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Thepurpose of this paper is to give a newmodified Ishikawa type iteration algorithm for commonfixed points of total asymptotically
strict pseudocontractive semigroups. Under the reduction of some conditions, both strong convergence and weak convergence of
the iteration algorithm are proved in Banach spaces with new methods of proofs, respectively. The main results presented in this
paper extend and improve the corresponding recent results of many others.

1. Introduction

Throughout this paper, we assume that 𝐸 is a real Banach
space with the norm ‖ ⋅ ‖, 𝐸∗ the dual space of 𝐸, ⟨⋅, ⋅⟩ the
duality between 𝐸 and 𝐸∗, and 𝐶 a nonempty closed convex
subset of 𝐸. R+ denotes the set of nonnegative real numbers
and N the natural number set. The mapping 𝐽 : 𝐸 → 2

𝐸
∗

with

𝐽 (𝑥) = {𝑓
∗

∈ 𝐸
∗

: ⟨𝑥, 𝑓
∗

⟩ = ‖𝑥‖
2

,
𝑓
∗ = ‖𝑥‖} , 𝑥 ∈ 𝐸,

(1)

is called the normalized duality mapping.
Let𝑇 : 𝐶 → 𝐶 be a nonlinearmapping.𝐹(𝑇) denotes the

set of the fixed points of 𝑇.
As we know, a mapping 𝑇 : 𝐶 → 𝐶 is said to be pseudo-

contractive, if, for all 𝑥, 𝑦 ∈ 𝐶, there exists 𝑗(𝑥−𝑦) ∈ 𝐽(𝑥−𝑦),
such that

⟨𝑇𝑥 − 𝑇𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
𝑥 − 𝑦



2

. (2)

Variational inequalities introduced by Stampacchia in
the early sixties have had a great impact and influence
on the development of almost all branches of pure and
applied sciences and have witnessed an explosive growth in
theoretical advances, algorithmic development, and so forth.

Recently, some authors also studied the problem of finding
the solution set of variational inequalities and the common
element of the fixed point set for generalized nonexpansive
mappings in the framework of real Hilbert spaces and Banach
spaces. As is known to all, the variational inequality problem,
nonlinear optimization problem, and fixed point problem are
equivalent to each other under certain conditions.

In 2012, Chang et al. [1] introduced a more general class
of pseudocontractive mappings and studied the methods for
approximation of the split common fixed points.

Definition 1 (see [1]). (I) A mapping 𝑇 : 𝐶 → 𝐶 is said to be
(𝛾, 𝜇
𝑛
, 𝜉
𝑛
, 𝜙)-totally asymptotically strictly pseudocontrac-

tive, if there exist a constant 𝛾 ∈ [0, 1] and sequences {𝜇
𝑛
},

{𝜉
𝑛
} ⊂ [0,∞) with 𝜇

𝑛
→ 0 and 𝜉

𝑛
→ 0, such that, for all

𝑥, 𝑦 ∈ 𝐶,

𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦


2

≤
𝑥 − 𝑦



2

+ 𝛾
(𝐼 − 𝑇

𝑛

) 𝑥 − (𝐼 − 𝑇
𝑛

) 𝑦


2

+ 𝜇
𝑛
𝜙 (
𝑥 − 𝑦

) + 𝜉𝑛, ∀𝑛 ≥ 1,

(3)

where 𝜙 : [0,∞) → [0,∞) is continuous and a strict
increasing function with 𝜙(0) = 0.

(II) A mapping 𝑇 : 𝐶 → 𝐶 is said to be (𝛾, 𝑘
𝑛
)-

asymptotically strictly pseudocontractive, if there exist
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a constant 𝛾 ∈ [0, 1) and a sequence 𝑘
𝑛
⊂ [1,∞) with

𝑘
𝑛
→ 1, such that

𝑇
𝑛

𝑥 − 𝑇
𝑛

𝑦


2

≤ 𝑘
𝑛

𝑥 − 𝑦


2

+ 𝛾
(𝐼 − 𝑇

𝑛

)𝑥 − (𝐼 − 𝑇
𝑛

)𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐶.

(4)

Definition 2. (I) One-parameter familyT := {𝑇(𝑡) : 𝐶 → 𝐶,

𝑡 ≥ 0} is said to be a pseudocontractive semigroup on 𝐶, if
the following conditions are satisfied:

(a) 𝑇(0)𝑥 = 𝑥 for each 𝑥 ∈ 𝐶;
(b) 𝑇(𝑡 + 𝑠)𝑥 = 𝑇(𝑡)𝑇(𝑠)𝑥 for any 𝑡, 𝑠 ∈ R+ and 𝑥 ∈ 𝐶;
(c) the mapping 𝑡 → 𝑇(𝑡)𝑥 is continuous for any given

𝑥 ∈ 𝐶;
(d) for any 𝑡 ≥ 0, 𝑇(𝑡) is pseudocontractive; that is, for

any 𝑥, 𝑦 ∈ 𝐶, there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦), such
that

⟨𝑇
𝑛

(𝑡) 𝑥 − 𝑇
𝑛

(𝑡) 𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
𝑥 − 𝑦



2

. (5)

(II) One-parameter family T := {𝑇(𝑡) : 𝐶 → 𝐶, 𝑡 ≥ 0}

is said to be strict pseudocontractive semigroup on 𝐶, if
the conditions (a)–(c) and the following condition (e) are
satisfied.

(e) For any 𝑥, 𝑦 ∈ 𝐶, there exist 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) and
a bounded function 𝜂 : [0,∞) → [0,∞), such that,
for any 𝑡 ≥ 0,

⟨𝑇 (𝑡) 𝑥 − 𝑇 (𝑡) 𝑦, 𝑗 (𝑥 − 𝑦)⟩

≤
𝑥 − 𝑦



2

− 𝜂 (𝑡)
(𝑥 − 𝑦) − (𝑇(𝑡)𝑥 − 𝑇(𝑡)𝑦)



2

.

