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By using surjectivity theorem of pseudomonotone and coercive operators rather than the KKM theorem and fixed point theorem
used in recent literatures, we obtain some conditions under which a system of generalized variational-hemivariational inequalities
concerning set-valued mappings, which includes as special cases many problems of hemivariational inequalities studied in recent
literatures, is solvable. As an application, we prove an existence theorem of solutions for a system of generalized variational-
hemivariational inequalities involving integrals of Clarke’s generalized directional derivatives.

1. Introduction

Let 𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑛
be real, separable, reflexive Banach spaces

with dual spaces 𝑉∗
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, . . . , 𝑉
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𝑖
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∗
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the duality pairing between Banach space 𝐸 and its dual 𝐸∗
and by ‖ ⋅ ‖

𝐸
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∗ the norms on the space 𝐸 and its dual
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tional on the product space ∏
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𝑘=1
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𝑋
1
, . . . , 𝑋
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, which is locally Lipschitz with respect to each

component; that is, for all 𝑖 = 1, 2, . . . , 𝑛, the functionals
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1
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2
, . . . , 𝑥
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→ 𝑅 are locally Lip-

schitz for all fixed 𝑥
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, 𝑗 ̸= 𝑖, and 𝐺

𝑖
: 𝑉
𝑖
→ 𝑅 ∪ {+∞},

𝑖 = 1, 2, . . . , 𝑛 are proper, convex, and lower semicontinuous

functionals. In this paper, we study a system of general-
ized variational-hemivariational inequalities concerning set-
valued mappings, which is specified as follows.

For all 𝑖 = 1, 2, . . . , 𝑛, find 𝑢
𝑖
∈ 𝑉
𝑖
and 𝜇
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partial generalized directional derivative (in the sense of
Clarke) of the functional 𝐽, which is locally Lipschitz for each
component, with respect to the 𝑖th component at the point
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𝑖
∈ 𝑋
𝑖
in the direction V̂
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for all given 𝑢̂

𝑗
∈ 𝑋
𝑗
, 𝑗 ̸= 𝑖,
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(û; V̂
𝑖
− 𝑢̂
𝑖
)

= lim sup
𝑥→ 𝑢̂

𝑖
,𝜆↓0

𝐽 (𝑢̂
1
, . . . , 𝑢̂

𝑖−1
, 𝑥 + 𝜆 (V̂

𝑖
− 𝑢̂
𝑖
) , 𝑢̂
𝑖+1
, . . . , 𝑢̂

𝑛
)

𝜆



2 Journal of Applied Mathematics

−
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, 𝑥, 𝑢̂
𝑖+1
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𝑛
)

𝜆
.

(2)

In the last few years, there are many researchers who ded-
icated themselves to the study of various types of hemivaria-
tional inequalities and systems of hemivariational inequali-
ties, which are a generalization of the variational inequalities,
and related problems such as equilibrium problems. In these
papers, based on Clarke’s generalized directional derivative
and Clarke’s generalized gradient for locally Lipchitz func-
tions, the researchers study the existence and uniqueness
of solution by mainly using KKM theorems, surjectivity
theorems for pseudomonotone and coercive operators, fixed
point theorems, critical point theory, and so on. We refer
readers for the study of hemivariational inequalities tomono-
graphs of Carl et al. [1], Migórski et al. [2], Naniewicz and
Panagiotopoulos [3], andPanagiotopoulos [4]. For the system
of hemivariational inequalities, Denkowski and Migórski
[5] studied a dynamic thermoviscoelastic frictional contact
problem which was modeled by a system of evolution
hemivariational inequalities. They proved the existence and
uniqueness of the weak solution for the problem by using
a surjectivity result for operators of pseudomonotone type.
In 2011, Repovš and Varga [6] studied the Nash equilibrium
point by using the Ky Fan version of the KKM theorem and
the Tarafdar fixed point theorem for a class of hemivariational
inequality system. It is obvious that some problems studied
in literatures are special cases of our system of generalized
variational-hemivariational inequalities under some special
conditions, such as 𝑛 = 1, 𝐴

𝑖
are single-valued, or 𝐺

𝑖
are

indicators of some convex subsets 𝐾
𝑖
for 𝑖 = 1, 2, . . . , 𝑛.

Although it seems that our problem (P) cannot include the
problem studied in [6] as a special case, we remark here that,
in essence, the problem (P) is a generalization of the problem
in [6] since, when 𝐴

𝑖
(𝑖 = 1, 2, . . . , 𝑛) are single-valued and

𝐺
𝑖
are the indicators of the convex subsets 𝐾

𝑖
, the problem

(P) reduces to the problem studied by Repovš and Varga [6]
with 𝑇

𝑖
= 𝑆
𝑖
and 𝐴∘

𝑖
(𝑇𝑢; 𝑇

𝑖
V
𝑖
− 𝑇
𝑖
𝑢
𝑖
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𝐽
∘

𝑖
(𝑆𝑢; 𝑆
𝑖
V
𝑖
− 𝑆
𝑖
𝑢
𝑖
) under the regularity condition. For more

information on the research of hemivariational inequalities
and systems of hemivariational inequalities, we can refer to
[7–16] and references therein.

It is well known that, by surjectivity theorem of pseu-
domonotone and coercive operators, there exists solution 𝑢

𝑖

to each variational-hemivariational inequality in the system
(1) for all 𝑢

𝑗
∈ 𝑉
𝑗
, 𝑗 ̸= 𝑖 under some suitable conditions

on the operators 𝐴
𝑖
, 𝐽, and 𝐺

𝑖
. A natural question is

whether these conditions are sufficient for the existence of
solutions to the system (1) which is combined by solvable
variational-hemivariational inequalities. If not, what other
stronger conditions do we need to guarantee the solvability
of the system (1)? In this paper, we are devoted to these
questions by using surjectivity theorem of pseudomonotone
and coercive operators rather than the KKM theorem, and
the fixed point theorem used by Repovš and Varga in [6]
to obtain the existence of the solutions to the problem
(P) of a system of generalized variational-hemivariational
inequalities concerning set-valued mappings.

As will be seen in the proof of our main theorem in
Section 3, the case where 𝑛 = 𝑘 for any finite positive integer
𝑘 > 2 is a natural generalization of the case where 𝑛 = 2.
Therefore, in what follows, We will focus on the problem
of a system of two generalized variational-hemivariational
inequalities, which can be reformulated as follows. Consider
𝑢
1
∈ 𝑉
1
, 𝑢
2
∈ 𝑉
2
, 𝜇
1
∈ 𝐴
1
(𝑢) and 𝜇

2
∈ 𝐴
2
(𝑢) such that

(P󸀠)
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1
, V
1
− 𝑢
1
⟩
𝑉
∗

1
×𝑉
1
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∘

1
(𝑢̂; V̂
1
− 𝑢̂
1
)

+𝐺
1
(V
1
) − 𝐺
1
(𝑢
1
) ≥ 0, ∀V

1
∈ 𝑉
1
,

⟨𝜇
2
, V
2
− 𝑢
2
⟩
𝑉
∗

2
×𝑉
2

+ 𝐽
∘

2
(𝑢̂; V̂
2
− 𝑢̂
2
)

+𝐺
2
(V
2
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2
(𝑢
2
) ≥ 0, ∀V

2
∈ 𝑉
2
,

(3)

where 𝑢 = (𝑢
1
, 𝑢
2
), 𝑢̂ = (𝑢̂

1
, 𝑢̂
2
) = (𝑇

1
𝑢
1
, 𝑇
2
𝑢
2
) and V̂

𝑖
= 𝑇
𝑖
V
𝑖

for 𝑖 = 1, 2.
The paper is structured as follows. In Section 2, we recall

some preliminary material. Section 3 gives conditions under
which the problem (P) of a system of generalized variational-
hemivariational inequalities concerning set-valued mapping
is solvable by considering the simple case, the problem (P󸀠)
of a system of two generalized variational-hemivariational
inequalities. At last, in Section 4, we are concerned with
an application of our results to a system of generalized
variational-hemivariational inequalities involving integrals
of Clarke’s generalized directional derivatives.

