
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 302642, 13 pages
http://dx.doi.org/10.1155/2013/302642

Research Article
Some Integrals Involving 𝑞-Laguerre
Polynomials and Applications

Jian Cao

Department of Mathematics, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China

Correspondence should be addressed to Jian Cao; 21caojian@gmail.com

Received 13 January 2013; Accepted 4 June 2013

Academic Editor: Mustafa Bayram

Copyright © 2013 Jian Cao. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The integrals involving multivariate q-Laguerre polynomials and then auxiliary ones are studied. In addition, the representations
of q-Hermite polynomials by q-Laguerre polynomials and their related integrals are given. At last, some generalized integrals
associated with generalized q-Hermite polynomials are deduced.

Dedicated to Srinivasa Ramanujan on the occasion of his 125th birth anniversary

1. Introduction

The 𝑞-Laguerre polynomials are important 𝑞-orthogonal
polynomials whose applications and generalizations arise in
many applications such as quantum group (oscillator algebra,
etc.), 𝑞-harmonic oscillator, and coding theory. For example,
covariant oscillator algebra can be expressed by 𝑞-Laguerre
polynomials [1]. The 𝑞-deformed radial Schrödinger is ana-
lyzed by 𝑞-Laguerre polynomials [2]. The 𝑞-Laguerre poly-
nomials are the eigenvectors of an 𝑠𝑢𝑞(1 | 𝑞)-representation
by [3]. For more information, please refer to [1–5].

The 𝑞-Laguerre polynomials are defined by [6, equation
(1.0.1)]
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which belong to the Askey scheme of basic hypergeometric
orthogonal polynomials and according to Koekoek and
Swarttouw [7, equation (3.21.1)].The case of 𝑥 in (1) replaced
by (1 − 𝑞)𝑥 is studied by Moak [8, equation (2.3)].

In this paper, we first define the auxiliary 𝑞-Laguerre
polynomials as follows:
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It is easy to see the validity of the following:
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where the classical Laguerre polynomials are defined by [9,
page 201]
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For more information about classical Laguerre polynomials,
please refer to [9–15] and the references therein.
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Thewell-knownorthogonality of 𝑞-Laguerre polynomials
reads the following.

Proposition 1 (see [6, equation (2.0.7)] and [8, equation
(2.4)]). For 𝛼 > −1 and for 𝑚, 𝑛 ∈ N, one has
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(6)

Hahn [16] discovered the previous 𝑞-extensions of the
Laguerre polynomials, although he said little about them.
Moak [8] found that the 𝑞-Laguerre polynomials are orthog-
onal with respect to the discrete measures (Dirac measure).
Koekoek and Meijer [17–19] studied systematically the inner
product of 𝑞-Laguerre polynomials. Ismail and Rahman [20]
studied the indeterminate Hamburger moment problems
related to 𝑞-Laguerre polynomials. For more information,
please refer to [6–8, 16–21] and the references therein.

In this paper, we first generalize Proposition 1 and the
auxiliary ones as follows.

Theorem 2. ForR{𝜇} > −1 and 𝑚, 𝑛 ∈ N, one has
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Theorem 3. ForR{𝜇} > −1 and 𝑚, 𝑛 ∈ N, one has
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Corollary 4 (see [15, equation (14)]). ForR{𝛾} > −1,R{𝜎} >

0, and 𝑚, 𝑛 ∈ N, one has
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Remark 5. Theorems 2 and 3 reduce to Proposition 1 and
formula (41), respectively, if letting 𝑦 = 𝑧 = 1 and 𝛼 = 𝛽 =

𝜇, and become Corollary 4 by setting 𝑞 → 1 and taking
(𝜇, 𝑥, 𝑦, 𝑧) = (𝛾, 𝜎𝑥, 𝜆/𝜎, 𝜇/𝜎).

The discrete 𝑞-Hermite polynomials ℎ𝑛(𝑥; 𝑞) and ℎ̃𝑛(𝑥; 𝑞)

are defined by [7, pages 90-91]
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which are equivalent to Al-Salam-Carlitz polynomials with
𝑎 = −1 (please refer to [22, page 53] also), and the
relation between them is ℎ𝑛(𝑖𝑥; 𝑞

−1
) = 𝑖
𝑛
ℎ̃𝑛(𝑥; 𝑞). For more

information about the Al-Salam-Carlitz polynomials and the
discrete 𝑞-Hermite polynomials, please refer to [7, 22–30] and
the references therein.

In this paper, we also define new 𝑞-Hermite polynomials
H𝑛(𝑥; 𝑞) andG𝑛(𝑥; 𝑞), whose names come from the facts
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then we deduce the representations ofH𝑛(𝑥; 𝑞) andG𝑛(𝑥; 𝑞)
by 𝑞-Laguerre polynomials; see Theorems 15 and 16.

As an application, using the orthogonality of 𝑞-Laguerre
polynomials (6), and (41), and combining the expressions
of 𝑞-Hermite polynomials (52) and (54), we can obtain the
following results immediately.

Theorem 6. For 𝛼 > −1 and 𝑗 ≤ 𝑛 ∈ N, one has
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where 𝐶(𝑛, 𝑘) is defined by (52).

Theorem 7. For 𝛼 > −1 and 𝑗 ≤ 𝑛 ∈ N, one has
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where𝐷(𝑛, 𝑘) is defined by (54).

ThegeneralizedHermite polynomials were introduced by
Szegö [31], (see also [23, equation (1.1)]) as follows:
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The authors [23, equation (2.7)] defined the following
generalized 𝑞-Hermite polynomials:
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and deduced their orthogonal relations; see Proposition 19
below.

In this paper, we continue to define the auxiliary polyno-
mials according to (16) as follows:
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With the aid of (15)–(17) and (4), one readily verifies that
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As another application of this paper, we gain the general
𝑞-Laguerre polynomials of several variables by Theorems 2
and 3, and we also deduce the orthogonal polynomials of
G(𝜇)
𝑛

(𝑥; 𝑞). For more details of the results, see Theorems 20
and 21 and Corollary 23.

The structure of this paper is organized as follows. In
Section 2, we show how to prove the integrals involving
𝑞-Laguerre polynomials of several variables. In Section 3,
we represent discrete 𝑞-Hermite polynomials by 𝑞-Laguerre
polynomials and their related integral results. In Section 4,
we study the general integrals of 𝑞-Hermite polynomials
involving several variables.

2. Notations and Proof of Theorems 2 and 3

Throughout this paper, we follow the notations and terminol-
ogy in [32] and assume that 0 < 𝑞 < 1, N = {0, 1, 2, . . .}, and
R is rational number. The 𝑞-series and its compact factorials
are defined [32, page 6], respectively, by
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where Pochhammer symbol (𝑧)𝑛 is defined by (𝑧)𝑛 = 𝑧(𝑧 +

1) ⋅ ⋅ ⋅ (𝑧 + 𝑛 − 1) = Γ(𝑧 + 𝑛)/Γ(𝑧).
The 𝑞-analogue of the gamma function is defined by (see

[32, equation (1.10.1)]) as follows:
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3
𝜙
2
transformations [32, equations (III.12) and

(III.13)] stats that

3
𝜙
2
[

𝑞
−𝑛

, 𝑎, 𝑐

𝑏, 𝑑
; 𝑞, 𝑞] =

𝑎
𝑛
(𝑑/𝑎; 𝑞)

𝑛

(𝑑; 𝑞)
𝑛

×
3
𝜙
2

[
[

[

𝑞
−𝑛

, 𝑎,
𝑏

𝑐

𝑏,
𝑎𝑞
1−𝑛

𝑑

; 𝑞,
𝑐𝑞

𝑑

]
]

]

,

3
𝜙
2
[

𝑞
−𝑛

, 𝑏, 𝑐

𝑑, 𝑒
; 𝑞,

𝑑𝑒𝑞
𝑛

𝑏𝑐
] =

(𝑒/𝑐; 𝑞)
𝑛

(𝑒; 𝑞)
𝑛

×
3
𝜙
2

[
[

[

𝑞
−𝑛

, 𝑐,
𝑑

𝑏

𝑑,
𝑐𝑞
1−𝑛

𝑒

; 𝑞,
𝑐𝑞

𝑑

]
]

]

.