(6)

(III) T := {𝑇(𝑡) : 𝐶 → 𝐶, 𝑡 ≥ 0} is said to be asymp-
totically strict pseudocontractive semigroup, if the conditions
(a)–(c) and the following condition (f) are satisfied.

(f) There exist a bounded function 𝜂 : [0,∞) → [0,∞)

and a sequence 𝑘
𝑛
⊂ [1,∞) with 𝑘

𝑛
→ 1 as 𝑛 → ∞.

For any given 𝑥, 𝑦 ∈ 𝐶, there exists 𝑗(𝑥−𝑦) ∈ 𝐽(𝑥−𝑦)
such that for, any 𝑡 ≥ 0,

⟨𝑇
𝑛

(𝑡) 𝑥 − 𝑇
𝑛

(𝑡) 𝑦, 𝑗 (𝑥 − 𝑦)⟩

≤ 𝑘
𝑛

𝑥 − 𝑦


2

− 𝜂 (𝑡)
(𝑥 − 𝑦) − (𝑇

𝑛

(𝑡) 𝑥 − 𝑇
𝑛

(𝑡) 𝑦)


2

.

(7)

Osilike and Akuchu [2] established an iterative scheme
for approximation of common fixed points of a finite family
of asymptotically pseudocontractive mappings. Miao et al.
[3] introduced an implicit iteration process for a finite
family of total asymptotically pseudocontractive maps. And
in recent years, many researchers focused on the convergence
of pseudocontractive and asymptotically strict pseudocon-
tractive semigroups; see [4–8] and their references. In [9, 10]

especially, the authors gave the modifiedMann type iteration
algorithm and studied its convergence.

Inspired and motivated by the above works, in this paper,
we give a new modified Ishikawa type iteration algorithm
for total asymptotically strict pseudocontractive semigroups.
Under the reducation of some conditions, we prove both
strong convergence and weak convergence of the iteration
algorithm by using the method of the subsequence of a sub-
sequence of the sequence {𝑥

𝑛
} in Banach spaces, respectively.

The results presented in this paper extend and improve the
corresponding recent results of many authors, such as [1, 7–
10].

2. Preliminaries

This section contains some definitions, notations, and lem-
mas, which will be used in the proofs of our main results in
the next section.

A Banach space 𝐸 is said to be smooth if the limit
lim
𝑡→0

((‖𝑥 + 𝑡𝑦‖ − ‖𝑥‖)/𝑡) exists for each 𝑥, 𝑦 ∈ {𝑥 ∈ 𝐸 :

‖𝑥‖ = 1}. It is well known that if 𝐸 is reflexive and smooth,
then the duality mapping 𝐽 is single valued.

A Banach space 𝐸 is said to have Opial condition if, for
any sequence {𝑥

𝑛
} ⊂ 𝐸 weakly convergent to 𝑥

0
∈ 𝐸,

lim inf
𝑛→∞

𝑥𝑛 − 𝑥0
 < lim inf
𝑛→∞

𝑥𝑛 − 𝑥
 (8)

holds for any 𝑥 ̸= 𝑥
0
.

Amapping𝑇 is said to be demiclosed, if, for any sequence
{𝑥
𝑛
} ⊂ 𝐸, 𝑥

𝑛
⇀ 𝑦 and ‖(𝐼−𝑇)𝑥

𝑛
‖ → 0 imply that (𝐼−𝑇)𝑦 =

0.

Definition 3 (see [9]). One-parameterT := {𝑇(𝑡) : 𝐶 → 𝐶,

𝑡 ≥ 0} is said to be a (𝜂, {𝜇
𝑛
}, {𝜉
𝑛
}, 𝜙)-total asymptotically strict

pseudocontractive semigroup on 𝐶, if the conditions (a)–(c)
in Definition 2 and the following condition (g) are satisfied.

(g) There exist a bounded function 𝜂 : [0,∞) → [0,∞)

and sequences {𝜇
𝑛
} ⊂ [0,∞) and {𝜉

𝑛
} ⊂ [0,∞) with

𝜇
𝑛
→ 0, 𝜉

𝑛
→ 0, as 𝑛 → ∞. For any given 𝑥, 𝑦 ∈ 𝐶,

there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦), such that

⟨𝑇
𝑛

(𝑡) 𝑥 − 𝑇
𝑛

(𝑡) 𝑦, 𝑗 (𝑥 − 𝑦)⟩

≤
𝑥 − 𝑦



2

− 𝜂 (𝑡)
(𝑥 − 𝑦) − (𝑇

𝑛

(𝑡) 𝑥 − 𝑇
𝑛

(𝑡) 𝑦)


2

+ 𝜇
𝑛
𝜙 (
𝑥 − 𝑦

) + 𝜉𝑛,

(9)

for any 𝑡 ≥ 0, for all 𝑛 ≥ 1, where 𝜙 : [0,∞) →

[0,∞) is continuous and strictly increasing function
with 𝜙(0) = 0.

A (𝜂, {𝜇
𝑛
}, {𝜉
𝑛
}, 𝜙)-total asymptotically strict pseudocon-

tractive semigroup is said to be uniformly Lipschitzian, if
there exists a bounded measurable function 𝐿 : [0,∞) →

(0,∞), such that
𝑇
𝑛

(𝑡) 𝑥 − 𝑇
𝑛

(𝑡) 𝑦


≤ 𝐿 (𝑡)
𝑥 − 𝑦

 , ∀𝑥, 𝑦 ∈ 𝐶, 𝑡 ≥ 0, 𝑛 ∈ N.
(10)
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Remark 4. According to the definitions, it is obvious that a
pseudocontractive semigroup is a strict pseudocontractive
semigroupwith 𝜂(𝑡) = 0, and a strict pseudocontractive semi-
group is an asymptotically strict pseudocontractive semi-
group with 𝑘

𝑛
= 1. An asymptotically strict pseudocontract-

ive semigroup is a (𝜂, {𝜇
𝑛
}, {𝜉
𝑛
}, 𝜙)-total asymptotically strict

pseudocontractive semigroupwith 𝜙(𝑡) = 𝑡
2, 𝜇
𝑛
= 𝑘
𝑛
−1, and

𝜉
𝑛
= 0.