2. Preliminaries

In this section, we recall some important notations and
useful results on nonlinear analysis, nonsmooth analysis, and
operators of monotone type, which can be found in [2, 3, 17,
18].

Without confusion of symbols, we suppose, just in this
section, that𝑋 is a Banach space with its dual𝑋∗ and duality
paring ⟨⋅, ⋅⟩ between 𝑋

∗ and 𝑋, 𝐺 : 𝑋 → 𝑅 ∪ {+∞}

is a proper and convex functional, and 𝐽 : 𝑋 → 𝑅

is a locally Lipschitz functional with Clarke’s generalized
directional derivative 𝐽∘(𝑢, V). We denote by 𝜕̂𝐺(𝑢) : 𝑋 →

2
𝑋
∗

\ {0} and 𝜕𝐽(𝑢) : 𝑋 → 2
𝑋
∗

\ {0} the subgradient
of the convex functional 𝐺 in the sense of convex analysis
and Clarke’s generalized gradient of the locally Lipschitz
functional 𝐽, respectively. Then,

𝜕̂𝐺 (𝑢) = {𝑢
∗
∈ 𝑋
∗
: 𝐺 (V) − 𝐺 (𝑢)

≥ ⟨𝑢
∗
, V − 𝑢⟩ , ∀V ∈ 𝑋} ,

𝜕𝐽 (𝑢) = {𝜔 ∈ 𝑋
∗
: 𝐽
∘
(𝑢, V) ≥ ⟨𝜔, V⟩ , ∀V ∈ 𝑋} .

(4)

We have the following basic properties on Clarke’s gener-
alized directional derivative andClarke’s generalized gradient
(see, e.g., [2, 17]).

Proposition 1. Let𝑋 be Banach space, and let 𝑢, V ∈ 𝑋, and 𝐽
be locally Lipschitz functional defined on 𝑋. Then one has the
following.

(1) The function V 󳨃→ 𝐽
∘
(𝑢, V) is finite, positively homoge-

neous, subadditive, and then convex on𝑋;
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(2) 𝐽∘(𝑢, V) is upper semicontinuous as a function of (𝑢, V),
but as a function of V alone, it is Lipschitz continuous
on 𝑋.

(3) 𝜕𝐽(𝑢) is a nonempty, convex, bounded, and weak∗-
compact subset of𝑋∗.

(4) For every V ∈ 𝑋, one has

𝐽
∘
(𝑢, V) = max {⟨𝜉, V⟩ : 𝜉 ∈ 𝜕𝐽 (𝑢)} . (5)

(5) The graph of the Clarke generalized gradient 𝜕𝐽(𝑢) is
closed in𝑋 × (𝑤

∗
− 𝑋
∗
) topology.

(6) The multifunction 𝑋 ∋ 𝑢 → 𝜕𝐽(𝑢) ⊆ 𝑋
∗ is upper

semicontinuous from𝑋 into 𝑤∗ − 𝑋∗.

Definition 2. A locally Lipschitz functional 𝐽 : 𝑋 → 𝑅 is said
to be regular (in the sense of Clarke) at 𝑢 ∈ 𝑋 if

(i) for all V ∈ 𝑋 the directional derivative 𝐽󸀠(𝑢, V) exists;
(ii) for all V ∈ 𝑋, 𝐽󸀠(𝑢, V) = 𝐽

∘
(𝑢, V),

where 𝐽󸀠(𝑢, V) is directional derivative of 𝐽 at 𝑢 ∈ 𝑋 in the
direction V ∈ 𝑋, which is defined by

𝐽
󸀠
(𝑢, V) = lim

𝜆↓0

𝐽 (𝑢 + 𝜆V) − 𝐽 (𝑢)
𝜆

, (6)

whenever this limit exists. The functional 𝐽 is regular (in the
sense of Clarke) on𝑋 if it is regular at every point 𝑢 ∈ 𝑋.

Proposition 3. Let 𝑋
1
and 𝑋

2
be two Banach spaces. If 𝐽 :

𝑋
1
× 𝑋
2
→ 𝑅 is locally Lipschitz and either 𝐽 or −𝐽 is regular

at 𝑢 = (𝑢
1
, 𝑢
2
) ∈ 𝑋
1
× 𝑋
2
, then

𝜕𝐽 (𝑢
1
, 𝑢
2
) ⊆ 𝜕
1
𝐽 (𝑢
1
, 𝑢
2
) × 𝜕
2
𝐽 (𝑢
1
, 𝑢
2
) , (7)

or equivalently one has

𝐽
∘
(𝑢
1
, 𝑢
2
; V
1
, V
2
) ≤ 𝐽
∘

1
(𝑢
1
, 𝑢
2
; V
1
) + 𝐽
∘

2
(𝑢
1
, 𝑢
2
; V
2
) ,

∀ (V
1
, V
2
) ∈ 𝑋
1
× 𝑋
2
,

(8)

where 𝜕
1
(𝑢
1
, 𝑢
2
) (resp., 𝜕

2
(𝑢
1
, 𝑢
2
)) represents the partial gener-

alized subgradient of 𝐽(⋅, 𝑢
2
) (resp., 𝐽(𝑢

1
, ⋅)) and 𝐽∘

1
(𝑢
1
, 𝑢
2
; V
1
)

(resp., 𝐽∘
2
(𝑢
1
, 𝑢
2
; V
2
)) denotes the partial generalized directional

derivative of 𝐽(⋅, 𝑢
2
) (resp., 𝐽(𝑢

1
, ⋅)) at the point 𝑢

1
(resp., 𝑢

2
) in

the direction V
1
(resp., V

2
), but the converse of inclusion (7) and

inequality (8) is not true in general.

Definition 4. Let 𝑋 be real reflexive Banach space with
dual 𝑋∗. A mapping 𝑇 from 𝑋 into 2

𝑋
∗

is said to be
pseudomonotone if

(1) the set 𝑇𝑢 is nonempty, bounded, closed, and convex
for all 𝑢 ∈ 𝑋;

(2) 𝑇 is upper semicontinuous from each finite dimen-
sional subspace of 𝑋 to 𝑋∗ endowed with the weak
topology;

(3) {𝑢
𝑖
} is a sequence in 𝑋 converging weakly to 𝑢, and

𝑢
∗

𝑖
∈ 𝑇𝑢
𝑖
is such that

lim sup ⟨𝑢∗
𝑖
, 𝑢
𝑖
− 𝑢⟩ ≤ 0, (9)

then for each element V ∈ 𝑋 there exists 𝑢∗(V) ∈ 𝑇𝑢

such that

lim inf ⟨𝑢∗
𝑖
, 𝑢
𝑖
− V⟩ ≥ ⟨𝑢

∗
(V) , 𝑢 − V⟩ . (10)

Definition 5. Let 𝑋 be real reflexive Banach space with dual
𝑋
∗. A mapping 𝑇 from 𝑋 into 2𝑋

∗

is said to be generalized
pseudomonotone if for any sequences {𝑢

𝑖
} ⊂ 𝑋, {𝑢∗

𝑖
} ⊂ 𝑋

∗

with 𝑢∗
𝑖
∈ 𝑇𝑢
𝑖
, 𝑢
𝑖
→ 𝑢 weakly in 𝑋, 𝑢∗

𝑖
→ 𝑢
∗ weakly in 𝑋∗

and

lim sup ⟨𝑢∗
𝑖
, 𝑢
𝑖
− 𝑢⟩ ≤ 0; (11)

then one has 𝑢∗ ∈ 𝑇𝑢 and ⟨𝑢∗
𝑖
, 𝑢
𝑖
⟩ → ⟨𝑢

∗
, 𝑢⟩.

Proposition 6. Let𝑋 be real reflexive Banach space with dual
𝑋
∗ and let 𝑇

1
, 𝑇
2
be two pseudomonotone mappings from 𝑋

into 2𝑋
∗

. Then 𝑇
1
+ 𝑇
2
is pseudomonotone.

Proposition 7. Let𝑋 be real reflexive Banach space with dual
𝑋
∗ and let 𝑇 : 𝑋 → 2

𝑋
∗

be a pseudomonotone mapping from
𝑋 into 2𝑋

∗

. Then 𝑇 is a generalized pseudomonotone.