(24)

The 𝑞-analogue of the Pfaff-Kummer transformation [32,
equation (III.4)] is as follows:

2
𝜙
1
[

𝑎, 𝑏

𝑐
; 𝑞, 𝑧] =

(𝑎𝑧; 𝑞)
∞

(𝑧; 𝑞)
∞

2
𝜙
2
[

𝑎,
𝑐

𝑏
𝑐, 𝑎𝑧

; 𝑞, 𝑏𝑧] . (25)

The Ramanujan beta integral is stated as follows [33,
equation (2.8)]:

∫

∞

0

𝑡
𝑥−1

(−𝑎𝑡; 𝑞)
∞

(−𝑡; 𝑞)
∞

𝑑𝑡 =

(𝑎, 𝑞
1−𝑥

; 𝑞)
∞

(𝑞, 𝑎𝑞−𝑥; 𝑞)
∞

𝜋

sin𝜋𝑥
,

(0 < 𝑎 < 𝑞
𝑥
, 𝑥 > 0) .

(26)

Lemma 8 (see [33, equation (4.2)]). One has

∫

∞

0

𝑥
𝛼

(−𝑥; 𝑞)
∞

𝑑𝑥 =
Γ (−𝛼) Γ (𝛼 + 1) (1 − 𝑞)

1+𝛼

Γ𝑞 (−𝛼)

= −
(𝑞
−𝛼

; 𝑞)
∞

(𝑞; 𝑞)
∞

𝜋

sin𝜋𝛼
,

(27)

∫

∞

0

𝑥
𝛼
(𝑥; 𝑞)
∞
𝑑𝑥 = −𝑞

(
𝛼+2
2
)
(𝑞
−𝛼

; 𝑞)
∞

(𝑞; 𝑞)
∞

𝜋

sin𝜋𝛼
. (28)

Proof. Taking (𝑎, 𝑡) = (−1/𝑎, 𝑎𝑡) in (26), then letting 𝑎 → 0,
we obtain (28) immediately. The proof is complete.

Lemma 9. For 𝛼 > −1 and 𝑛 ∈ N, one has

L
(𝛼)

𝑛
(𝑥𝑦; 𝑞) =

𝑛

∑

𝑘=0

(𝑞
𝛼+1

; 𝑞)
𝑛
(𝑦; 𝑞)
𝑛−𝑘

𝑦
𝑘L
(𝛼)

𝑘
(𝑥; 𝑞)

(𝑞; 𝑞)
𝑛−𝑘

(𝑞𝛼+1; 𝑞)
𝑘

, (29)

M
(𝛼)

𝑛
(𝑥𝑦; 𝑞)

=

𝑛

∑

𝑘=0

(−1)
𝑛−𝑘

(𝑞
𝛼+1

; 𝑞)
𝑛
(1/𝑦; 𝑞)

𝑛−𝑘
𝑦
𝑛M
(𝛼)

𝑘
(𝑥; 𝑞)

(𝑞; 𝑞)
𝑛−𝑘

(𝑞𝛼+1; 𝑞)
𝑘

× 𝑞
( 𝑘
2
)+𝛼𝑘−(

𝑛
2 )−𝛼𝑛.

(30)

Proof. Letting 𝛾 = 0 in [6, Proposition 4.1],

∞

∑

𝑛=0

(𝛾𝑡; 𝑞)
𝑛
𝑞
𝛼𝑛+𝑛
2

(𝛾𝑡, 𝑞𝛼+1, 𝑞; 𝑞)
𝑛

(−𝑥𝑡)
𝑛

=
(𝑡; 𝑞)
∞

(𝛾𝑡; 𝑞)
∞

∞

∑

𝑛=0

(𝛾; 𝑞)
𝑛
𝑡
𝑛

(𝑞𝛼+1; 𝑞)
𝑛

L
(𝛼)

𝑛
(𝑥; 𝑞) ,

(31)

then replacing 𝑥 by 𝑥𝑦, we have

∞

∑

𝑛=0

L(𝛼)
𝑛

(𝑥𝑦; 𝑞)

(𝑞𝛼+1; 𝑞)
𝑛

𝑡
𝑛

=
(𝑦𝑡; 𝑞)

∞

(𝑡; 𝑞)
∞

1

(𝑦𝑡; 𝑞)
∞

∞

∑

𝑛=0

𝑞
𝛼𝑛+𝑛
2

(𝑞𝛼+1, 𝑞; 𝑞)
𝑛

(−𝑥𝑦𝑡)
𝑛

=

∞

∑

𝑘=0

(𝑦; 𝑞)
𝑘

(𝑞; 𝑞)
𝑘

𝑡
𝑘

∞

∑

𝑛=𝑘

𝐿
(𝛼)

𝑛−𝑘
(𝑥; 𝑞) (𝑦𝑡)

𝑛−𝑘

(𝑞𝛼+1; 𝑞)
𝑛−k

.

(32)

Comparing the coefficients of 𝑡𝑛 on both sides of (32) yields
(29). Similar to (32), by the definition (1), we have

∞

∑

𝑛=0

(𝛾; 𝑞)
𝑛
(𝑡𝑞
𝛼
)
𝑛

(𝑞𝛼+1; 𝑞)
𝑛

M
(𝛼)

𝑛
(𝑥; 𝑞)

=
(𝛾𝑡; 𝑞)

∞

(𝑡; 𝑞)
∞

∞

∑

𝑛=0

(𝛾; 𝑞)
𝑛
𝑥
𝑛

(𝑞/𝑡, 𝑞𝛼+1, 𝑞; 𝑞)
𝑛

.

(33)

By taking (𝛾, 𝑡, 𝑥) = (1/𝛾, 𝛾𝑡, 𝑥𝑦) and letting 𝛾 → 0 in (33),
we obtain (30). The proof of Lemma 9 is complete.
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Lemma 10. Formin{𝛼, 𝛽} > −1 and 𝑚, 𝑛 ∈ N, one has

∫

∞

0

L
(𝛼)

𝑚
(𝑥; 𝑞)L

(𝛽)

𝑛
(𝑥; 𝑞)

𝑥
𝛽

(−𝑥; 𝑞)
∞

𝑑𝑥

= (−1)
𝑚+𝑛

𝑞
(𝛼−𝛽)𝑚+(

𝑚
2 )+(
𝑛
2 )−𝑚𝑛

× (1 − 𝑞)
1+𝛽

[
𝛽 − 𝛼

𝑚 − 𝑛
] [

𝑛 + 𝛽

𝑛
]
𝜋 csc (−𝛽𝜋)

Γ𝑞 (−𝛽)
,

(34)

∫

∞

0

M
(𝛼)

𝑗
(𝑥; 𝑞)M

(𝛽)

𝑘
(𝑥; 𝑞) 𝑥

𝛽
(𝑥; 𝑞)
∞
𝑑𝑥

= (−1)
𝑘+𝑗

𝑞
(
𝑗+1

2
)+( 𝑘+1
2
)−(𝛼+𝑗)𝑘+(

𝛽+2

2
)

× (1 − 𝑞)
1+𝛽

[
𝛽 − 𝛼

𝑗 − 𝑘
] [

𝑘 + 𝛽

𝑘
]
𝜋 csc (−𝛽𝜋)

Γ𝑞 (−𝛽)
.

(35)

Proof. Interchanging the integral and summation by defini-
tion, the left hand side of (34) equals

(𝑞
𝛼+1

; 𝑞)
𝑚
(𝑞
𝛽+1

; 𝑞)
𝑛

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛

𝑚

∑

𝑘=0

𝑛

∑

𝑗=0

(𝑞
−𝑚

; 𝑞)
𝑘
𝑞
( 𝑘
2
)
𝑞
𝑘(𝑚+𝛼+1)

(𝑞𝛼+1, 𝑞; 𝑞)
𝑘

×

(𝑞
−𝑛

; 𝑞)
𝑗
𝑞
(
𝑗

2
)
𝑞
𝑗(𝑛+𝛽+1)

(𝑞𝛽+1, 𝑞; 𝑞)
𝑗

∫

∞

0

𝑥
𝛽+𝑘+𝑗

𝑑𝑥

(−𝑥; 𝑞)
∞

=

(𝑞
𝛼+1

; 𝑞)
𝑚
(𝑞
𝛽+1

; 𝑞)
𝑛

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛

𝑚

∑

𝑘=0

𝑛

∑

𝑗=0

(𝑞
−𝑚

; 𝑞)
𝑘
𝑞
( 𝑘
2
)
𝑞
𝑘(𝑚+𝛼+1)

(𝑞𝛼+1, 𝑞; 𝑞)
𝑘

×

(𝑞
−𝑛

; 𝑞)
𝑗
𝑞
(
𝑗

2
)
𝑞
𝑗(𝑛+𝛽+1)

(𝑞𝛽+1, 𝑞; 𝑞)
𝑗

×
𝜋csc (−𝛽𝜋)
Γ𝑞 (−𝛽)

(1 − 𝑞)
1+𝛽

𝑞
−𝑗𝛽−(
𝑗+1

2
)−𝑘(𝛽+𝑗)−( 𝑘+1

2
)