Definition 5 (see [11]). The normalized duality mapping 𝐽 of a
Banach space 𝐸 is said to be weakly sequential continuous; if
for all {𝑥

𝑛
} ⊂ 𝐸,𝑥

𝑛
⇀ 𝑥, then there exist 𝑗(𝑥

𝑛
) ∈ 𝐽(𝑥

𝑛
), 𝑗(𝑥) ∈

𝐽(𝑥) such that 𝑗(𝑥
𝑛
)⇀̇𝑗(𝑥), where weak convergence and

weak star convergence are denoted by⇀ and ⇀̇, respectively.

In order to prove the main results of this paper, the
following lemmas should be used.

Lemma 6 (see [4]). For any 𝑥, 𝑦 ∈ 𝐸, one has
𝑥 + 𝑦



2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝑗 (𝑥 − 𝑦)⟩ ,

∀𝑗 (𝑥 − 𝑦) ∈ 𝐽 (𝑥 − 𝑦) .

(11)

Lemma 7 (see [12]). Let {𝑎
𝑛
}, {𝑏
𝑛
}, and {𝛿

𝑛
} be the sequences

of R+, which satisfy

𝑎
𝑛+1

≤ (1 + 𝛿
𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
, ∀𝑛 ≥ 1. (12)

If∑∞
𝑛=1

𝛿
𝑛
< ∞, ∑∞

𝑛=1
𝑏
𝑛
< ∞, then the limit lim

𝑛→∞
𝑎
𝑛
exists.

3. Main Results

Theorem 8. Let 𝐶 be a nonempty closed convex subset of a
real Banach space 𝐸, and let T := {𝑇(𝑡) : 𝐶 → 𝐶, 𝑡 ≥ 0}

be a uniformly Lipschitzian and (𝜂, {𝜇
𝑛
}, {𝜉
𝑛
}, 𝜙)-total asymp-

totically strict pseudocontractive semigroup defined in Defini-
tion 3. Suppose that 𝐹(T) := ⋂

𝑡≥0
𝐹(𝑇(𝑡)) ̸= 0 and there exists

a compact subset 𝐾 of 𝐸 such that ⋂
𝑡≥0

𝑇(𝑡)(𝐶) ⊆ 𝐾. We
assume that there exist positive constants𝑀 and𝑀∗, such that
𝜙(𝑥) ≤ 𝑀

∗

𝑥
2 for all 𝑥 ≥ 𝑀. Let {𝑥

𝑛
} be the sequence defined

by the modified Ishikawa type iteration algorithm:

𝑥
1
∈ 𝐶, chosen arbitrarily,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇
𝑛

(𝑡) 𝑥
𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇
𝑛

(𝑡) 𝑦
𝑛
.

(13)

Then {𝑥
𝑛
} converges strongly to a common fixed point 𝑥∗ ∈

𝐹(T) in 𝐶, if the following conditions are satisfied:

(i) ∑∞
𝑛=1

𝛼
2

𝑛
< ∞, ∑∞

𝑛=1
𝛼
𝑛
= ∞, ∑∞

𝑛=1
𝛼
𝑛
𝜇
𝑛
< ∞, and

∑
∞

𝑛=1
𝛼
𝑛
𝜉
𝑛
< ∞;

(ii) 𝛽
𝑛
→ 0 as 𝑛 → ∞, ∑∞

𝑛=1
𝛼
𝑛
𝛽
𝑛
< ∞;

(iii) 𝜂 = inf
𝑡≥0
𝜂(𝑡) > 0, 𝐿 = sup

𝑡≥0
𝐿(𝑡) < +∞.

Proof. We divide the proof into four steps.
Step 1. Firstly, we prove that lim

𝑛→∞
‖𝑥 − 𝑝‖ exists for any

𝑝 ∈ 𝐹(T).

By the definitions of 𝑇(𝑡) and {𝑥
𝑛
}, we have

𝑇
𝑛

(𝑡) 𝑥
𝑛
− 𝑝

 ≤ 𝐿
𝑥𝑛 − 𝑝

 ,

𝑦𝑛 − 𝑝
 =

(1 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑇
𝑛

(𝑡) 𝑥
𝑛
− 𝑝



≤ (1 − 𝛽
𝑛
)
𝑥𝑛 − 𝑝

 + 𝛽𝑛
𝑇
𝑛

(𝑡) 𝑥
𝑛
− 𝑝



≤ (1 − 𝛽
𝑛
+ 𝛽
𝑛
𝐿)
𝑥𝑛 − 𝑝



≤ (1 + 𝐿)
𝑥𝑛 − 𝑝

 ,

𝑇
𝑛

(𝑡) 𝑦
𝑛
− 𝑝

 ≤ 𝐿
𝑦𝑛 − 𝑝

 ≤ 𝐿 (1 + 𝐿)
𝑥𝑛 + 𝑝

 .