Proposition 8. Let 𝑋 be real reflexive Banach space with
dual𝑋∗ and let 𝑇 be a bounded, generalized pseudomonotone
mapping from 𝑋 into 2

𝑋
∗

. Assume that, for each 𝑢 ∈ 𝑋,
𝑇𝑢 is a nonempty closed convex subset of 𝑋∗. Then 𝑇 is
pseudomonotone.

Definition 9. Let 𝑋 be real reflexive Banach space with dual
𝑋
∗. The operator 𝑇 : 𝑋 → 2

𝑋
∗

is said to be as follows:

(1) monotone if for all (𝑢, 𝑢∗), (V, V∗) lying in the graph
𝐺(𝑇) of 𝑇, one has

⟨𝑢
∗
− V∗, 𝑢 − V⟩ ≥ 0. (12)

(2) maximal monotone if it is monotone and if (𝑢, 𝑢∗) ∈
𝑋 × 𝑋

∗ is such that

⟨𝑢
∗
− V∗, 𝑢 − V⟩ ≥ 0, ∀ (V, V∗) ∈ 𝐺 (𝑇) ; (13)

then (𝑢, 𝑢∗) ∈ 𝐺(𝑇).
(3) quasibounded if for each𝑀 > 0 there exists 𝐾(𝑀) >

0 such that, whenever (𝑢, 𝑢∗) ∈ 𝐺(𝑇), ⟨𝑢∗, 𝑢⟩ ≤

𝑀‖𝑢‖, and ‖𝑢‖ ≤ 𝑀; then
󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩 ≤ 𝐾 (𝑀) . (14)

(4) strongly quasibounded if for each𝑀 > 0 there exists
𝐾(𝑀) > 0 such that for all (𝑢, 𝑢∗) ∈ 𝐺(𝑇) with
⟨𝑢
∗
, 𝑢⟩ ≤ 𝑀 and ‖𝑢‖ ≤ 𝑀, one has

󵄩󵄩󵄩󵄩𝑢
∗󵄩󵄩󵄩󵄩 ≤ 𝐾 (𝑀) . (15)
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Definition 10. Let 𝑋 be real reflexive Banach space with dual
𝑋
∗. A mapping 𝑇 from𝑋 into 2𝑋

∗

is said to be as follows:

(1) coercive if there exists a real-valued function 𝑐 on 𝑅+
with lim

𝑟→∞
𝑐(𝑟) = ∞ such that for all (𝑢, 𝑢∗) ∈

𝐺(𝑇), one has

⟨𝑢
∗
, 𝑢⟩ ≥ 𝑐 (‖𝑢‖) ‖𝑢‖ , (16)

(2) coercive with constant 𝛼 > 0 if

⟨𝑢
∗
, 𝑢⟩ ≥ 𝛼‖𝑢‖

2
, (17)

(3) 𝑢
0
-coercive if there exists a real-valued function 𝑐 on

𝑅
+ with lim

𝑟→∞
𝑐(𝑟) = ∞ such that for some 𝑢

0
∈ 𝑋

and for all (𝑢, 𝑢∗) ∈ 𝐺(𝑇), one has

⟨𝑢
∗
, 𝑢 − 𝑢

0
⟩ ≥ 𝑐 (‖𝑢‖) ‖𝑢‖ . (18)

The following theorem is a surjectivity theorem for the
sum of a pseudomonotone, coercive operator, and a maximal
monotone operator, which is important to the proof of our
main results.

Theorem 11 (see [3]). Let 𝑋 be a real reflexive Banach space
with dual 𝑋∗, let 𝑇̂ be a maximal monotone mapping from 𝑋

into 2𝑋
∗

with 𝑢
0
∈ 𝐷(𝑇) = {𝑥 : 𝑇𝑥 ̸= 0}, and let 𝑇 be a 𝑢

0
-

coercive, pseudomonotone operator from 𝑋 into 2𝑋
∗

. Suppose
further that either 𝑇

𝑢
0

: 𝑋 → 2
𝑋
∗

is quasibounded or 𝑇̂
𝑢
0

:

𝑋 → 2
𝑋
∗

is strongly quasibounded, where 𝑇
𝑢
0

(V) = 𝑇(𝑢
0
+ V)

and the same for 𝑇̂
𝑢
0

. Then 𝑅(𝑇 + 𝑇̂) = 𝑋
∗.

3. Main Results

In this section, we first give an existence theorem for the
solution to the problem (P󸀠) of a system of two generalized
variational-hemivariational inequalities. And then, as a nat-
ural generalization, an existence theorem for the solution
to the problem (P), a system of generalized variational-
hemivariational inequalities concerning set-valuedmappings
is also obtained.

Before we present the main existence theorem, for the
simplicity of writing, we define some useful symbols and
give a crucial lemma in advance, which establishes the
relationship between the problem (P󸀠) of a system of two
variational-hemivariational inequalities and a generalized
vector variational-hemivariational inequality. Let𝑉 = 𝑉

1
×𝑉
2
.

Endowed with the norm defined by

‖𝑢‖𝑉 =
󵄩󵄩󵄩󵄩𝑢1

󵄩󵄩󵄩󵄩𝑉
1

+
󵄩󵄩󵄩󵄩𝑢2

󵄩󵄩󵄩󵄩𝑉
2

, ∀𝑢 = (𝑢
1
, 𝑢
2
) ∈ 𝑉, (19)

𝑉 is a reflexive Banach spacewith dual𝑉∗.Theduality pairing
between 𝑉 and 𝑉∗ is given by

⟨𝑢
∗
, 𝑢⟩
𝑉
∗
×𝑉

= ⟨𝑢
∗

1
, 𝑢
1
⟩
𝑉
∗

1
×𝑉
1

+ ⟨𝑢
∗

2
, 𝑢
2
⟩
𝑉
∗

2
×𝑉
2

,

∀𝑢
∗
= (𝑢
∗

1
, 𝑢
∗

2
) ∈ 𝑉
∗
, 𝑢 = (𝑢

1
, 𝑢
2
) ∈ 𝑉.

(20)

On the Banach space 𝑉 defined above, we further define
a set-valued mapping 𝐴 : 𝑉 → 2

𝑉
∗

, an operator 𝑇 : 𝑉 →

𝑋
1
× 𝑋
2
, and a functional 𝐺 : 𝑉 → 𝑅 ∪ {+∞}, which are

specified as follows. For all 𝑢 = (𝑢
1
, 𝑢
2
) ∈ 𝑉, one has

𝐴 (𝑢) = (𝐴
1
(𝑢) , 𝐴

2
(𝑢)) ,

𝑇 (𝑢) = (𝑇
1
𝑢
1
, 𝑇
2
𝑢
2
) ,

𝐺 (𝑢) = 𝐺
1
(𝑢
1
) + 𝐺
2
(𝑢
2
) .

(21)

Lemma 12. Assume that 𝐺
𝑖
: 𝑉
𝑖
→ 𝑅 ∪ {+∞}, 𝑖 = 1, 2

are proper, convex, and lower semicontinuous functionals. The
functional 𝐺 defined above is also a proper, convex, and lower
semicontinuous functional on𝑉. Moreover, 𝜕̂𝐺(𝑢) = 𝜕̂𝐺

1
(𝑢
1
)×

𝜕̂𝐺
2
(𝑢
2
).