× (𝑞
𝛽+1

; 𝑞)
𝑗+𝑘

=
𝜋csc (−𝛽𝜋)
Γ𝑞 (−𝛽)

(1 − 𝑞)
1+𝛽

(𝑞
𝛼+1

; 𝑞)
𝑚
(𝑞
𝛽+1

; 𝑞)
𝑛

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛

×

𝑛

∑

𝑗=0

(𝑞
−𝑛

; 𝑞)
𝑗
𝑞
𝑗𝑛

(𝑞; 𝑞)
𝑗

𝑚

∑

𝑘=0

(𝑞
−𝑚

, 𝑞
𝛽+𝑗+1

; 𝑞)
𝑘
𝑞
𝑘(𝑚+𝛼−𝛽−𝑗)

(𝑞𝛼+1, 𝑞; 𝑞)
𝑘

= (−1)
𝑚
𝑞
(𝛼−𝛽)𝑚+(

𝑚
2 )

𝜋csc (−𝛽𝜋)
Γ𝑞 (−𝛽)

(1 − 𝑞)
1+𝛽

×

(𝑞
𝛽−𝛼−𝑚+1

; 𝑞)
𝑚
(𝑞
𝛽+1

; 𝑞)
𝑛

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛

×

𝑛

∑

𝑗=0

(𝑞
−𝑛

, 𝑞
𝛽−𝛼+1

; 𝑞)
𝑗

(𝑞, 𝑞𝛽−𝛼−𝑚+1; 𝑞)
𝑗

𝑞
𝑗(𝑛−𝑚)

,

(36)

which is the right hand side of (34) by using the second
formula of (23) and simplification. Similar to (34), the right
hand side of (35) is equal to

𝑞
−𝑚𝛼−𝑛𝛽

(𝑞
𝛼+1

; 𝑞)
𝑚
(𝑞
𝛽+1

; 𝑞)
𝑛

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛

×

𝑚

∑

𝑘=0

𝑛

∑

𝑗=0

(𝑞
−𝑚

; 𝑞)
𝑘
(𝑞
−𝑛

; 𝑞)
𝑗

(𝑞𝛼+1, 𝑞; 𝑞)
𝑘
(𝑞𝛽+1, 𝑞; 𝑞)

𝑗

× ∫

∞

0

𝑥
𝛽+𝑘+𝑗

(𝑥; 𝑞)
∞
𝑑𝑥

= 𝑞
−𝑚𝛼−𝑛𝛽

(𝑞
𝛼−𝛽

; 𝑞)
𝑚
(𝑞
𝛽+1

; 𝑞)
𝑛

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛

(1 − 𝑞)
1+𝛽

×
𝜋csc (−𝛽𝜋)
Γ𝑞 (−𝛽)

𝑞
(𝛽+1)𝑚

𝑞
(
𝛽+2

2
)

2
𝜙
1
[

𝑞
−𝑛

, 𝑞
𝛽−𝛼+1

𝑞
𝛽−𝛼−𝑚+1 ; 𝑞] ,

(37)

which is equivalent to the right hand side of (35) by using
the first formula of (23) and simplification. The proof of
Lemma 10 is complete.

Lemma 11. If 𝑓(𝑥) is a polynomial of degree𝑚 about 𝑥 and is
defined in the infinite interval (0,∞), which can be expanded
in a series of the form

𝑓 (𝑥) =

𝑚

∑

𝑛=0

𝐶𝑚𝑛L
(𝛼)

𝑛
(𝑥; 𝑞)

or 𝑓 (𝑥) =

𝑚

∑

𝑛=0

𝐷𝑚𝑛M
(𝛼)

𝑛
(𝑥; 𝑞) ,

(38)

where 𝐶𝑚𝑛 and 𝐷𝑚𝑛 are the 𝑛th Fourier-Laguerre coefficients,
and both of them are independent of 𝑥, then one has

𝐶𝑚𝑛 =
Γ𝑞 (−𝛼) (𝑞; 𝑞)𝑛𝑞

𝑛

Γ (𝛼 + 1) Γ (−𝛼) (𝑞𝛼+1; 𝑞)
𝑛
(1 − 𝑞)

𝛼+1

× ∫

∞

0

𝑥
𝛼

(−𝑥; 𝑞)
∞

𝑓 (𝑥)L
(𝛼)

𝑛
(𝑥; 𝑞) 𝑑𝑥,

(39)

𝐷𝑚𝑛 =
Γq (−𝛼) (𝑞; 𝑞)𝑛𝑞

𝛼𝑛−𝑛−(
𝛼+2
2
)

Γ (𝛼 + 1) Γ (−𝛼) (𝑞𝛼+1; 𝑞)
𝑛
(1 − 𝑞)

𝛼+1

× ∫

∞

0

𝑥
𝛼
(𝑥; 𝑞)
∞
𝑓 (𝑥)M

(𝛼)

𝑛
(𝑥; 𝑞) 𝑑𝑥.

(40)

Proof. Multiplying (38) by 𝑥
𝛼L𝑛(𝑥; 𝑞)/(−𝑥; 𝑞)∞ and inte-

grating term by term over the interval (0,∞), using (6), we
obtain the proof of (39). Similarly, taking 𝛽 = 𝛼 in (35), we
deduce

∫

∞

0

M
(𝛼)

𝑚
(𝑥; 𝑞)M

(𝛼)

𝑛
(𝑥; 𝑞) 𝑥

𝛼
(𝑥; 𝑞)
∞
𝑑𝑥

= −𝑞
(
𝛼+2
2
)+𝑛−𝛼𝑛

(𝑞
𝛼+1

; 𝑞)
𝑛
(𝑞
−𝛼

; 𝑞)
∞

(𝑞; 𝑞)
𝑛
(𝑞; 𝑞)
∞

𝜋𝛿𝑚,𝑛

sin𝜋𝛼
,

(41)
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so we also gain the proof of (40). The proof of Lemma 11 is
complete.

Lemma 12. Formin{𝛼, 𝛽} > −1, one has

L
(𝛼)

𝑛
(𝑥𝑦; 𝑞) =

𝑛

∑

𝑘=0

[
𝑛 + 𝛼

𝑛 − 𝑘
] 𝑦
𝑘
𝑞
(𝛼−𝛽)𝑘

L
(𝛽)

𝑘
(𝑥; 𝑞)

×
2
𝜙
1
[

𝑞
𝑘−𝑛

, 𝑞
𝛽+1+𝑘

𝑞
𝛼+𝑘+1 ; 𝑦𝑞

𝛼−𝛽+𝑛−𝑘
] ,

(42)

M
(𝛼)

𝑛
(𝑥𝑦; 𝑞) =

𝑛

∑

𝑘=0

[
𝑛 + 𝛼

𝑛 − 𝑘
] 𝑦
𝑘
𝑞
(𝑘−𝑛+𝛽)𝑘−𝛼𝑛

M
(𝛽)

𝑘
(𝑥; 𝑞)

×
2
𝜙
1
[

𝑞
𝑘−𝑛

, 𝑞
𝛽+1+𝑘

𝑞
𝛼+𝑘+1 ; 𝑦𝑞] .

(43)

Remark 13. Replacing 𝑥 by (1 − 𝑞)𝑥 and letting 𝑞 → 1, we
have [15, equation (11)]

𝐿
(𝛼)

𝑛
(𝑥𝑦) =

𝑛

∑

𝑘=0

(
𝑛 + 𝛼

𝑛 − 𝑘
)𝑦
𝑘
𝐿
(𝛽)

𝑘
(𝑥)
2𝐹1

× [
−𝑛 + 𝑘, 𝛽 + 𝑘 + 1

𝛼 + 𝑘 + 1
; 𝑦] .

(44)

Setting 𝛼 = 𝛽, (42) and (43) reduce to (29) and (30),
respectively.

Proof. Let

𝐴 =
Γ𝑞 (−𝛽) (𝑞; 𝑞)𝑘𝑞

𝑘

𝜋csc (−𝛽𝜋) (𝑞𝛽+1; 𝑞)
𝑘
(1 − 𝑞)

1+𝛽
,

𝐵 = (1 − 𝑞)
1+𝛽𝜋csc (−𝛽𝜋)

Γ𝑞 (−𝛽)
.