(14)

This follows from that

𝑥𝑛+1 − 𝑝
 =

(1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑇
𝑛

(𝑡) 𝑦
𝑛
− 𝑝



≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝

 + 𝛼𝑛
𝑇
𝑛

(𝑡) 𝑦
𝑛
− 𝑝



≤ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝

 + 𝛼𝑛𝐿 (1 + 𝐿)
𝑥𝑛 − 𝑝



≤ (1 + 𝐿 + 𝐿
2

)
𝑥𝑛 − 𝑝

 ,

𝑦𝑛 − 𝑥𝑛
 =

(1 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑇
𝑛

(𝑡) 𝑥
𝑛
− 𝑥
𝑛



= 𝛽
𝑛

𝑥𝑛 − 𝑇
𝑛

(𝑡) 𝑥
𝑛



≤ 𝛽
𝑛
(
𝑥𝑛 − 𝑝

 +
𝑇
𝑛

(𝑡) 𝑥
𝑛
− 𝑝

)

≤ 𝛽
𝑛
(1 + 𝐿)

𝑥𝑛 − 𝑝
 ,

𝑇
𝑛

(𝑡) 𝑦
𝑛
− 𝑥
𝑛

 ≤
𝑇
𝑛

(𝑡) 𝑦
𝑛
− 𝑝

 +
𝑥𝑛 − 𝑝



≤ (1 + 𝐿 + 𝐿
2

)
𝑥𝑛 − 𝑝

 ,

𝑥𝑛+1 − 𝑥𝑛
 =

(1 − 𝛼𝑛) 𝑥𝑛 + 𝛼𝑛𝑇
𝑛

(𝑡) 𝑦
𝑛
− 𝑥
𝑛



≤ 𝛼
𝑛

𝑇
𝑛

(𝑡) 𝑦
𝑛
− 𝑥
𝑛



≤ 𝛼
𝑛
(1 + 𝐿 + 𝐿

2

)
𝑥𝑛 − 𝑝

 .

(15)

SinceT := {𝑇(𝑡) : 𝐶 → 𝐶, 𝑡 ≥ 0} is total asymptotically
strict pseudocontractive semigroup, for any point 𝑥

𝑛+1
∈ 𝐶

and 𝑝 ∈ 𝐹(T), by (9), we have

⟨𝑇
𝑛

(𝑡) 𝑥
𝑛+1

− 𝑥
𝑛+1

, 𝑗 (𝑥
𝑛+1

− 𝑝)⟩

≤ −𝜂 (𝑡)
𝑇
𝑛

(𝑡) 𝑥
𝑛+1

− 𝑥
𝑛+1

 + 𝜇𝑛𝜙 (
𝑥𝑛+1 − 𝑝

) + 𝜉𝑛.

(16)

Since 𝜙 is an increasing function, it results in that 𝜙(𝑥) ≤
𝜙(𝑀), if 𝑥 ≤ 𝑀; 𝜙(𝑥) ≤ 𝑀

∗

𝑥
2, if 𝑥 ≥ 𝑀. In either case, we

can obtain that

𝜙 (𝑥) ≤ 𝜙 (𝑀) +𝑀
∗

𝑥
2

. (17)
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Hence, by Lemma 6, we have
𝑥𝑛+1 − 𝑝



2

=
𝑥𝑛 − 𝑝 + 𝛼𝑛 (𝑇

𝑛

(𝑡) 𝑦
𝑛
− 𝑥
𝑛
)


2

≤
𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛
⟨𝑇
𝑛

(𝑡) 𝑦
𝑛
− 𝑇
𝑛

(𝑡) 𝑥
𝑛
, 𝑗 (𝑥
𝑛+1

− 𝑝)⟩

+ 2𝛼
𝑛
⟨𝑇
𝑛

(𝑡) 𝑥
𝑛
− 𝑇
𝑛

(𝑡) 𝑥
𝑛+1

, 𝑗 (𝑥
𝑛+1

− 𝑝)⟩

+ 2𝛼
𝑛
⟨𝑇
𝑛

(𝑡) 𝑥
𝑛+1

− 𝑥
𝑛+1

, 𝑗 (𝑥
𝑛+1

− 𝑝)⟩

+ 2𝛼
𝑛
⟨𝑥
𝑛+1

− 𝑥
𝑛
, 𝑗 (𝑥
𝑛+1

− 𝑝)⟩

≤
𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛
𝐿
𝑦𝑛 − 𝑥𝑛

 ⋅
𝑥𝑛+1 − 𝑝



+ 2𝛼
𝑛

𝑥𝑛 − 𝑥𝑛+1
 ⋅
𝑥𝑛+1 − 𝑝



− 2𝛼
𝑛
𝜂 (𝑡)

𝑇
𝑛

(𝑡)𝑥
𝑛+1

− 𝑥
𝑛+1



2

+ 2𝛼
𝑛

𝑥𝑛 − 𝑥𝑛+1
 ⋅
𝑥𝑛+1 − 𝑝



+ 2𝛼
𝑛
𝜇
𝑛
𝜙 (
𝑥𝑛+1 − 𝑝

) + 2𝛼𝑛𝜉𝑛

≤
𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛
𝛽
𝑛
𝐿 (1 + 𝐿) (1 + 𝐿 + 𝐿

2

)
𝑥𝑛 − 𝑝



2

+ 2𝛼
2

𝑛
(1 + 𝐿 + 𝐿

2

)
2𝑥𝑛 − 𝑝



2

− 2𝛼
𝑛
𝜂 (𝑡)

𝑇
𝑛

(𝑡)𝑥
𝑛+1

− 𝑥
𝑛+1



2

+ 2𝛼
2

𝑛
(1 + 𝐿 + 𝐿

2

)
2𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛
𝜇
𝑛
[𝜙 (𝑀) +𝑀

∗

(1 + 𝐿 + 𝐿
2

)
𝑥𝑛 − 𝑝



2

]

+ 2𝛼
𝑛
𝜉
𝑛

= (1 + 𝛿
𝑛
)
𝑥𝑛 − 𝑝



2

+ 𝑏
𝑛
,

(18)

where 𝛿
𝑛
= [2𝛼

𝑛
𝛽
𝑛
𝐿(1 + 𝐿) + 4𝛼

2

𝑛
(1 + 𝐿 + 𝐿

2

) + 2𝑀
∗

𝛼
𝑛
𝜇
𝑛
]

(1 + 𝐿 + 𝐿
2

), 𝑏
𝑛
= 2𝛼
𝑛
𝜇
𝑛
𝜙(𝑀) + 2𝛼

𝑛
𝜉
𝑛
.