Proof. Since the functionals 𝐺
𝑖
: 𝑉
𝑖
→ 𝑅 ∪ {+∞}, 𝑖 = 1, 2

are proper and convex, it is easy to show that 𝐺 is also proper
and convex by the inequality 𝐺(𝜆𝑢 + (1 − 𝜆V)) = 𝐺

1
(𝜆𝑢
1
+

(1 − 𝜆)V
1
) + 𝐺
2
(𝜆𝑢
2
+ (1 − 𝜆)V

2
) ≤ 𝜆𝐺(𝑢) + (1 − 𝜆)𝐺(V) for all

𝑢, V ∈ 𝑉 and 𝜆 ∈ [0, 1]. As for the lower semicontinuity of the
functional 𝐺, by assuming that 𝑢𝑛 → 𝑢 in 𝑉, which implies
𝑢
𝑛

1
→ 𝑢
1
in𝑉
1
and 𝑢𝑛
2
→ 𝑢
2
in𝑉
2
, we can get from the lower

semicontinuity of 𝐺
1
and 𝐺

2
that

lim inf 𝐺 (𝑢𝑛) = lim inf (𝐺
1
(𝑢
𝑛

1
) + 𝐺
2
(𝑢
𝑛

2
))

≥ lim inf 𝐺
1
(𝑢
𝑛

1
) + lim inf 𝐺

2
(𝑢
𝑛

2
)

≥ 𝐺
1
(𝑢
1
) + 𝐺
2
(𝑢
2
) = 𝐺 (𝑢) ,

(22)

which means that 𝐺 is lower semicontinuous on 𝑉.
Now, we prove the equality 𝜕̂𝐺(𝑢) = 𝜕̂𝐺

1
(𝑢
1
) × 𝜕̂𝐺

2
(𝑢
2
).

Assume that 𝜇 ∈ 𝜕̂𝐺(𝑢) ⊂ 𝑉
∗, which says that

𝐺 (V) − 𝐺 (𝑢) ≥ ⟨𝜇, V − 𝑢⟩
𝑉
∗
×𝑉
, ∀V ∈ 𝑉. (23)

In particular, for any V
1
∈ 𝑉
1
, let V = (V

1
, 𝑢
2
) in (23), and

then we can get that

𝐺
1
(V
1
) − 𝐺
1
(𝑢
1
) ≥ ⟨𝜇

1
, V
1
− 𝑢
1
⟩
𝑉
∗

1
×𝑉
1

, ∀V
1
∈ 𝑉
1
. (24)

Similarly, by letting V = (𝑢
1
, V
2
) in (23) for any V

2
∈ 𝑉
2
,

we can obtain

𝐺
2
(V
2
) − 𝐺
2
(𝑢
2
) ≥ ⟨𝜇

2
, V
2
− 𝑢
2
⟩
𝑉
∗

2
×𝑉
2

, ∀V
2
∈ 𝑉
2
, (25)

which together with (24) implies that 𝜇 ∈ 𝜕̂𝐺
1
(𝑢
1
) × 𝜕̂𝐺

2
(𝑢
2
);

that is, 𝜕̂𝐺(𝑢) ⊆ 𝜕̂𝐺
1
(𝑢
1
) × 𝜕̂𝐺

2
(𝑢
2
).

Conversely, let 𝜇 = (𝜇
1
, 𝜇
2
) ∈ 𝜕̂𝐺

1
(𝑢
1
) × 𝜕̂𝐺

2
(𝑢
2
). For all

V
𝑖
∈ 𝑉
𝑖
, 𝑖 = 1, 2, it follows from 𝜇

𝑖
∈ 𝜕̂𝐺
𝑖
(𝑢
𝑖
) that

𝐺
1
(V
1
) − 𝐺
1
(𝑢
1
) ≥ ⟨𝜇

1
, V
1
− 𝑢
1
⟩
𝑉
∗

1
×𝑉
1

, ∀V
1
∈ 𝑉
1
,

𝐺
2
(V
2
) − 𝐺
2
(𝑢
2
) ≥ ⟨𝜇

2
, V
2
− 𝑢
2
⟩
𝑉
∗

2
×𝑉
2

, ∀V
2
∈ 𝑉
2
.

(26)

By adding the two inequalities (26), we obtain

𝐺 (V) − 𝐺 (𝑢) ≥ ⟨𝜇, V − 𝑢⟩
𝑉
∗
×𝑉
, ∀V ∈ 𝑉, (27)

which implies that 𝜇 ∈ 𝜕̂𝐺(𝑢); that is, 𝜕̂𝐺(𝑢) ⊇ 𝜕̂𝐺
1
(𝑢
1
) ×

𝜕̂𝐺
2
(𝑢
2
). This completes the proof of Lemma 12.
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Now, we consider the following generalized vector
variational-hemivariational inequality. Find 𝑢 = (𝑢

1
, 𝑢
2
) ∈ 𝑉

and 𝜇 = (𝜇
1
, 𝜇
2
) ∈ 𝐴(𝑢) such that

(P󸀠󸀠) ⟨𝜇, V − 𝑢⟩
𝑉
∗
×𝑉

+ 𝐽
∘
(𝑇𝑢, 𝑇V − 𝑇𝑢) + 𝐺 (V)

−𝐺 (𝑢) ≥ 0, ∀V ∈ 𝑉.
(28)

We first give a crucial lemma which establishes the
relationship between the problem (P󸀠) of a system of two
variational-hemivariational inequalities and the problem
(P󸀠󸀠) of a generalized vector variational-hemivariational
inequality.

Lemma 13. Assume that the locally Lipschitz functional 𝐽 :

𝑋
1
× 𝑋
2

→ 𝑅 is regular on 𝑋
1
× 𝑋
2
. Then any solution

𝑢 = (𝑢
1
, 𝑢
2
) ∈ 𝑉 to the problem (P󸀠󸀠) is always a solution to the

problem (P󸀠).

Proof. Assume that 𝑢 = (𝑢
1
, 𝑢
2
) solves the problem (P󸀠󸀠),

which says that there exists an 𝜇 = (𝜇
1
, 𝜇
2
) ∈ 𝐴(𝑢) such that

for all V ∈ 𝑉, one has

⟨𝜇, V − 𝑢⟩
𝑉
∗
×𝑉

+ 𝐽
∘
(𝑇𝑢, 𝑇V − 𝑇𝑢) + 𝐺 (V) − 𝐺 (𝑢) ≥ 0. (29)

Specially, for any V
1
∈ 𝑉
1
, let V = (V

1
, 𝑢
2
) ∈ 𝑉 in (29), and

then we can get from Proposition 3 that

0 ≤ ⟨𝜇
1
, V
1
− 𝑢
1
⟩
𝑉
∗

1
×𝑉
1

+ 𝐽
∘
(𝑇𝑢, (𝑇

1
V
1
− 𝑇
1
𝑢
1
, 0))

+ 𝐺
1
(V
1
) − 𝐺
1
(𝑢
1
)

≤ ⟨𝜇
1
, V
1
− 𝑢
1
⟩
𝑉
∗

1
×𝑉
1

+ 𝐽
∘

1
(𝑇𝑢, 𝑇

1
V
1
− 𝑇
1
𝑢
1
)

+ 𝐺
1
(V
1
) − 𝐺
1
(𝑢
1
) , ∀V

1
∈ 𝑉
1
.

(30)

Similarly, by letting V = (𝑢
1
, V
2
) ∈ 𝑉 in (29) for any V

2
∈

𝑉
2
, we can obtain that

⟨𝜇
2
, V
2
− 𝑢
2
⟩
𝑉
∗

2
×𝑉
2

+ 𝐽
∘

2
(𝑇𝑢, 𝑇

2
V
2
− 𝑇
2
𝑢
2
)

+ 𝐺
2
(V
2
) − 𝐺
2
(𝑢
2
) ≥ 0, ∀V

2
∈ 𝑉
2
,

(31)

which together with the inequality (30) implies that 𝑢 =

(𝑢
1
, 𝑢
2
) is a solution to the problem (P󸀠). This completes the

proof of Lemma 13.

Remark 14. It follows from Proposition 3 that, just under
regularity condition of the functional 𝐽, 𝐽∘(𝑢, V) = 𝐽

∘

1
(𝑢, V
1
) +

𝐽
∘

2
(𝑢, V
2
) does not hold in general, while the inequality

𝐽
∘
(𝑢, V) ≤ 𝐽

∘

1
(𝑢, V
1
)+𝐽
∘

2
(𝑢, V
2
) is true.Therefore, without other

much stronger conditions on functional 𝐽, the inverse of the
Lemma 13 is not true in general.

We give some assumptions on the operators 𝐴
𝑖
and 𝐽 in

the system (3) of two generalized variational-hemivariational
inequalities.

The assumption (HA) is as follows.