(45)

By Lemmas 10 and 11, the coefficient ofL(𝛼)
𝑛

(𝑥𝑦; 𝑞) expanded
byL(𝛽)
𝑛

(𝑥; 𝑞)

𝐶𝑛𝑘 = 𝐴 ⋅

𝑛

∑

𝑗=0

(𝑞
𝛼+1

; 𝑞)
𝑛
(𝑦; 𝑞)
𝑛−𝑗

𝑦
𝑗

(𝑞; 𝑞)
𝑛−𝑗

(𝑞𝛼+1; 𝑞)
𝑗

× ∫

∞

0

L
(𝛼)

𝑗
(𝑥; 𝑞)L

(𝛽)

𝑘
(𝑥; 𝑞)

𝑥
𝛽

(−𝑥; 𝑞)
∞

𝑑𝑥

= 𝐴𝐵 ⋅

𝑛

∑

𝑗=0

(𝑞
𝛼+1

; 𝑞)
𝑛
(𝑦; 𝑞)
𝑛−𝑗

𝑦
𝑗

(𝑞; 𝑞)
𝑛−𝑗

(𝑞𝛼+1; 𝑞)
𝑗

× (−1)
𝑘+𝑗

𝑞
(𝛼−𝛽)𝑗+(

𝑗

2
)+( 𝑘
2
)

× [
𝛽 − 𝛼

𝑗 − 𝑘
] [

𝑘 + 𝛽

𝑘
] 𝑞
−𝑘𝑗

= 𝐴𝐵 ⋅

𝑛−𝑘

∑

𝑗=0

(𝑞
𝛼+1

; 𝑞)
𝑛
(𝑦; 𝑞)
𝑛−𝑗−𝑘

𝑦
𝑗+𝑘

(𝑞; 𝑞)
𝑛−𝑗−𝑘

(𝑞𝛼+1; 𝑞)
𝑗+𝑘

× [
𝛽 − 𝛼

𝑗
] [

𝑘 + 𝛽

𝑘
] (−1)

𝑗
𝑞
(𝛼−𝛽)(𝑗+𝑘)−𝑘+(

𝑗

2
)

= 𝐴𝐵 ⋅

(𝑞
𝛼+1

; 𝑞)
𝑛
(𝑦; 𝑞)
𝑛−𝑘

𝑦
𝑘

(𝑞; 𝑞)
𝑛−𝑘

(𝑞𝛼+1; 𝑞)
𝑘

𝑞
(𝛼−𝛽−1)𝑘

× [
𝑘 + 𝛽

𝑘
]
3
𝜙
2

[
[

[

𝑞
𝑘−𝑛

, 𝑞
𝛼−𝛽

, 0

𝑞
𝑘−𝑛+1

𝑦
, 𝑞
𝛼+𝑘+1

; 𝑞
]
]

]

= 𝐴𝐵 ⋅

(𝑞
𝛼+1

; 𝑞)
𝑛
𝑦
𝑘

(𝑞; 𝑞)
𝑛−𝑘

(𝑞𝛼+1; 𝑞)
𝑘

𝑞
(𝛼−𝛽−1)𝑘

× [
𝑘 + 𝛽

𝑘
]
2
𝜙
1
[

𝑞
𝑘−𝑛

, 𝑞
𝛽+1+𝑘

𝑞
𝛼+𝑘+1 ; 𝑦𝑞

𝛼−𝛽+𝑛−𝑘
]

(46)

is equal to the right hand side of (42). Similarly, we have

𝐷𝑛𝑘 = 𝐴 ⋅ 𝑞
−(
𝛽+2

2
)−2𝑘+𝛽𝑘

× ∫

∞

0

M
(𝛼)

𝑛
(𝑥𝑦; 𝑞)M

(𝛽)

𝑘
(𝑥; 𝑞) 𝑥

𝛽
(𝑥; 𝑞)
∞
𝑑𝑥

= 𝐴𝐵 ⋅ 𝑞
−(
𝛽+2

2
)−2𝑘+𝛽𝑘

×

𝑛

∑

𝑗=0

(−1)
𝑛−𝑗

(𝑞
𝛼+1

; 𝑞)
𝑛
(1/𝑦; 𝑞)

𝑛−𝑗
𝑦
𝑛

(𝑞; 𝑞)
𝑛−𝑗

(𝑞𝛼+1; 𝑞)
𝑗

𝑞
(
𝑗

2
)+𝛼𝑗−(

𝑛
2 )−𝛼𝑛

× (−1)
𝑗+𝑘

𝑞
(
𝑗+1

2
)+( 𝑘+1
2
)−(𝛼+𝑗)𝑘+(

𝛽+2

2
)

× [
𝛽 − 𝛼

𝑗 − 𝑘
] [

𝑘 + 𝛽

𝑘
]

= 𝐴𝐵 ⋅ 𝑞
−2𝑘+𝛽𝑘−𝛼𝑛−(

𝑛
2 )+(
𝑘+1
2
)−𝛼𝑘

×

𝑛−𝑘

∑

𝑗=0

(−1)
𝑛+𝑘

(𝑞
𝛼+1

; 𝑞)
𝑛
(1/𝑦; 𝑞)

𝑛−𝑘
(𝑞
𝑛−𝑗−𝑘+1

; 𝑞)
𝑗
𝑦
𝑛

(𝑞𝑛−𝑗−𝑘/𝑦; 𝑞)
𝑗
(𝑞; 𝑞)
𝑛−𝑘

(𝑞𝛼+1; 𝑞)
𝑗+𝑘

× 𝑞
(𝑗+𝑘)
2
+𝛼(𝑗+𝑘)−(𝑗+𝑘)𝑘

×

(𝑞
𝛽−𝛼−𝑗+1

; 𝑞)
𝑗

(𝑞; 𝑞)
𝑗

[
𝑘 + 𝛽

𝑘
]
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= 𝐴𝐵 ⋅ 𝑞
−2𝑘+𝛽𝑘−𝛼𝑛−(

𝑛
2 )+(
𝑘+1
2
)

×

(−1)
𝑛+𝑘

(𝑞
𝛼+1

; 𝑞)
𝑛
(1/𝑦; 𝑞)

𝑛−𝑘
𝑦
𝑛

(𝑞; 𝑞)
𝑛−𝑘

(𝑞𝛼+1; 𝑞)
𝑘

[
𝑘 + 𝛽

𝑘
]

×
2
𝜙
2
[

𝑞
𝑘−𝑛

, 𝑞
𝛼−𝛽

𝑦𝑞
𝑘+1−𝑛

, 𝑞
𝛼+𝑘+1 ; 𝑦𝑞

𝛽+𝑘+2
] ,

(47)

which is equivalent to the right hand side of (43) by (25) and
simplification. The proof of Lemma 12 is complete.

Proof of Theorems 2 and 3. By using formula (42), the left
hand side of (7) is equal to

𝑚

∑

𝑘=0

[
𝑚 + 𝛼

𝑚 − 𝑘
]𝑦
𝑘
𝑞
(𝛼−𝜇)𝑘

×
2
𝜙
1
[

𝑞
𝑘−𝑚

, 𝑞
𝜇+1+𝑘

𝑞
𝛼+𝑘+1 ; 𝑦𝑞

𝛼−𝜇+𝑚−𝑘
]

×

𝑛

∑

𝑗=0

[
𝑛 + 𝛽

𝑛 − 𝑗
] 𝑧
𝑗
𝑞
(𝛽−𝜇)𝑗

×
2
𝜙
1
[

𝑞
𝑗−𝑛

, 𝑞
𝜇+1+𝑗

𝑞
𝛽+𝑗+1 ; 𝑧𝑞

𝛽−𝜇+𝑛−𝑗
]

× ∫

∞

0

L
(𝜇)

𝑘
(𝑥; 𝑞)L

(𝜇)

𝑗
(𝑥; 𝑞)

𝑥
𝜇

(−𝑥; 𝑞)
∞

𝑑𝑥.

(48)

Similarly, with the help of formula (43), the left hand side of
(8) equals

𝑚

∑

𝑘=0

[
𝑚 + 𝛼

𝑚 − 𝑘
]𝑦
𝑘
𝑞
(𝑘−𝑚+𝜇)𝑘−𝛼𝑚

2
𝜙1

× [
𝑞
𝑘−𝑚

, 𝑞
𝜇+1+𝑘

𝑞
𝛼+𝑘+1 ; 𝑦𝑞]

×

𝑛

∑

𝑗=0

[
𝑛 + 𝛽

𝑛 − 𝑗
] 𝑧
𝑗
𝑞
(𝑗−𝑛+𝜇)𝑗−𝛽𝑛

×
2
𝜙
1
[

𝑞
𝑗−𝑛

, 𝑞
𝜇+1+𝑗

𝑞
𝛽+𝑗+1 ; 𝑧𝑞]

× ∫

∞

0

M
(𝜇)

𝑘
(𝑥; 𝑞)M

(𝜇)

𝑗
(𝑥; 𝑞) 𝑥

𝜇
(𝑥; 𝑞)
∞
𝑑𝑥.