By the conditions (i) and (ii), we have ∑∞
𝑛=1

𝛿
𝑛
< ∞,

∑
∞

𝑛=1
𝑏
𝑛

< ∞. Thus, by Lemma 7, we can obtain that
lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ exists.

Step 2. Now we prove that lim inf
𝑛→∞

‖𝑥
𝑛
− 𝑇
𝑛

(𝑡)𝑥
𝑛
‖ = 0.

From (18), we know that

2𝛼
𝑛
𝜂 (𝑡)

𝑇
𝑛

(𝑡) 𝑥
𝑛+1

− 𝑥
𝑛+1



2

≤ (
𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

) + 𝛿
𝑛

𝑥𝑛 − 𝑝


2

+ 𝑏
𝑛
.

(19)

As 𝜂 = inf
𝑡≥0
𝜂(𝑡) > 0, 𝐴 = sup

𝑛
‖𝑥
𝑛
− 𝑝‖ < ∞, we can have

𝑚

∑

𝑛=1

2𝛼
𝑛
𝜂
𝑇
𝑛

(𝑡)𝑥
𝑛+1

− 𝑥
𝑛+1



2

≤

𝑚

∑

𝑛=1

[(
𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

) + 𝛿
𝑛
𝐴
2

+ 𝑏
𝑛
]

≤
𝑥1 − 𝑝



2

+ 𝐴
2

𝑚

∑

𝑛=1

𝛿
𝑛
+

𝑚

∑

𝑛=1

𝑏
𝑛
.

(20)

Then,
∞

∑

𝑛=1

2𝛼
𝑛
𝜂
𝑇
𝑛

(𝑡) 𝑥
𝑛+1

− 𝑥
𝑛+1



2

≤

∞

∑

𝑛=1

[(
𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

) + 𝛿
𝑛
𝐴
2

+ 𝑏
𝑛
]

≤
𝑥1 − 𝑝



2

+ 𝐴
2

∞

∑

𝑛=1

𝛿
𝑛
+

∞

∑

𝑛=1

𝑏
𝑛
< ∞.

(21)

Since ∑∞
𝑛=1

𝛼
𝑛
= ∞, then (21) implies that

lim inf
𝑛→∞

𝑥𝑛+1 − 𝑇
𝑛

(𝑡) 𝑥
𝑛+1

 = 0. (22)

Otherwise, if lim inf
𝑛→∞

‖𝑥
𝑛+1

−𝑇
𝑛

(𝑡)𝑥
𝑛+1

‖ = 𝑐 > 0, then
there exists an𝑁, such that ‖𝑥

𝑛
−𝑇
𝑛

(𝑡)𝑥
𝑛
‖ ≥ 𝑐/2, when 𝑛 ≥ 𝑁.

So, we have

∞

∑

𝑛=1

2𝛼
𝑛
𝜂
𝑇
𝑛

(𝑡) 𝑥
𝑛+1

− 𝑥
𝑛+1



2

=

𝑁

∑

𝑛=1

2𝛼
𝑛
𝜂
𝑇
𝑛

(𝑡)𝑥
𝑛+1

− 𝑥
𝑛+1



2

+

∞

∑

𝑛=𝑁

2𝛼
𝑛
𝜂
𝑇
𝑛

(𝑡)𝑥
𝑛+1

− 𝑥
𝑛+1



2

≥

𝑁

∑

𝑛=1

2𝛼
𝑛
𝜂
𝑇
𝑛

(𝑡) 𝑥
𝑛+1

− 𝑥
𝑛+1



2

+
𝑐
2

2𝜂

∞

∑

𝑛=𝑁

𝛼
𝑛
= ∞.

(23)

This is in contradiction with (21).
Because

𝑥𝑛 − 𝑇
𝑛

(𝑡) 𝑥
𝑛



≤
𝑥𝑛 − 𝑥𝑛+1

 +
𝑥𝑛+1 − 𝑇

𝑛

(𝑡) 𝑥
𝑛+1



+
𝑇
𝑛

(𝑡) 𝑥
𝑛+1

− 𝑇
𝑛

(𝑡) 𝑥
𝑛



≤
𝑥𝑛+1 − 𝑇

𝑛

(𝑡) 𝑥
𝑛+1

 + (1 + 𝐿)
𝑥𝑛 − 𝑥𝑛+1



≤
𝑥𝑛+1 − 𝑇

𝑛

(𝑡) 𝑥
𝑛+1



+ 𝛼
𝑛
(1 + 𝐿) (1 + 𝐿 + 𝐿

2

)𝐴

(24)

and lim
𝑛→∞

𝛼
𝑛
= 0, we have

lim inf
𝑛→∞

𝑥𝑛 − 𝑇
𝑛

(𝑡) 𝑥
𝑛

 = 0. (25)

Step 3. Now we prove that lim inf
𝑛→∞

‖𝑥
𝑛
− 𝑇(𝑡)𝑥

𝑛
‖ = 0.