(1) 𝐴
1
: 𝑉
1
× 𝑉
2
→ 2
𝑉
∗

1 is bounded on 𝑉
1
× 𝑉
2

and pseudomonotone with respect to the first

argument; that is, for all 𝑢
2
∈ 𝑉
2
, the operator

𝐴
1
(⋅, 𝑢
2
) : 𝑉
1
→ 2
𝑉
∗

1 is pseudomonotone on
𝑉
1
.

(2) 𝐴
2
: 𝑉
1
× 𝑉
2
→ 2
𝑉
∗

2 is bounded on 𝑉
1
× 𝑉
2
and

pseudomonotone with respect to the second
argument; that is, for all 𝑢

1
∈ 𝑉
1
, the operator

𝐴
2
(𝑢
1
, ⋅) : 𝑉

2
→ 2
𝑉
∗

2 is pseudomonotone on
𝑉
2
.

(3) For all 𝑢
2
∈ 𝑉
2
, there exist an element 𝑤

1
∈

𝐷(𝜕̂𝐺
1
) ⊂ 𝑉
1
and a constant 𝛼

1
> 0 such that

⟨𝑢
∗

1
, 𝑢
1
− 𝑤
1
⟩
𝑉
∗

1
×𝑉
1

≥ 𝛼
1

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩

2

𝑉
1

,

∀𝑢
1
∈ 𝑉
1
, 𝑢
∗

1
∈ 𝐴
1
(𝑢
1
, 𝑢
2
) .

(32)

(4) For all 𝑢
1
∈ 𝑉
1
, there exist an element 𝑤

2
∈

𝐷(𝜕̂𝐺
2
) ⊂ 𝑉
2
and a constant 𝛼

2
> 0 such that

⟨𝑢
∗

2
, 𝑢
2
− 𝑤
2
⟩
𝑉
∗

2
×𝑉
2

≥ 𝛼
2

󵄩󵄩󵄩󵄩𝑢2
󵄩󵄩󵄩󵄩

2

𝑉
2

,

∀𝑢
2
∈ 𝑉
2
, 𝑢
∗

2
∈ 𝐴
2
(𝑢
1
, 𝑢
2
) .

(33)

Remark 15. It is clear that the hypotheses (1) and (2) in the
assumption (HA) imply that the operator 𝐴 defined in (21) is
also bounded on 𝑉. The hypotheses (3) on the operator 𝐴

1

and (4) on the operator 𝐴
2
in the assumption (HA) imply

the 𝑤
1
-coercivity of 𝐴

1
with respect to the first argument

and𝑤
2
-coercivity of𝐴

2
with respect to the second argument,

respectively. Moreover, for 𝑤 = (𝑤
1
, 𝑤
2
) ∈ 𝐷(𝜕̂𝐺), the

operator 𝐴 defined in (21) is also 𝑤-coercive with constant
𝛽 = min{𝛼

1
, 𝛼
2
}/2. In fact, for all 𝜇 ∈ 𝐴(𝑢), one has

⟨𝜇, 𝑢 − 𝑤⟩
𝑉
∗
×𝑉

= ⟨𝜇
1
, 𝑢
1
− 𝑤
1
⟩
𝑉
∗

1
×𝑉
1

+ ⟨𝜇
2
, 𝑢
2
− 𝑤
2
⟩
𝑉
∗

2
×𝑉
2

≥ 𝛼
1

󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩

2

𝑉
1

+ 𝛼
2

󵄩󵄩󵄩󵄩𝑢2
󵄩󵄩󵄩󵄩

2

𝑉
2

≥
min {𝛼

1
, 𝛼
2
}

2
‖𝑢‖
2

𝑉
,

= 𝛽‖𝑢‖
2

𝑉
,

(34)

which implies the𝑤-coercivity with constant 𝛽 of operator𝐴
on 𝑉.

The assumption (HJ) is as follows.

(1) For all 𝑥
2
∈ 𝑋
2
, there exist constants 𝑐

1
, 𝑑
1
≥ 0

such that
󵄩󵄩󵄩󵄩𝜂1

󵄩󵄩󵄩󵄩𝑋∗
1

≤ 𝑐
1
+ 𝑑
1

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩𝑋
1

, ∀𝜂
1
∈ 𝜕
1
𝐽 (𝑥
1
, 𝑥
2
) . (35)

(2) For all 𝑥
1
∈ 𝑋
1
, there exist constants 𝑐

2
, 𝑑
2
≥ 0

such that
󵄩󵄩󵄩󵄩𝜂2

󵄩󵄩󵄩󵄩𝑋∗
2

≤ 𝑐
2
+ 𝑑
2

󵄩󵄩󵄩󵄩𝑥2
󵄩󵄩󵄩󵄩𝑋
2

, ∀𝜂
2
∈ 𝜕
2
𝐽 (𝑥
1
, 𝑥
2
) . (36)
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Remark 16. It is clear that the hypotheses in assumption (HJ)
imply that 𝜕

1
𝐽(⋅, 𝑥
2
) and 𝜕

2
𝐽(𝑥
1
, ⋅) are bounded on𝑋

1
and𝑋

2
,

respectively. Moreover, if 𝐽 is regular on 𝑋, then 𝜕𝐽 is also
bounded on 𝑋. (In the following, let 𝑋 = 𝑋

1
× 𝑋
2
and 𝑋∗ =

𝑋
∗

1
×𝑋
∗

2
for simplicity of writing.) In fact, since 𝐽 is regular on

𝑋, the inclusion 𝜕𝐽(𝑥
1
, 𝑥
2
) ⊆ 𝜕
1
𝐽(𝑥
1
, 𝑥
2
) × 𝜕
2
𝐽(𝑥
1
, 𝑥
2
) holds.

It follows from (35) and (36) that
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩𝑋∗

≤ 𝑐 + 𝑑‖𝑥‖𝑋, ∀𝜂 ∈ 𝜕𝐽 (𝑥) , (37)

with 𝑐 = 𝑐
1
+ 𝑐
2
≥ 0 and 𝑑 = max{𝑑

1
, 𝑑
2
} ≥ 0. This also means

that 𝜕𝐽 is bounded on𝑋.

We are now in a position to give our main result on the
existence of solution to the problem (P󸀠), a system of two
generalized variational-hemivariational inequalities.

Theorem 17. Suppose that the set-valued mappings 𝐴
𝑖
: 𝑉
1
×

𝑉
2
→ 2
𝑉
∗

𝑖 , 𝑖 = 1, 2, which satisfy the assumption (HA), is such
that the operator𝐴 defined in (21) is pseudomonotone on𝑉. Let
𝑇
𝑖
: 𝑉
𝑖
→ 𝑋
𝑖
be linear continuous and compact operators, let

𝐽 : 𝑋 → 𝑅 be a regular, locally Lipschitz functional which
satisfies the hypothesis (HJ), let and 𝐺

𝑖
: 𝑉
𝑖
→ 𝑅 ∪ {+∞}, 𝑖 =

1, 2 be proper, convex, and lower semicontinuous functionals.
Then the problem (P󸀠) admits at least one solution under the
condition

𝛽 > 𝑑‖𝑇‖
2
, (38)

where ‖𝑇‖ is the norm of the operator 𝑇 defined by (21).

Proof. By Lemma 13, the existence of solution to the
problem (P󸀠) of a system of two generalized variational-
hemivariational inequalities can be proved as long as
the problem (P󸀠󸀠) of a generalized vector variational-
hemivariational inequality is solvable.Therefore, we consider
the following inclusion problem. Find 𝑢 ∈ 𝑉 such that

𝐹 (𝑢) + 𝜕̂𝐺 (𝑢) ∋ 0, (39)

where 𝐹 : 𝑉 → 2
𝑉
∗

with 𝐹(𝑢) = 𝐴(𝑢) + 𝑇
∗
∘ 𝜕𝐽 ∘ 𝑇(𝑢) for all

𝑢 ∈ 𝑉. We will prove the existence of solution to the inclusion
problem (39) by the surjectivity theorem (Theorem 11), which
implies that the problem (P󸀠󸀠) is solvable.