(49)

Using formulas (41) and (43) and noticing that the orthog-
onality of previous two types of 𝑞-Laguerre polynomials for
the case of 𝑘 = 𝑗, we can deduce (7) and (8). The proof of
Theorems 2 and 3 is complete.

3. Representations of 𝑞-Hermite Polynomials

Doha [34, page 5460] deduced the following result by third-
order recurrence relation of the coefficients.

Proposition 14 (see [34, equation (49)]). For 𝛼 > −1 and 𝑛 ∈

N, one has

𝐻𝑛 (𝑥) = 2
𝑛
(1 + 𝛼)𝑛

×

𝑛

∑

𝑘=0

2𝐹2
[
[

[

− (𝑛 − 𝑘)

2
,
− (𝑛 − 𝑘 − 1)

2
− (𝛼 + 𝑛)

2
,
− (𝛼 + 𝑛 − 1)

2

; −
1

4

]
]

]

×
(−𝑛)𝑘𝐿

(𝛼)

𝑘
(𝑥)

(1 + 𝛼)𝑘

.

(50)

In this section, we employ the technique of rearrange-
ment of series
∞

∑

𝑛=0

∞

∑

𝑘=0

A (𝑘, 𝑛)

=

∞

∑

𝑛=0

𝑛

∑

𝑘=0

A (𝑘, 𝑛 − 𝑘) =

∞

∑

𝑛=0

[𝑛/2]

∑

𝑘=0

A (𝑘, 𝑛 − 2𝑘)

(51)

to derive the following 𝑞-analogue of Proposition 14.

Theorem 15. For 𝛼 > −1 and 𝑛 ∈ N, one has

H𝑛 (𝑥; 𝑞) = (𝑞
𝛼+1

, 𝑞; 𝑞)
𝑛
(1 − 𝑞)

−𝑛/2
𝑛

∑

𝑘=0

𝐶 (𝑛, 𝑘)L
(𝛼)

𝑘
(𝑥; 𝑞) ,

(52)

where

𝐶 (𝑛, 𝑘) =
(−1)
𝑘
𝑞
−(𝑛
2
+𝑛+4𝛼𝑛+4𝑛𝑘−2𝑘

2
)/4

(𝑞𝛼+1; 𝑞)
𝑘
(𝑞; 𝑞)
𝑛−𝑘

×

[(𝑛−𝑘)/2]

∑

𝑠=0

(−1)
𝑠
(𝑞
𝑘−𝑛

; 𝑞)
2𝑠
(1 − 𝑞)

𝑠

(𝑞−(𝑛+𝛼); 𝑞)
2𝑠
(−𝑞−𝑛/2; 𝑞1/2)

2𝑠
(𝑞; 𝑞)
𝑠

,

(53)

and [𝑥] denotes the greatest integer not exceeding 𝑥.

Theorem 16. For 𝛼 > −1 and 𝑛 ∈ N, one has

G𝑛 (𝑥; 𝑞) = (𝑞
𝛼+1

, 𝑞; 𝑞)
𝑛
(1 − 𝑞)

−𝑛/2
𝑞
−𝑛(𝑛−1)/4

×

𝑛

∑

𝑘=0

𝐷 (𝑛, 𝑘)M
(𝛼)

𝑘
(𝑥; 𝑞) ,

(54)

where

𝐷 (𝑛, 𝑘)

=
(−1)
𝑘
𝑞
( 𝑘
2
)+𝛼𝑘

(𝑞𝛼+1; 𝑞)
𝑘
(𝑞; 𝑞)
𝑛−𝑘

×

[(𝑛−𝑘)/2]

∑

𝑠=0

(−1)
𝑠
𝑞
(
𝑠
2 )(1 − 𝑞)

𝑠
(𝑞
𝑘−𝑛

; 𝑞)
2𝑠
𝑞
(2𝑠
2
−𝑠−4𝑠𝑘−4𝑠𝛼)/2

(𝑞; 𝑞)
𝑠
(𝑞−(𝑛+𝛼); 𝑞)

2𝑠
(−𝑞−𝑛/2; 𝑞1/2)

2𝑠

.

(55)
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Before the proof of Theorem 15 the following lemma is
necessary.

Lemma 17. For 𝛼 > −1 and 𝑛 ∈ N, one has

𝑥
𝑛
= (𝑞
𝛼+1

, 𝑞; 𝑞)
𝑛
𝑞
−(𝛼𝑛+𝑛

2
)

𝑛

∑

𝑘=0

(−1)
𝑘
𝑞
( 𝑛−𝑘
2
)
L
(𝛼)

𝑘
(𝑥; 𝑞)

(𝑞𝛼+1; 𝑞)
𝑘
(𝑞; 𝑞)
𝑛−𝑘

,

𝑥
𝑛
= (𝑞
𝛼+1

, 𝑞; 𝑞)
𝑛
𝑞
𝑛

𝑛

∑

𝑘=0

(−1)
𝑘
𝑞
( 𝑘
2
)+𝛼𝑘

M
(𝛼)

𝑘
(𝑥; 𝑞)

(𝑞; 𝑞)
𝑛−𝑘

(𝑞𝛼+1; 𝑞)
𝑘

.

(56)

Proof. Letting 𝑓(𝑥) = 𝑥
𝑚 in (38) and using the following fact

[8, page 23]:

∫

∞

0

L
(𝛼)

𝑛
(𝑥; 𝑞)

𝑥
𝛼+𝑚

(−𝑥; 𝑞)
∞

𝑑𝑥

=

(𝑞
−𝑚

; 𝑞)
𝑛
(𝑞
𝛼+1

; 𝑞)
𝑚
Γ (−𝛼) Γ (𝛼 + 1)

(𝑞; 𝑞)
𝑛
Γ𝑞 (−𝛼) 𝑞

𝛼𝑚+(
𝑚+1
2
)
(1 − 𝑞)

−1−𝛼
,

(57)

similarly, we deduce the explicit representation of (39) and
(40), respectively,

𝐶𝑚𝑛 =

(𝑞
𝛼+1

; 𝑞)
𝑚
(𝑞
−𝑚

; 𝑞)
𝑛
𝑞
𝑛

(𝑞𝛼+1; 𝑞)
𝑛
𝑞
𝛼𝑚+(
𝛼+1
2
)

,

𝐷𝑚𝑛 =

(𝑞
𝛼+1

; 𝑞)
𝑚
(𝑞
−𝑚

; 𝑞)
𝑛
𝑞
𝑚(𝑛+1)

(𝑞𝛼+1; 𝑞)
𝑛
𝑞−𝛼𝑛

,

(58)

so we obtain the formula (56). The proof is complete.

Lemma 18 (see [7, equations (3.29.5) and (3.28.5)]). One has

∞

∑

𝑛=0

𝑡
𝑛

(𝑞1/2; 𝑞1/2)
𝑛

H𝑛 (𝑥; 𝑞) =

(−𝑥𝑡(1 − 𝑞)
−1/2

; 𝑞
1/2

)
∞

(−𝑡2; 𝑞)
∞

,

∞

∑

𝑛=0

𝑡
𝑛
𝑞
𝑛(𝑛−1)/4

(𝑞1/2; 𝑞1/2)
𝑛

G𝑛 (𝑥; 𝑞) =

(𝑡
2
; 𝑞)
∞

(𝑥𝑡(1 − 𝑞)
−1/2

; 𝑞1/2)
∞

.

(59)

Proof. By using [7, equations (3.29.5) and (3.28.5)]

∞

∑

𝑛=0

𝑞
(
𝑛
2 )

(𝑞; 𝑞)
𝑛

ℎ̃𝑛 (𝑥; 𝑞) 𝑡
𝑛
=

(−𝑥𝑡; 𝑞)
∞

(−𝑡2; 𝑞2)
∞

,

∞

∑

𝑛=0

ℎ𝑛 (𝑥; 𝑞)

(𝑞; 𝑞)
𝑛

𝑡
𝑛
=

(𝑡
2
; 𝑞
2
)
∞

(𝑥𝑡; 𝑞)
∞

.

(60)

and replacing, respectively, by

H𝑛 (𝑥; 𝑞) = 𝑞
𝑛(𝑛−1)/4

ℎ̃𝑛 (
𝑥

√1 − 𝑞
; 𝑞
1/2

) ,

G𝑛 (𝑥; 𝑞) = 𝑞
−𝑛(𝑛−1)/4

ℎ𝑛 (
𝑥

√1 − 𝑞
; 𝑞
1/2

) ,

(61)

we deduce the proof of Lemma 18.The proof is complete.