Abstract and Applied Analysis 5

Consider
𝑥𝑛+1 − 𝑇 (𝑡) 𝑥𝑛+1



≤

𝑥
𝑛+1

− 𝑇
𝑛+1

(𝑡) 𝑥
𝑛+1



+

𝑇
𝑛+1

(𝑡) 𝑥
𝑛+1

− 𝑇 (𝑡) 𝑥
𝑛+1



≤

𝑥
𝑛+1

− 𝑇
𝑛+1

(𝑡) 𝑥
𝑛+1



+ 𝐿
𝑇
𝑛

(𝑡) 𝑥
𝑛+1

− 𝑥
𝑛+1



≤

𝑥
𝑛+1

− 𝑇
𝑛+1

(𝑡) 𝑥
𝑛+1



+ 𝐿 (
𝑇
𝑛

(𝑡) 𝑥
𝑛
− 𝑇
𝑛

(𝑡) 𝑥
𝑛



+
𝑇
𝑛

(𝑡) 𝑥
𝑛
− 𝑥
𝑛

 +
𝑥𝑛 − 𝑥𝑛+1

)

≤

𝑥
𝑛+1

− 𝑇
𝑛+1

(𝑡) 𝑥
𝑛+1


+ 𝐿

𝑇
𝑛

(𝑡) 𝑥
𝑛
− 𝑥
𝑛



+ 𝐿 (1 + 𝐿)
𝑥𝑛 − 𝑥𝑛+1



≤

𝑥
𝑛+1

− 𝑇
𝑛+1

(𝑡) 𝑥
𝑛+1


+ 𝐿

𝑇
𝑛

(𝑡) 𝑥
𝑛
− 𝑥
𝑛



+ 𝛼
𝑛
𝐿 (1 + 𝐿) (1 + 𝐿 + 𝐿

2

)𝐴.

(26)

Since lim
𝑛→∞

𝛼
𝑛
= 0 and (25), we have

lim inf
𝑛→∞

𝑥𝑛 − 𝑇 (𝑡) 𝑥𝑛
 = 0. (27)

Thus, there exists a subsequence {𝑥
𝑛
𝑘

} ⊆ {𝑥
𝑛
} such that

lim
𝑛→∞


𝑥
𝑛
𝑘

− 𝑇 (𝑡) 𝑥
𝑛
𝑘


= 0. (28)

Step 4. Finally, we prove the sequence {𝑥
𝑛
} converges strongly

to a common fixed point of the semigroupT := {𝑇(𝑡) : 𝐶 →

𝐶, 𝑡 ≥ 0}.
Since 𝐾 is a compact subset of 𝐸 and ⋂

𝑡≥0
𝑇(𝑡)(𝐶) ⊆ 𝐾,

just as the proof in [9, 10], there exists a subsequence {𝑥
𝑛
𝑘
𝑖

} ⊆

{𝑥
𝑛
𝑘

} ⊆ {𝑥
𝑛
} ⊆ 𝐶, such that 𝑇(𝑡)𝑥

𝑛
𝑘
𝑖

→ 𝑥
∗

∈ 𝐾. From (28),
we have lim

𝑛
𝑘
𝑖

→∞
‖𝑇(𝑡)𝑥

𝑛
𝑘
𝑖

− 𝑥
𝑛
𝑘
𝑖

‖ = 0, and


𝑥
𝑛
𝑘
𝑖

− 𝑥
∗

≤

𝑥
𝑛
𝑘
𝑖

− 𝑇 (𝑡) 𝑥
𝑛
𝑘
𝑖


+

𝑇 (𝑡) 𝑥

𝑛
𝑘
𝑖

− 𝑥
∗

→ 0.

(29)

Hence we have that
𝑇 (𝑡) 𝑥

∗

− 𝑥
∗ = lim
𝑛
𝑘
𝑖

→∞


𝑥
𝑛
𝑘
𝑖

− 𝑇 (𝑡) 𝑥
𝑛
𝑘
𝑖


= 0. (30)

That is, 𝑥∗ ∈ 𝐹(T).
Since, for any 𝑝 ∈ 𝐹(T), lim

𝑛→∞
‖𝑥
𝑛
− 𝑝‖ exists,

lim
𝑛
𝑘
𝑖

→∞
‖𝑥
𝑛
𝑘
𝑖

− 𝑥
∗

‖ = 0, and {𝑥
𝑛
𝑘
𝑖

} ⊆ {𝑥
𝑛
}, so we have

lim
𝑛→∞

‖𝑥
𝑛
− 𝑝‖ = 0; that is, 𝑥

𝑛
converges strongly to an

element 𝑥∗ = 𝑝 of 𝐹(T).

Remark 9. (a) If we take 𝛽
𝑛
= 0 in themodified Ishikawa type

iteration algorithm (13), then (13) is called themodifiedMann
type iteration algorithm in many articles, such as in [9, 10].
(b) In Theorem 8, because there is no limit to 𝑡 of 𝑇(𝑡), so

our result is stronger and the conditions here are less than in
[9, 10]. For example, the conditions “for any bounded subset
𝐷 ⊂ 𝐶,

lim
𝑛→∞

sup
𝑥∈𝐷,𝑠∈R+

𝑇
𝑛

(𝑠 + 𝑡
𝑛
) 𝑥 − 𝑇

𝑛

(𝑡
𝑛
) 𝑥
 = 0” (31)

in [9, 10] can be removed in Theorem 8. (c) The condition
“there exists a compact subset𝐾 of𝐸 such that⋂

𝑡≥0
𝑇(𝑡)(𝐶) ⊆

𝐾” does not look natural. But it easy to see that this condition
is established naturally whenwe assume𝐶 is a compact subset
of 𝐸. So, the result inTheorem 8 is still true if this condition is
replaced by the condition “let 𝐶 be a compact subset of 𝐸.” If
there is no compactness assumption, we can get the following
weak convergence theorem.

Theorem 10. Let 𝐸 be a reflexive Banach space satisfying the
opial condition and 𝐶 be a nonempty bounded closed convex
subset of 𝐸. Let T := {𝑇(𝑡) : 𝐶 → 𝐶, 𝑡 ≥ 0} be a uniformly
Lipschitzian and (𝜂, {𝜇

𝑛
}, {𝜉
𝑛
}, 𝜙)-total asymptotically strict

pseudocontractive semigroup defined by Definition 3. Suppose
that there exist positive constants𝑀 and𝑀∗, such that 𝜙(𝑥) ≤
𝑀
∗

𝑥
2, for all 𝑥 ≥ 𝑀, and 𝐹(T) := ⋂

𝑡≥0
𝐹(𝑇(𝑡)) ̸= 0. Let {𝑥

𝑛
}

be the sequence defined by (13). Then {𝑥
𝑛
} converges weakly

to a common fixed point 𝑥∗ ∈ 𝐹(T) in 𝐶, if the following
conditions are satisfied.