Claim 1 (𝐹 is bounded on𝑉). Since the operator𝐴 is bounded
on 𝑉 under assumption (HA) by Remark 15, 𝜕𝐽 is also
bounded on 𝑋 under the assumption (HJ) by Remark 16,
and 𝑇 is linear continuous by the linearity and continuity
of the operators 𝑇

𝑖
, 𝑖 = 1, 2, and it is easy to check that 𝐹

is bounded on 𝑉, which implies that 𝐹
𝑢
0

: 𝑉 → 2
𝑉
∗

with
𝐹
𝑢
0

(𝑢) = 𝐹(𝑢
0
+ 𝑢) is quasibounded for any 𝑢

0
∈ 𝑉.

Claim 2 (𝐹 is pseudomonotone on𝑉). Since𝐹 = 𝐴+𝑇
∗
∘𝜕𝐽∘𝑇 :

𝑉 → 2
𝑉
∗

and the operator 𝐴 is pseudomonotone, we only
need to prove that𝑇∗ ∘𝜕𝐽∘𝑇 : 𝑉 → 2

𝑉
∗

is pseudomonotone.
To this end, firstly, we prove that 𝑇∗ ∘ 𝜕𝐽 ∘ 𝑇 is generalized
pseudomonotone. Let𝑢𝑛 → 𝑢weakly in𝑉, 𝜉𝑛 ∈ 𝑇∗(𝜕𝐽(𝑇𝑢𝑛))
with 𝜉𝑛 → 𝜉 weakly in 𝑉∗ and lim sup⟨𝜉𝑛, 𝑢𝑛 − 𝑢⟩

𝑉
∗
×𝑉

≤ 0.

There exist 𝜂𝑛 ∈ 𝜕𝐽(𝑇𝑢
𝑛
) such that 𝜉𝑛 = 𝑇

∗
𝜂
𝑛. Since 𝜕𝐽

is bounded on 𝑋 by Remark 16, 𝑇𝑢𝑛 → 𝑇𝑢 in 𝑋 by the
compactness of the operators 𝑇

𝑖
, 𝑖 = 1, 2, and 𝜂𝑛 ∈ 𝜕𝐽(𝑇𝑢

𝑛
),

we have the fact that 𝜂𝑛 is bounded in𝑋∗. Thus there exists a
subsequence, which is also denoted by 𝜂𝑛, such that 𝜂𝑛 → 𝜂

weakly in 𝑋
∗ with some 𝜂 ∈ 𝑋

∗. By using the equality
𝜉
𝑛
= 𝑇
∗
𝜂
𝑛, it is easy to get that 𝜉 = 𝑇

∗
𝜂. Since 𝜂𝑛 ∈ 𝜕𝐽(𝑇𝑢

𝑛
)

with 𝜂
𝑛
→ 𝜂 weakly in 𝑋

∗ and 𝑇𝑢
𝑛
→ 𝑇𝑢 in 𝑋, we get

by the closedness of 𝜕𝐽 with 𝑋 × (𝑤
∗
− 𝑋
∗
) topology and

the reflexivity of 𝑋 that 𝜂 ∈ 𝜕𝐽(𝑇𝑢), and thus 𝜉 = 𝑇
∗
𝜂 ∈

𝑇
∗
(𝜕𝐽(𝑇𝑢)). Moreover, it follows from 𝜂

𝑛
→ 𝜂 weakly in𝑋∗

and 𝑇𝑢𝑛 → 𝑇𝑢 in𝑋 that

⟨𝜉
𝑛
, 𝑢
𝑛
⟩
𝑉
∗
×𝑉

= ⟨𝜂
𝑛
, 𝑇𝑢
𝑛
⟩
𝑋
∗
×𝑋

󳨀→ ⟨𝜂, 𝑇𝑢⟩
𝑋
∗
×𝑋

= ⟨𝑇
∗
𝜂, 𝑢⟩
𝑉
∗
×𝑉

= ⟨𝜉, 𝑢⟩
𝑉
∗
×𝑉
,

(40)

which together with 𝜉 ∈ 𝑇∗(𝜕𝐽(𝑇𝑢)) implies that 𝑇∗ ∘ 𝜕𝐽 ∘ 𝑇
is generalized pseudomonotone on 𝑉. Secondly, it is easy to
check that 𝑇∗(𝜕𝐽(𝑇𝑢)) is nonempty, convex, and closed in𝑉∗
for all 𝑢 ∈ 𝑉 since 𝜕𝐽(𝑥) is a nonempty, convex, and closed
subset in 𝑋∗ for all 𝑥 ∈ 𝑋 and 𝑇 is linear and continuous on
𝑉. Thirdly, the operator 𝑇∗ ∘ 𝜕𝐽 ∘ 𝑇 is bounded on 𝑉, which
has been proved in Claim 1. Consequently, it follows from the
Proposition 8 that 𝑇∗ ∘ 𝜕𝐽 ∘ 𝑇 is pseudomonotone on 𝑉.

Claim 3 (𝐹 is 𝑤-coercive on 𝑉). Let 𝑢 ∈ 𝑉 and 𝜏 ∈ 𝐹(𝑢),
and then there exist 𝜇 ∈ 𝐴(𝑢) and 𝜂 ∈ 𝜕𝐽(𝑇𝑢) such that 𝜏 =
𝜇 + 𝑇
∗
𝜂. By Remarks 15 and 16, we have

⟨𝜏, 𝑢 − 𝑤⟩𝑉∗×𝑉 = ⟨𝜇, 𝑢 − 𝑤⟩
𝑉
∗
×𝑉

+ ⟨𝑇
∗
𝜂, 𝑢 − 𝑤⟩

𝑉
∗
×𝑉

≥ 𝛽‖𝑢‖
2

𝑉
+ ⟨𝜂, 𝑇 (𝑢 − 𝑤)⟩

𝑋
∗
×𝑋

≥ 𝛽‖𝑢‖
2

𝑉
−
󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩𝑋∗ ‖

𝑇‖ (‖𝑢‖𝑉 + ‖𝑤‖𝑉)

≥ 𝛽‖𝑢‖
2

𝑉
− (𝑐 + 𝑑‖𝑇𝑢‖𝑋) ‖𝑇‖ (‖𝑢‖𝑉 + ‖𝑤‖𝑉)

≥ (𝛽 − 𝑑‖𝑇‖
2
) ‖𝑢‖
2

𝑉

− ‖𝑇‖ (𝑐 + 𝑑 ‖𝑇‖ ‖𝑤‖𝑉) ‖𝑢‖𝑉 − 𝑐 ‖𝑇‖ ‖𝑤‖𝑉,

(41)

which together with the condition 𝛽 > 𝑑 ‖ 𝑇‖
2 means that 𝐹

is𝑤-coercive on𝑉with function 𝑐(𝑡) = (𝛽−𝑑‖𝑇‖
2
)𝑡−‖𝑇‖(𝑐+

𝑑‖𝑇‖‖𝑤‖
𝑉
) − 𝑐‖𝑇‖‖𝑤‖

𝑉
/𝑡.

It is well known that 𝜕̂𝐺 is a maximal monotone operator
on 𝑉 since, by Lemma 12, the functional 𝐺 is proper, convex,
and lower semicontinuous on 𝑉 (see [18]). We are now in a
position to apply Theorem 11 to the set-valued operators 𝐹
and 𝜕̂𝐺. We deduce that 𝐹 + 𝜕̂𝐺 is surjective, which implies
that there exist 𝑢 ∈ 𝑉 such that

0 ∈ 𝐹 (𝑢) + 𝜕̂𝐺 (𝑢) . (42)

By the definition of the operator 𝐹, there exist 𝜇 ∈ 𝐴(𝑢),
𝜂 ∈ 𝜕𝐽(𝑇𝑢), and 𝜉 ∈ 𝜕̂𝐺(𝑢) such that

𝜇 + 𝑇
∗
𝜂 + 𝜉 = 0. (43)
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By multiplying the equality (43) by V − 𝑢 for all V ∈ 𝑉, we
obtain from the definition of Clarke’s generalized subgradient
of the functional 𝐽 and subgradient in the sense of convex
analysis of the functional 𝐺 that

0 = ⟨𝜇, V − 𝑢⟩
𝑉
∗
×𝑉

+ ⟨𝑇
∗
𝜂, V − 𝑢⟩

𝑉
∗
×𝑉

+ ⟨𝜉, V − 𝑢⟩
𝑉
∗
×𝑉

= ⟨𝜇, V − 𝑢⟩
𝑉
∗
×𝑉

+ ⟨𝜂, 𝑇V − 𝑇𝑢⟩
𝑋
∗
×𝑋

+ ⟨𝜉, V − 𝑢⟩
𝑉
∗
×𝑉

≤ ⟨𝜇, V − 𝑢⟩
𝑉
∗
×𝑉

+ 𝐽
∘
(𝑇𝑢, 𝑇V − 𝑇𝑢) + 𝐺 (V) − 𝐺 (𝑢) ,

(44)

which implies that 𝑢 solves the problem (P󸀠󸀠) of a generalized
vector variational-hemivariational inequality. As stated at
the beginning of our proof, 𝑢 is also a solution to the
problem (P󸀠) of a system of two generalized variational-
hemivariational inequalities by Lemma 13.This completes the
proof of Theorem 17.