Proof of Theorem 15. From the generating function of
H𝑛(𝑥; 𝑞), we have
∞

∑

𝑛=0

𝑡
𝑛

(𝑞1/2; 𝑞1/2)
𝑛

H𝑛 (𝑥; 𝑞)

=

∞

∑

𝑛=0

𝑞
𝑛(𝑛−1)/4

(𝑥𝑡)
𝑛

(𝑞1/2; 𝑞1/2)
𝑛

(1 − 𝑞)
−𝑛/2
∞

∑

𝑠=0

(−𝑡
2
)
𝑠

(𝑞; 𝑞)
𝑠

=

∞

∑

𝑛,𝑠=0

𝑞
𝑛(𝑛−1)/4

𝑡
𝑛+2𝑠

(−1)
𝑠
𝑥
𝑛

(𝑞1/2; 𝑞1/2)
𝑛
(𝑞; 𝑞)
𝑠

=

∞

∑

𝑛,𝑠=0

𝑞
𝑛(𝑛−1)/4

𝑡
𝑛+2𝑠

(−1)
𝑠
(1 − 𝑞)

−𝑛/2

(𝑞1/2; 𝑞1/2)
𝑛
(𝑞; 𝑞)
𝑠

× (𝑞
𝛼+1

, 𝑞; 𝑞)
𝑛
𝑞
−(𝛼𝑛+𝑛

2
)

×

𝑛

∑

𝑘=0

(−1)
𝑗
𝑞
( 𝑛−𝑘
2
)
L
(𝛼)

𝑘
(𝑥; 𝑞)

(𝑞𝛼+1; 𝑞)
𝑘
(𝑞; 𝑞)
𝑛−𝑘

=

∞

∑

𝑛,𝑠,𝑘=0

[ (𝑞
(𝑛+𝑘)(𝑛+𝑘−1)/4

(−1)
𝑠
𝑡
𝑛+2𝑠+𝑘

(𝑞
𝛼+1

; 𝑞)
𝑛+𝑘

×𝑞
−[𝛼(𝑛+𝑘)+(𝑛+𝑘)

2
]
(1 − 𝑞)

−(𝑛+𝑘)/2
)

×((𝑞
1/2

; 𝑞
1/2

)
𝑛+𝑘

(𝑞; 𝑞)
𝑠
)
−1

]

×
(−1)
𝑘
𝑞
(
𝑛
2 )L
(𝛼)

𝑘
(𝑥; 𝑞)

(𝑞𝛼+1; 𝑞)
𝑘
(𝑞; 𝑞)
𝑛

=

∞

∑

𝑛,𝑘=0

[𝑛/2]

∑

𝑠=0

[ (𝑞
(𝑛+𝑘−2𝑠)(𝑛+𝑘−2𝑠−1)/4

(−1)
𝑠
𝑡
𝑛+𝑘

×(𝑞
𝛼+1

; 𝑞)
𝑛−2𝑠+𝑘

𝑞
−[𝛼(𝑛−2𝑠+𝑘)+(𝑛−2𝑠+𝑘)

2
]
)

×((𝑞
1/2

; 𝑞
1/2

)
𝑛−2𝑠+𝑘

(𝑞; 𝑞)
𝑠
)
−1

]

× (1 − 𝑞)
−(𝑛+𝑘−2𝑠)/2 (−1)

𝑘
𝑞
(
𝑛−2𝑠
2
)L
(𝛼)

𝑘
(𝑥; 𝑞)

(𝑞𝛼+1; 𝑞)
𝑘
(𝑞; 𝑞)
𝑛−2𝑠

=

∞

∑

𝑛,𝑘=0

(−1)
𝑘
𝑡
𝑛+𝑘L
(𝛼)

𝑘
(𝑥; 𝑞) (1 − 𝑞)

−(𝑛+𝑘)/2

(𝑞𝛼+1; 𝑞)
𝑘

×

[𝑛/2]

∑

𝑠=0

(−1)
𝑠
(𝑞
𝛼+1

, 𝑞; 𝑞)
𝑛−2𝑠+𝑘

(1 − 𝑞)
𝑠

(𝑞1/2; 𝑞1/2)
𝑛+𝑘−2𝑠

(𝑞; 𝑞)
𝑛−2𝑠

(𝑞; 𝑞)
𝑠

× 𝑞
(𝑛+𝑘−2𝑠)(𝑛+𝑘−2𝑠−1)/4

× 𝑞
−[𝛼(𝑛+𝑘−2𝑠)+(𝑛+𝑘−2𝑠)

2
]+(
𝑛−2𝑠
2
)

=

∞

∑

𝑛,𝑘=0

[ ((−1)
𝑘
𝑡
𝑛+𝑘

L
(𝛼)

𝑘
(𝑥; 𝑞) (1 − 𝑞)

−(𝑛+𝑘)/2
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×(𝑞
𝛼+1

; 𝑞)
𝑛+𝑘

(−𝑞
1/2

; 𝑞
1/2

)
𝑛+𝑘

)

× ((𝑞
𝛼+1

; 𝑞)
𝑘
(𝑞; 𝑞)
𝑛
)
−1

]

×

[𝑛/2]

∑

𝑠=0

(−1)
𝑠
(𝑞
−𝑛

; 𝑞)
2𝑠
(1 − 𝑞)

𝑠

(𝑞−(𝑛+𝑘+𝛼); 𝑞)
2𝑠
(−𝑞−(𝑛+𝑘)/2; 𝑞1/2)

2𝑠
(𝑞; 𝑞)
𝑠

× 𝑞
(𝑛+𝑘−2𝑠)(𝑛+𝑘−2𝑠−1)/4−[𝛼(𝑛+𝑘−2𝑠)+(𝑛+𝑘−2𝑠)

2
]

× 𝑞
+(
𝑛−2𝑠
2
)−2𝑠(𝛼+𝑘)−𝑠(𝑛+𝑘)+𝑠(2𝑠−1)/2

=

∞

∑

𝑛=0

(𝑞
𝛼+1

; 𝑞)
𝑛
(−𝑞
1/2

; 𝑞
1/2

)
𝑛
(1 − 𝑞)

−𝑛/2
𝑡
𝑛

×

𝑛

∑

𝑘=0

(−1)
𝑘L
(𝛼)

𝑘
(𝑥; 𝑞)

(𝑞𝛼+1; 𝑞)
𝑘
(𝑞; 𝑞)
𝑛−𝑘

×

[(𝑛−𝑘)/2]

∑

𝑠=0

(−1)
𝑠
(𝑞
𝑘−𝑛

; 𝑞)
2𝑠
(1 − 𝑞)

𝑠

(𝑞−(𝑛+𝛼); 𝑞)
2𝑠
(−𝑞−𝑛/2; 𝑞1/2)

2𝑠
(𝑞; 𝑞)
𝑠

× 𝑞
(𝑛−2𝑠)(𝑛−2𝑠−1)/4−[𝛼(𝑛−2𝑠)+(𝑛−2𝑠)

2
]

× 𝑞
+( 𝑛−𝑘−2𝑠
2
)−2𝑠(𝛼+𝑘)−𝑠𝑛+𝑠(2𝑠−1)/2

.

(62)

Comparing the coefficients of 𝑡
𝑛 on both sides of (62), we

obtain the results.

Proof of Theorem 16. From the generating function of
G𝑛(𝑥; 𝑞), we have

∞

∑

𝑛=0

𝑡
𝑛
𝑞
𝑛(𝑛−1)/4

(𝑞1/2; 𝑞1/2)
𝑛

G𝑛 (𝑥; 𝑞)

=

∞

∑

𝑛,𝑠=0

(−1)
𝑠
𝑞
(
𝑠
2 )𝑥
𝑛
(1 − 𝑞)

−𝑛/2
𝑡
𝑛+2𝑠

(𝑞1/2; 𝑞1/2)
𝑛
(𝑞; 𝑞)
𝑠

=

∞

∑

𝑛,𝑠,𝑘=0

[((−1)
𝑠
𝑞
(
𝑠
2 )+𝑛(1 − 𝑞)

−(𝑛+𝑘)/2
𝑡
𝑛+𝑘+2𝑠

×(𝑞
𝛼+1

; 𝑞)
𝑛+𝑘

(−1)
𝑘
𝑞
( 𝑘
2
)+𝛼𝑘

M
(𝛼)

𝑘
(𝑥; 𝑞) )

× ((𝑞
1/2

; 𝑞
1/2

)
𝑛+𝑘

(𝑞; 𝑞)
𝑛
(𝑞
𝛼+1

; 𝑞)
𝑘
(𝑞; 𝑞)
𝑠
)
−1

]