(i) ∑∞
𝑛=1

𝛼
2

𝑛
< ∞, ∑∞

𝑛=1
𝛼
𝑛

= ∞, ∑∞
𝑛=1

𝛼
𝑛
𝜇
𝑛

< ∞,
∑
∞

𝑛=1
𝛼
𝑛
𝜉
𝑛
< ∞.

(ii) 𝛽
𝑛
→ 0 as 𝑛 → ∞, and ∑∞

𝑛=1
𝛼
𝑛
𝛽
𝑛
< ∞.

(iii) 𝜆 = inf
𝑡≥0
𝜆(𝑡) > 0, 𝐿 = sup

𝑡≥0
𝐿(𝑡) < +∞.

Proof. It can be proved just like the proof in Theorem 8 that,
for each 𝑝 ∈ 𝐹(T), lim

𝑛→∞
‖𝑥
𝑛
− 𝑝‖ exists, and, for all 𝑡 > 0,

𝑇(𝑡)𝑥
𝑛
is bounded, lim inf ‖𝑇(𝑡)𝑥

𝑛
− 𝑥
𝑛
‖ = 0. Thus, there

exists a subsequence {𝑥
𝑛
𝑘

} ⊆ {𝑥
𝑛
} such that lim

𝑛→∞
‖𝑥
𝑛
𝑘

−

𝑇(𝑡)𝑥
𝑛
𝑘

‖ = 0.
Nowwe prove that 𝐼−𝑇(𝑡) is demiclosed at zero (see [11]).
Since𝐶 is a closed and convex subset of a reflexive Banach

space𝐸, there exists a subsequence {𝑥
𝑛
𝑘
𝑖

} ⊆ {𝑥
𝑛
𝑘

} ⊆ {𝑥
𝑛
}, such

that 𝑥
𝑛
𝑘
𝑖

⇀ 𝑥
∗

∈ 𝐶.Without loss of generality, we can assume
that {𝑥

𝑛
} replaces {𝑥

𝑛
𝑘
𝑖

} now.
In the following, we prove that 𝑥∗ = 𝑇(𝑡)𝑥

∗.
Firstly, we choose 𝛼 ∈ (0, 1/(1 + 𝐿)) and 𝑦

𝑚
= (1 − 𝛼)𝑥 +

𝑇
𝑚

(𝑡)𝑥 for 𝑚 ≥ 1. Since 𝑇(𝑡) is uniformly Lipschitzian, we
have

𝑥𝑛 − 𝑇
𝑚

(𝑡) 𝑥
𝑛

 ≤

𝑚−1

∑

𝑘=0


𝑇
𝑘

(𝑡) 𝑥
𝑛
− 𝑇
𝑘+1

(𝑡) 𝑥
𝑛



≤

𝑚−1

∑

𝑘=0

𝐿
𝑥𝑛 − 𝑇 (𝑡) 𝑥𝑛



= 𝑚𝐿
𝑥𝑛 − 𝑇 (𝑡) 𝑥𝑛

 → 0, 𝑛 → ∞.

(32)
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Because 𝑇(𝑡) is totally asymptotically strictly pseudocon-
tractive, we have
⟨(𝐼 − 𝑇

𝑚

(𝑡)) 𝑦
𝑚
, 𝐽 (𝑥 − 𝑦

𝑚
)⟩

= ⟨(𝐼 − 𝑇
𝑚

(𝑡)) 𝑦
𝑚
, 𝐽 (𝑥 − 𝑦

𝑚
) − 𝐽 (𝑥

𝑛
− 𝑦
𝑚
)⟩

+ ⟨(𝐼 − 𝑇
𝑚

(𝑡)) 𝑦
𝑚
, 𝐽 (𝑥
𝑛
− 𝑦
𝑚
)⟩

= ⟨(𝐼 − 𝑇
𝑚

(𝑡)) 𝑦
𝑚
, 𝐽 (𝑥 − 𝑦

𝑚
) − 𝐽 (𝑥

𝑛
− 𝑦
𝑚
)⟩

+ ⟨(𝐼 − 𝑇
𝑚

(𝑡)) 𝑥
𝑛
, 𝐽 (𝑥
𝑛
− 𝑦
𝑚
)⟩

+ ⟨(𝐼 − 𝑇
𝑚

(𝑡)) 𝑦
𝑚
− (𝐼 − 𝑇

𝑚

(𝑡)) 𝑥
𝑛
, 𝐽 (𝑥
𝑛
− 𝑦
𝑚
)⟩

= ⟨(𝐼 − 𝑇
𝑚

(𝑡)) 𝑦
𝑚
, 𝐽 (𝑥 − 𝑦

𝑚
) − 𝐽 (𝑥

𝑛
− 𝑦
𝑚
)⟩

+ ⟨(𝐼 − 𝑇
𝑚

(𝑡)) 𝑥
𝑛
, 𝐽 (𝑥
𝑛
− 𝑦
𝑚
)⟩

− 𝜂 (𝑡)
(𝐼 − 𝑇

𝑚

(𝑡)) 𝑥
𝑛
− (𝐼 − 𝑇

𝑚

(𝑡)) 𝑦
𝑚



2

+ 𝜇
𝑛
𝜙 (
𝑥𝑛 − 𝑦𝑛

) + 𝜉𝑛

≤ ⟨(𝐼 − 𝑇
𝑚

(𝑡)) 𝑦
𝑚
, 𝐽 (𝑥 − 𝑦

𝑚
) − 𝐽 (𝑥

𝑛
− 𝑦
𝑚
)⟩

+ ⟨(𝐼 − 𝑇
𝑚

(𝑡)) 𝑥
𝑛
, 𝐽 (𝑥
𝑛
− 𝑦
𝑛
)⟩

+ 𝜇
𝑛
(𝑀 +𝑀

∗𝑥𝑛 − 𝑦𝑚


2

) + 𝜉
𝑛
.