Remark 18. The pseudomonotonicity of the operator 𝐴

defined in (21) is necessary for the proof of the existence
of solution to the problem (P󸀠) by the surjectivity the-
orem since the pseudomonotonicity of operator 𝐴

1
with

respect to the first argument and the pseudomonotonicity
of operator 𝐴

2
with respect to the second argument, which

are necessary to prove the existence of solution to each
generalized variational-hemivariational inequality in prob-
lem (P󸀠), cannot guarantee the pseudomonotonicity of the
operator 𝐴 defined in (21) in general. However, some special
cases in which the pseudomonotonicity of operator 𝐴

1
with

respect to the first argument and the pseudomonotonicity of
operator 𝐴

2
with respect to the second argument imply the

pseudomonotonicity of the operator 𝐴 defined in (21) can be
given under some stronger conditions (see [5]).

It is obvious that, by similar arguments as proof of
Theorem 17, we have the following results for the existence
of solution to each generalized variational-hemivariational
inequality in the system (3).

Theorem 19. Suppose that, for 𝑖 = 1, 2, 𝐴
𝑖
: 𝑉
1
× 𝑉
2

→

2
𝑉
∗

𝑖 are set-valued mappings satisfying the assumption (HA)
and that 𝑇

𝑖
: 𝑉
𝑖
→ 𝑋

𝑖
are linear continuous and compact

operators. Let 𝐽 : 𝑋 → 𝑅 be a regular, locally Lipschitz
functional on 𝑋, which satisfies the hypothesis (HJ), and let
𝐺
𝑖
: 𝑉
𝑖
→ 𝑅 ∪ {+∞}, 𝑖 = 1, 2 be proper, convex, and lower

semicontinuous functionals. Then, the 𝑖th 𝑖 = 1, 2 generalized
variational-hemivariational inequality in the system (3) admits
at least one solution 𝑢

𝑖
∈ 𝑉
𝑖
for all 𝑢

𝑗
∈ 𝑉
𝑗
, 𝑗 ̸= 𝑖 under the

condition

𝛼
𝑖
> 𝑑
𝑖

󵄩󵄩󵄩󵄩𝑇𝑖
󵄩󵄩󵄩󵄩

2

, (45)

where ‖𝑇
𝑖
‖ is the norm of the operator 𝑇

𝑖
.

Remark 20. By comparing Theorems 17 with 19, we remark
here that, in addition to the pseudomonotonicity of the
operator 𝐴 defined in (21), we need strongly condition
(38) than (45) to obtain the existence of solution to the
problem (P󸀠) of a system of two generalized variational-
hemivariational inequalities.

As a natural generalization of Theorem 17 for the exis-
tence of solution to the problem (P󸀠) of a system of two
generalized variational-hemivariational inequalities, we can
obtain the following theorem for the existence of solution
to the problem (P) of a system of generalized variational-
hemivariational inequalities concerning set-valued map-
pings.

Theorem 21. Suppose that the following assumptions on the
operators in the problem (P) of a system of generalized
variational-hemivariational inequalities hold.

(1) For 𝑖 = 1, 2, . . . , 𝑛, 𝐴
𝑖
: ∏
𝑛

𝑘=1
𝑉
𝑘
→ 2
𝑉
∗

𝑖 are set-valued
mappings satisfying the following.

(a) 𝐴
𝑖
are bounded on∏𝑛

𝑘=1
𝑉
𝑘
and pseudomonotone

with respect to the 𝑖th argument.
(b) the operator 𝐴 : 𝑉 = ∏

𝑛

𝑘=1
𝑉
𝑘
→ 2
𝑉
∗

, which
is defined by 𝐴(𝑢) = (𝐴

1
(𝑢), . . . , 𝐴

𝑛
(𝑢)), is

pseudomonotone on 𝑉.
(c) For all 𝑢

𝑗
∈ 𝑉
𝑗
, 𝑗 ̸= 𝑖, there exist an element 𝑤

𝑖
∈

𝐷(𝜕̂𝐺
𝑖
) ⊂ 𝑉
𝑖
and a constant 𝛼

𝑖
> 0 such that

⟨𝑢
∗

𝑖
, 𝑢
𝑖
− 𝑤
𝑖
⟩
𝑉
∗

𝑖
×𝑉
𝑖

≥ 𝛼
𝑖

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩

2

𝑉
𝑖

,

∀𝑢
𝑖
∈ 𝑉
𝑖
, 𝑢
∗

𝑖
∈ 𝐴
𝑖
(𝑢
1
, . . . , 𝑢

𝑛
) .

(46)

(2) 𝐽 : ∏
𝑛

𝑘=1
𝑋
𝑘
→ 𝑅 is a regular and locally Lipschitz

functional which satisfies that for all 𝑖 = 1, 2, . . . , 𝑛 and
𝑥
𝑗
∈ 𝑋
𝑗
, 𝑗 ̸= 𝑖, there exist constants 𝑐

𝑖
, 𝑑
𝑖
≥ 0 such that

󵄩󵄩󵄩󵄩𝜂𝑖
󵄩󵄩󵄩󵄩𝑋∗
𝑖

≤ 𝑐
𝑖
+ 𝑑
𝑖

󵄩󵄩󵄩󵄩𝑥𝑖
󵄩󵄩󵄩󵄩𝑋
𝑖

,

∀𝑥
𝑖
∈ 𝑋
𝑖
, 𝜂
𝑖
∈ 𝜕
𝑖
𝐽 (𝑥
1
, . . . , 𝑥

𝑛
) .

(47)

(3) For 𝑖 = 1, 2, . . . , 𝑛, 𝑇
𝑖
: 𝑉
𝑖
→ 𝑋
𝑖
are linear continuous

and compact operators and 𝐺
𝑖
: 𝑉
𝑖
→ 𝑅 ∪ {+∞} are

proper, convex, and lower semicontinuous functionals.

Then the problem (P) admits at least one solution under the
condition

𝛽 > 𝑑
󵄩󵄩󵄩󵄩󵄩
𝑇̃
󵄩󵄩󵄩󵄩󵄩

2

, (48)

where 𝛽 = min{𝛼
𝑖
}/𝑛, 𝑑 = max{𝑑

𝑖
} and ‖𝑇̃‖ is the norm of the

operator 𝑇̃ : ∏
𝑛

𝑘=1
𝑉
𝑘
→ ∏

𝑛

𝑘=1
𝑋
𝑘
defined by 𝑇̃(𝑢

1
, . . . , 𝑢

𝑛
) =

(𝑇
1
𝑢
1
, . . . , 𝑇

𝑛
𝑢
𝑛
).

4. An Application

In this section, we are concerned with an application of our
results to a system of generalized variational-hemivariational
inequalities involving integrals of Clarke’s generalized direc-
tional derivatives.