=

∞

∑

𝑛,𝑘=0

(−1)
𝑘
𝑞
( 𝑘
2
)+𝛼𝑘+𝑛

M
(𝛼)

𝑘
(𝑥; 𝑞) (1 − 𝑞)

−(𝑛+𝑘)/2
𝑡
𝑛+𝑘

(𝑞𝛼+1; 𝑞)
𝑘

×

[𝑛/2]

∑

𝑠=0

(−1)
𝑠
𝑞
(
𝑠
2 )−2𝑠(1 − 𝑞)

𝑠
(𝑞
𝛼+1

; 𝑞)
𝑛−2𝑠+𝑘

(𝑞1/2; 𝑞1/2)
𝑛+𝑘−2𝑠

(𝑞; 𝑞)
𝑛−2𝑠

(𝑞; 𝑞)
𝑠

=

∞

∑

𝑛,𝑘=0

(−1)
𝑘
𝑞
( 𝑘
2
)+𝛼𝑘+𝑛

M
(𝛼)

𝑘
(𝑥; 𝑞) (1 − 𝑞)

−(𝑛+𝑘)/2
𝑡
𝑛+𝑘

(𝑞𝛼+1; 𝑞)
𝑘

×

(𝑞
𝛼+1

; 𝑞)
𝑛+𝑘

(−𝑞
1/2

; 𝑞
1/2

)
𝑛+𝑘

(𝑞; 𝑞)
𝑛

×

[𝑛/2]

∑

𝑠=0

(−1)
𝑠
𝑞
(
𝑠
2 )−2𝑠(1 − 𝑞)

𝑠
(𝑞
−𝑛

; 𝑞)
2𝑠

(𝑞; 𝑞)
𝑠
(𝑞−(𝑛+𝑘+𝛼); 𝑞)

2𝑠
(−𝑞−(𝑛+𝑘)/2; 𝑞1/2)

2𝑠

× 𝑞
−2𝑠(𝑘+𝛼)+𝑠(2𝑠−1)/2

=

∞

∑

𝑛=0

(𝑞
𝛼+1

; 𝑞)
𝑛
(−𝑞
1/2

; 𝑞
1/2

)
𝑛
(1 − 𝑞)

−𝑛/2
𝑡
𝑛

×

𝑛

∑

𝑘=0

(−1)
𝑘
𝑞
( 𝑘
2
)+𝛼𝑘+𝑛−𝑘

M
(𝛼)

𝑘
(𝑥; 𝑞)

(𝑞𝛼+1; 𝑞)
𝑘
(𝑞; 𝑞)
𝑛−𝑘

×

[(𝑛−𝑘)/2]

∑

𝑠=0

(−1)
𝑠
𝑞
(
𝑠
2 )−2𝑠(1 − 𝑞)

𝑠
(𝑞
𝑘−𝑛

; 𝑞)
2𝑠

(𝑞; 𝑞)
𝑠
(𝑞−(𝑛+𝛼); 𝑞)

2𝑠
(−𝑞−𝑛/2; 𝑞1/2)

2𝑠

× 𝑞
−2𝑠(𝑘+𝛼)+𝑠(2𝑠−1)/2

.

(63)

Equating the coefficients of 𝑡𝑛 on both sides of (63), we obtain
the results.

Proof of Corollary 23. In view of the fact that

(𝑞
𝛽
; 𝑞)
2𝑛

= (𝑞
𝛽/2

, −𝑞
𝛽/2

, 𝑞
(𝛽+1)/2

, −𝑞
(𝛽+1)/2

; 𝑞)
𝑛
,

𝛽
 ∈ N,

(64)

we have

lim
𝑞→1

[(𝑛−𝑘)/2]

∑

𝑠=0

(−1)
𝑠
(𝑞
𝑘−𝑛

; 𝑞)
2𝑠
(1 − 𝑞)

𝑠
𝑞
(
𝑠
2 )−2𝑠

(𝑞−(𝑛+𝛼); 𝑞)
2𝑠
(−𝑞−𝑛/2; 𝑞1/2)

2𝑠
(𝑞; 𝑞)
𝑠

= lim
𝑞→1

[(𝑛−𝑘)/2]

∑

𝑠=0

[ ((−1)
𝑠
(𝑞
−(𝑛−𝑘)/2

, −𝑞
−(𝑛−𝑘)/2

, 𝑞
−(𝑛−𝑘−1)/2

,

−𝑞
−(𝑛−𝑘−1)/2

; 𝑞)
𝑆
)

× ((𝑞
−(𝑛+𝛼)/2

, −𝑞
−(𝑛+𝛼)/2

,

𝑞
−(𝑛+𝛼−1)/2

, −𝑞
−(𝑛+𝛼−1)/2

; 𝑞)
𝑆
)
−1

]

×
(1 − 𝑞)

𝑠
𝑞
(
𝑠
2 )−2𝑠

(−𝑞−𝑛/2; 𝑞1/2)
2𝑠
(𝑞; 𝑞)
𝑠

=
2𝐹2

[
[

[

− (𝑛 − 𝑘)

2
,
− (𝑛 − 𝑘 − 1)

2
− (𝛼 + 𝑛)

2
,
− (𝛼 + 𝑛 − 1)

2

; −
1

4

]
]

]

,
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lim
𝑥→ (1−𝑞)𝑥,
𝑞→1

(𝑞
𝛼+1

; 𝑞)
𝑛
(𝑞; 𝑞)
𝑛

(1 − 𝑞)
𝑛

𝑛

∑

𝑘=0

(−1)
𝑘L
(𝛼)

𝑘
(𝑥; 𝑞)

(𝑞𝛼+1; 𝑞)
𝑘
(𝑞; 𝑞)
𝑛−𝑘

× 𝑞
−𝑛
2
/4−𝑛/4−𝛼𝑛−𝑛𝑘+𝑘

2
/2

= lim
𝑥→ (1−𝑞)𝑥,
𝑞→1

(𝑞
𝛼+1

, 𝑞; 𝑞)
𝑛

(1 − 𝑞)
𝑛 𝑞
−𝑛(𝑛−1)/4

×

𝑛

∑

𝑘=0

(−1)
𝑘
𝑞
( 𝑘
2
)+𝛼𝑘

M
(𝛼)

𝑘
(𝑥; 𝑞)

(𝑞𝛼+1; 𝑞)
𝑘
(𝑞; 𝑞)
𝑛−𝑘

= (1 + 𝛼)𝑛

𝑛

∑

𝑘=0

(−𝑛)𝑘𝐿
(𝛼)

𝑘
(𝑥)

(1 + 𝛼)𝑘

.

(65)

Combing (65) and (2), we deduce (50). The proof of Corol-
lary 23 is complete.

4. Integrals Related to Generalized
𝑞-Hermite Polynomials

The authors [23] deduced the following interesting result
inspired by the relation of (16) and the orthogonality of 𝑞-
Laguerre polynomials (6).

Proposition 19 (see [23, Theorem 1]). The sequence of the 𝑞-
polynomials {H(𝜇)

𝑛
(𝑥; 𝑞)}, which are defined by the relations

(16), satisfies the orthogonality relation

∫

∞

−∞

H
(𝜇)

𝑚
(𝑥; 𝑞)H

(𝜇)

𝑛
(𝑥; 𝑞)

|𝑥|
2𝜇

(−𝑥2; 𝑞)
∞

𝑑𝑥

=
𝜋

cos𝜋𝜇
(𝑞
1/2−𝜇

; 𝑞)
∞

(𝑞; 𝑞)
∞

𝑞
−𝑛/2−𝜇𝜃𝑛

× (𝑞; 𝑞)
[𝑛/2]

(𝑞
𝜇+1/2

; 𝑞)
[(𝑛+1)/2]

𝛿𝑚𝑛

(66)

on the whole real line R, where 𝜃𝑛 = 𝑛 − 2[𝑛/2].

In this section, we will further consider multivariate 𝑞-
Hermite polynomials byTheorems 2 and 3.