(33)

Since 𝑥
𝑛
⇀ 𝑥
∗, lim
𝑛→∞

‖𝑥
𝑛
−𝑇(𝑡)𝑥

𝑛
‖ = 0 (note the 𝑥

𝑛
of here

instead of 𝑥
𝑛
𝑘
𝑖

), and 𝐽 is weakly sequential continuous duality
mapping, we have

⟨(𝐼 − 𝑇
𝑚

(𝑡)) 𝑥
∗

− (𝐼 − 𝑇
𝑚

(𝑡)) 𝑦
𝑚
, 𝐽 (𝑥
∗

− 𝑦
𝑚
)⟩

≤ (1 + 𝐿)
𝑥
∗

− 𝑦
𝑚



2

≤ (1 + 𝐿) 𝛼
2𝑥
∗

− 𝑇
𝑚

(𝑡)𝑥
∗

2

.

(34)

Hence
𝑥
∗

− 𝑇
𝑚

(𝑡)𝑥
∗

2

= ⟨𝑥
∗

− 𝑇
𝑚

(𝑡) 𝑥
∗

, 𝐽 (𝑥
∗

− 𝑇
𝑚

(𝑡) 𝑥
∗

)⟩

=
1

𝛼
⟨𝑥
∗

− 𝑇
𝑚

(𝑡) 𝑥
∗

, 𝐽 (𝑥
∗

− 𝑦
𝑚
)⟩

=
1

𝛼
⟨𝑥
∗

−𝑇
𝑚

(𝑡) 𝑥
∗

−(𝑦
𝑚
− 𝑇
𝑚

(𝑡) 𝑦
𝑚
) , 𝐽 (𝑥

∗

− 𝑦
𝑚
)⟩

+
1

𝛼
⟨𝑦
𝑚
− 𝑇
𝑚

(𝑡) 𝑦
𝑚
, 𝐽 (𝑥
∗

− 𝑦
𝑚
)⟩

≤ 𝛼 (1 + 𝐿)
𝑥
∗

− 𝑇
𝑚

(𝑡) 𝑥
∗

2

+
1

𝛼
(𝜇
𝑚
𝑀+ 𝜇

𝑚
𝑀
∗

(diam𝐶) + 𝜉
𝑛
) .

(35)

This implies that

𝛼 (1 − 𝛼 (1 + 𝐿))
𝑥
∗

− 𝑇
𝑚

(𝑡) 𝑥
∗

2

≤ 𝜇
𝑚
𝑀+ 𝜇

𝑚
𝑀
∗

(diam𝐶) + 𝜉
𝑛
, ∀𝑚 ∈ N.

(36)

Let𝑚 → ∞; thenwe have ‖𝑥∗−𝑇𝑚(𝑡)𝑥∗‖ → 0, as𝑚 → ∞,
for 𝜇
𝑛
→ 0, 𝜉

𝑛
→ 0. Hence, 𝑇𝑚(𝑡)𝑥∗ → 𝑥

∗, as 𝑚 → ∞,
and 𝑇𝑚+1(𝑡)𝑥∗ → 𝑇(𝑡)𝑥

∗. By the continuity of 𝑇(𝑡), we have
𝑇(𝑡)𝑥
∗

= 𝑥
∗.

Now, for the sequence {𝑥
𝑛
} generated by (13), we prove

that 𝑥
𝑛
⇀ 𝑥
∗.

Suppose the contrary; if there exists another subsequence
{𝑥
𝑛
𝑗

} ⊂ {𝑥
𝑛
}, such that 𝑥

𝑛
𝑗

⇀ 𝑦
∗ with 𝑦∗ ̸= 𝑥

∗, then we have
that lim

𝑛→∞
‖𝑥
𝑛
− 𝑥
∗

‖ and lim
𝑛→∞

‖𝑥
𝑛
− 𝑦
∗

‖ exist. Since 𝐸
satisfies the Opial condition, we have

lim inf
𝑛
𝑘
𝑖

→∞


𝑥
𝑛
𝑘
𝑖

− 𝑥
∗


< lim
𝑛
𝑘
𝑖

→∞


𝑥
𝑛
𝑘
𝑖

− 𝑦
∗

= lim
𝑛→∞

𝑥𝑛 − 𝑦
∗

= lim
𝑛
𝑗
→∞


𝑥
𝑛
𝑗

− 𝑦
∗

< lim inf
𝑛
𝑗
→∞


𝑥
𝑛
𝑗

− 𝑥
∗


= lim
𝑛→∞

𝑥𝑛 − 𝑥
∗ = lim inf
𝑛
𝑘
𝑖

→∞


𝑥
𝑛
𝑘
𝑖

− 𝑥
∗

.

(37)

This is a contraction, which shows 𝑥∗ = 𝑦
∗. Therefore, 𝑥

𝑛
⇀

𝑥
∗

∈ 𝐹(T). This completes the proof.

Remark 11. (a) Our results extend many other results that
have been proved for this important class of general pseu-
docontractive mappings. For example, we extend the total
asymptotically strict pseudocontractive mapping in [1] and
Lipschitzian pseudo-contraction semigroup in [8] to the
total asymptotically strict pseudocontractive semigroup. (b)
In addition, we study the weak convergence of the total
asymptotically strict pseudocontractive semigroup by using
the demiclosedness of 𝐼 − 𝑇(𝑡) which, in some way, extends
the result in [11] in Banach spaces. (c) And the method by
using the subsequence of a subsequence of the sequence {𝑥

𝑛
}

in this paper is different from the previous references.
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