Let Ω ⊂ 𝑅
𝑛 be a bounded and open set in 𝑅

𝑛, let
𝑉
1
, 𝑉
2
, . . . , 𝑉

𝑛
be real, separable, and reflexive Banach spaces

with dual spaces 𝑉∗
1
, 𝑉
∗

2
, . . . , 𝑉

∗

𝑛
. For 𝑖 = 1, 2, . . . , 𝑛, 𝐴

𝑖
:

∏
𝑛

𝑘=1
𝑉
𝑘
→ 2
𝑉
∗

𝑖 are set-valued mappings, 𝑇
𝑖
: 𝑉
𝑖
→ 𝐿
2
(Ω)
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are linear continuous and compact operators on 𝑉
𝑖
, and

𝐺
𝑖
: 𝑉
𝑖

→ 𝑅 ∪ {+∞} are proper, convex, and lower
semicontinuous functionals. We consider the following sys-
tem of generalized variational-hemivariational inequalities
involving integrals of Clarke’s generalized directional deriva-
tives. For all 𝑖 = 1, 2, . . . , 𝑛, find 𝑢

𝑖
∈ 𝑉
𝑖
and 𝜇

𝑖
∈ 𝐴
𝑖
(𝑢) such

that

⟨𝜇
𝑖
, V
𝑖
− 𝑢
𝑖
⟩
𝑉
∗

𝑖
×𝑉
𝑖

+ ∫
Ω

𝑗
∘

𝑖
(𝑥, û (𝑥) ; V̂

𝑖
(𝑥) − 𝑢̂

𝑖
(𝑥)) 𝑑𝑥

+ 𝐺
𝑖
(V
𝑖
) − 𝐺
𝑖
(𝑢
𝑖
) ≥ 0, ∀V

𝑖
∈ 𝑉
𝑖
,

(49)

where u = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
) ∈ ∏

𝑛

𝑘=1
𝑉
𝑘
, û = (𝑢̂

1
, 𝑢̂
2
, . . . , 𝑢̂

𝑛
) =

(𝑇
1
𝑢
1
, 𝑇
2
𝑢
2
, . . . , 𝑇

𝑛
𝑢
𝑛
) ∈ 𝐿
2
(Ω; 𝑅
𝑛
), V̂
𝑖
= 𝑇
𝑖
V
𝑖
and 𝑗(𝑥, 𝑦) : Ω×

𝑅
𝑛
→ 𝑅 is a function satisfying the following assumption:

(Hj) is as follows.

(1) 𝑗(𝑥, ⋅) is locally Lipschitz on 𝑅𝑛 for a.e.𝑥 ∈ Ω.
(2) 𝑗(𝑥, 𝑦) : Ω × 𝑅

𝑛
→ 𝑅 is a Carathéodory

function.
(3) Either 𝑗(𝑥, ⋅) or −𝑗(𝑥, ⋅) is regular on 𝑅𝑛 for a.e.

𝑥 ∈ Ω.
(4) For all 𝑖 = 1, 2, . . . , 𝑛 and a.e. 𝑥 ∈ Ω, there exists

constant 𝑐
𝑖
, 𝑑
𝑖
≥ 0 such that

|𝑠| ≤ 𝑐
𝑖
+ 𝑑
𝑖

󵄨󵄨󵄨󵄨𝑦𝑖
󵄨󵄨󵄨󵄨 , ∀𝑦 ∈ 𝑅

𝑛
, 𝑠 ∈ 𝜕

𝑖
𝑗 (𝑥, 𝑦) . (50)

Remark 22. The problem (49) we considered in this section
includes the problem studied by Panagiotopoulos et al. [19] by
using Brouwer’s fixed point theorem as a special case where
𝑛 = 1, 𝐴

𝑖
is single-valued and 𝐺

𝑖
is an indicator of a convex

subset 𝐾.

We define a functional 𝐽 on 𝐿2(Ω, 𝑅𝑛) as follows:

𝐽 (𝑢) = ∫
Ω

𝑗 (𝑥, 𝑢 (𝑥)) 𝑑𝑥, ∀𝑢 ∈ 𝐿
2
(Ω, 𝑅
𝑛
) . (51)

It follows from Theorem 3.47 in [2] that, under the
assumption (Hj) on the function 𝑗, 𝐽definedby (51) is a locally
Lipschitz functional on 𝐿2(Ω, 𝑅𝑛), which satisfies

𝐽
∘

𝑖
(𝑢, V
𝑖
) = ∫
Ω

𝑗
∘

𝑖
(𝑥, 𝑢 (𝑥) , V

𝑖
(𝑥)) 𝑑𝑥,

∀𝑢 ∈ 𝐿
2
(Ω, 𝑅
𝑛
) , V
𝑖
∈ 𝐿
2
(Ω) ,

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝑐
𝑖
+ 𝑑
𝑖

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩𝐿2(Ω)

,

∀𝑢 ∈ 𝐿
2
(Ω, 𝑅
𝑛
) , 𝜂 ∈ 𝜕

𝑖
𝐽 (𝑢) ,

(52)

where 𝑐
𝑖
= √2𝑐

𝑖
|Ω| ≥ 0 and 𝑑

𝑖
= √2𝑑

𝑖
≥ 0.

Now, under the conditions (52), we are in a position to
apply our result,Theorem 21, to the problem (49), a system of
generalized variational-hemivariational inequalities involv-
ing integrals of Clarke’s generalized directional derivatives.
We conclude this section with the following theorem, which
gives the existence of solution to the problem (49).

Theorem 23. For the problem (49), a system of generalized
variational-hemivariational inequalities involving integrals of
Clarke’s generalized directional derivatives, one assumes the
following.

(1) For 𝑖 = 1, 2, . . . , 𝑛, 𝐴
𝑖
: ∏
𝑛

𝑘=1
𝑉
𝑘
→ 2
𝑉
∗

𝑖 are set-valued
mappings satisfying the following.

(a) 𝐴
𝑖
are bounded on∏𝑛

𝑘=1
𝑉
𝑘
and pseudomonotone

with respect to the 𝑖th argument.
(b) the operator 𝐴 : 𝑉 = ∏

𝑛

𝑘=1
𝑉
𝑘
→ 2
𝑉
∗

, which
is defined by 𝐴(𝑢) = (𝐴

1
(𝑢), . . . , 𝐴

𝑛
(𝑢)), is

pseudomonotone on 𝑉.
(c) For all 𝑢

𝑗
∈ 𝑉
𝑗
, 𝑗 ̸= 𝑖, there exist an element 𝑤

𝑖
∈

𝐷(𝜕̂𝐺
𝑖
) ⊂ 𝑉
𝑖
and a constant 𝛼

𝑖
> 0 such that

⟨𝑢
∗

𝑖
, 𝑢
𝑖
− 𝑤
𝑖
⟩
𝑉
∗

𝑖
×𝑉
𝑖

≥ 𝛼
𝑖

󵄩󵄩󵄩󵄩𝑢𝑖
󵄩󵄩󵄩󵄩

2

𝑉
𝑖

,

∀𝑢
𝑖
∈ 𝑉
𝑖
, 𝑢
∗

𝑖
∈ 𝐴
𝑖
(𝑢
1
, . . . , 𝑢

𝑛
) .

(53)

(2) 𝑗(𝑥, 𝑦) : Ω × 𝑅
𝑛
→ 𝑅 is a function satisfying the

assumption (Hj).

(3) For 𝑖 = 1, 2, . . . , 𝑛, 𝑇
𝑖
: 𝑉
𝑖
→ 𝐿

2
(Ω) are linear

continuous and compact operators and 𝐺
𝑖
: 𝑉
𝑖
→

𝑅∪{+∞} are proper, convex, and lower semicontinuous
functionals.

Then the problem (49) admits at least one solution under the
condition

𝛽 > 𝑑
󵄩󵄩󵄩󵄩󵄩
𝑇̃
󵄩󵄩󵄩󵄩󵄩

2

, (54)

where 𝛽 = min{𝛼
𝑖
}/𝑛, 𝑑 = √2max{𝑑

𝑖
}, and ‖𝑇̃‖ is the

norm of the operator 𝑇̃ : ∏
𝑛

𝑘=1
𝑉
𝑘
→ 𝐿
2
(Ω; 𝑅
𝑛
) defined by

𝑇̃(𝑢
1
, . . . , 𝑢

𝑛
) = (𝑇

1
𝑢
1
, . . . , 𝑇

𝑛
𝑢
𝑛
).
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