinds of situations.

(1) If 2ℎ
1

√ℎ
1

+ ℎ
2

1

> 2ℎ
1

+ ℎ
2

1

+ 3𝜏
2

, we can obtain the
maximum of 𝜏 which is

𝜏
∗

= max {𝜏 (𝜏
1

(𝑡 − 𝜏
2

) = {𝜏
∗

1

, 𝜏
1∗

, 𝜏
2

})} , (B.4)

where 𝜏
2

= (4ℎ
1

− 𝑎
1

− √𝑎
2

1

− 8𝑎
1

ℎ
1

+ 4ℎ
2

1

− 12𝜏
2

)/6.

(2) If 2ℎ
1

√ℎ
1

+ ℎ
2

1

≤ 2ℎ
1

+ ℎ
2

1

+ 3𝜏
2

, we can obtain that

𝜏
∗

= max {𝜏 (𝜏
1

(𝑡 − 𝜏
2

) = {𝜏
∗

1

, 𝜏
1∗

})} . (B.5)

C. The Value of 𝜏∗
6

From Appendices A and B, we can obtain that 𝜏∗
6

= 𝜏
∗

4

−

2𝜏
2

(𝜏
3∗

− 𝜏
2

− (1/4)ℎ
1

).
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