Theorem 20. For 𝜃𝑛 = 𝑛 − 2[𝑛/2], one has

∫

∞

−∞

H
(𝛼)

𝑚
(𝑥𝑦; 𝑞)H

(𝛽)

𝑛
(𝑥𝑧; 𝑞)

|𝑥|
2𝜇

(−𝑥2; 𝑞)
∞

𝑑𝑥

= (−1)
[𝑚/2]+[𝑛/2]

(𝑞; 𝑞)
[𝑚/2]

(𝑞; 𝑞)
[𝑛/2]

× (1 − 𝑞)
𝜇+1/2+𝜃𝑛

𝜋 csc (−𝜇 + 1/2 − 𝜃𝑛) 𝜋

Γ𝑞 (−𝜇 + 1/2 − 𝜃𝑛)

×

min{[𝑚/2],[𝑛/2]}
∑

𝑘=0

𝑞
(𝛼+𝛽−2𝜇−1)𝑘

(𝑦𝑧)
2𝑘+𝜃𝑛

×
2
𝜙
1
[

𝑞
𝑘−[𝑚/2]

, 𝑞
𝜇+1/2+𝑘+𝜃𝑛

𝑞
𝛼+𝑘+1/2+𝜃𝑛

; 𝑦
2
𝑞
𝛼−𝜇+[𝑚/2]−𝑘

]

×
2
𝜙
1
[

𝑞
𝑘−[𝑛/2]

, 𝑞
𝜇+1/2+𝑘+𝜃𝑛

𝑞
𝛽+𝑘+1/2+𝜃𝑛

; 𝑧
2
𝑞
𝛽−𝜇+[𝑛/2]−𝑘

]

×
[
[

[

[
𝑚

2
] + 𝛼 −

1

2
+ 𝜃𝑛

[
𝑚

2
] − 𝑘

]
]

]

[
[

[

[
𝑛

2
] + 𝛽 −

1

2
+ 𝜃𝑛

[
𝑛

2
] − 𝑘

]
]

]

× [
𝑘 + 𝜇 −

1

2
+ 𝜃𝑛

𝑘

] .

(67)

Theorem 21. For 𝜃𝑛 = 𝑛 − 2[𝑛/2], one has

∫

∞

−∞

G
(𝛼)

𝑚
(𝑥𝑦; 𝑞)G

(𝛽)

𝑛
(𝑥𝑧; 𝑞) |𝑥|

2𝜇
(𝑥
2
; 𝑞)
∞
𝑑𝑥

= (𝑞; 𝑞)
[𝑚/2]

(𝑞; 𝑞)
[𝑛/2]

(1 − 𝑞)
𝜇+1/2+𝜃𝑛

× 𝑞
(
𝜇+3/2+𝜃𝑛
2
)−(𝛼−1/2+𝜃𝑛)[𝑚/2]−(𝛽−1/2+𝜃𝑛)[𝑛/2]

×
𝜋 csc (−𝜇 + 1/2 − 𝜃𝑛) 𝜋

Γ𝑞 (−𝜇 + 1/2 − 𝜃𝑛)

×

min{[𝑚/2],[𝑛/2]}
∑

𝑘=0

𝑞
(2𝑘+𝜇+1/2−[𝑚/2]−[𝑛/2]+𝜃𝑛)𝑘

× (𝑦𝑧)
2𝑘+𝜃𝑛

2
𝜙1 [

𝑞
𝑘−[𝑚/2]

, 𝑞
𝜇+1/2+𝑘+𝜃𝑛

𝑞
𝛼+𝑘+1/2+𝜃𝑛

; 𝑦
2
𝑞]

×
2
𝜙
1
[

𝑞
𝑘−[𝑛/2]

, 𝑞
𝜇+1/2+𝑘+𝜃𝑛

𝑞
𝛽+𝑘+1/2+𝜃𝑛

; 𝑧
2
𝑞]

×
[
[

[

[
𝑚

2
] + 𝛼 −

1

2
+ 𝜃𝑛

[
𝑚

2
] − 𝑘

]
]

]

[
[

[

[
𝑛

2
] + 𝛽 −

1

2
+ 𝜃𝑛

[
𝑛

2
] − 𝑘

]
]

]

× [
𝑘 + 𝜇 −

1

2
+ 𝜃𝑛

𝑘

] .

(68)

Remark 22. For 𝛼 = 𝛽 = 𝜇 and 𝑦 = 𝑧 = 1, Theorems 20 and
21 reduce to Proposition 19 and Corollary 23 respectively.

Corollary 23. The sequence of the 𝑞-polynomials {G(𝜇)
𝑛

(𝑥; 𝑞)},
which are defined by the relations (16), satisfies the orthogonal-
ity relation

∫

∞

−∞

G
(𝜇)

𝑚
(𝑥; 𝑞)G

(𝜇)

𝑛
(𝑥; 𝑞)

|𝑥|
2𝜇

(−𝑥2; 𝑞)
∞

𝑑𝑥

=
𝜋

cos𝜋𝜇
(𝑞
1/2−𝜇

; 𝑞)
∞

(𝑞; 𝑞)
∞



Abstract and Applied Analysis 11

× 𝑞
(
𝜇+3/2

2
)−[𝑛/2](𝜇−3/2+𝜃𝑛)+𝜃𝑛

× (𝑞; 𝑞)
[𝑛/2]

(𝑞
𝜇+1/2

; 𝑞)
[(𝑛+1)/2]

𝛿𝑚𝑛

(69)

on the whole real line R, where 𝜃𝑛 = 𝑛 − 2[𝑛/2].

Proof of Theorems 20 and 21. Let I(𝛼, 𝑦,𝑚; 𝛽, 𝑧, 𝑛; 𝜇) and
J(𝛼, 𝑦,𝑚; 𝛽, 𝑧, 𝑛; 𝜇) represent the right hand side of (7) and
(8) respectively. Since the weight function in (67) is an even
function of the independent variable 𝑥 by the definition (16),
so the polynomials are evidently orthogonal to each other
when the degrees 𝑚 and 𝑛 are either simultaneously even or
odd. From (16) andTheorem 2 we have

∫

∞

−∞

H
(𝛼)

2𝑚
(𝑥𝑦; 𝑞)H

(𝛽)

2𝑛
(𝑥𝑧; 𝑞)

|𝑥|
2𝜇

(−𝑥2; 𝑞)
∞

𝑑𝑥

= (−1)
𝑚+𝑛

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛

× ∫

∞

−∞

L
(𝛼−1/2)

𝑚
(𝑥
2
𝑦
2
; 𝑞)L

(𝛽−1/2)

𝑛

× (𝑥
2
𝑧
2
; 𝑞)

|𝑥|
2𝜇

(−𝑥2; 𝑞)
∞

𝑑𝑥

= 2(−1)
𝑚+𝑛

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛

× ∫

∞

0

L
(𝛼−1/2)

𝑚
(𝑥
2
𝑦
2
; 𝑞)L

(𝛽−1/2)

𝑛

× (𝑥
2
𝑧
2
; 𝑞)

|𝑥|
2𝜇

(−𝑥2; 𝑞)
∞

𝑑𝑥

= (−1)
𝑚+𝑛

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛

× ∫

∞

0

L
(𝛼−1/2)

𝑚
(𝑦
2
𝑡; 𝑞)L

(𝛽−1/2)

𝑛
(𝑧
2
𝑡; 𝑞)

𝑡
𝜇−1/2

(−𝑡; 𝑞)
∞

𝑑𝑡

= (−1)
𝑚+𝑛

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛

×I(𝛼 −
1

2
, 𝑦
2
, 𝑚; 𝛽 −

1

2
, 𝑧
2
, 𝑛; 𝜇 −

1

2
) ,

(70)

∫

∞

−∞

H
(𝛼)

2𝑚+1
(𝑥𝑦; 𝑞)H

(𝛽)

2𝑛+1
(𝑥𝑧; 𝑞)

|𝑥|
2𝜇

(−𝑥2; 𝑞)
∞

𝑑𝑥

= 2(−1)
𝑚+𝑛

𝑦𝑧(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛

× ∫

∞

0

L
(𝛼+1/2)

𝑚
(𝑥
2
𝑦
2
; 𝑞)L

(𝛽+1/2)

𝑛
(𝑥
2
𝑧
2
; 𝑞)

×
|𝑥|
2𝜇+2

(−𝑥2; 𝑞)
∞

𝑑𝑥

= (−1)
𝑚+𝑛

𝑦𝑧(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛

× ∫

∞

0

L
(𝛼+1/2)

𝑚
(𝑦
2
𝑡; 𝑞)L

(𝛽+1/2)

𝑛
(𝑧
2
𝑡; 𝑞)

𝑡
𝜇+1/2

(−𝑡; 𝑞)
∞

𝑑𝑡

= (−1)
𝑚+𝑛

𝑦𝑧(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛

×I(𝛼 +
1

2
, 𝑦
2
, 𝑚; 𝛽 +

1

2
, 𝑧
2
, 𝑛; 𝜇 +

1

2
) .

(71)

Putting (70) and (71) together and using Theorem 2, we
complete the proof of Theorem 20 after some simplification.
In the same way we find that

∫

∞

−∞

G
(𝛼)

2𝑚
(𝑥𝑦; 𝑞)G

(𝛽)

2𝑛
(𝑥𝑧; 𝑞) |𝑥|

2𝜇
(−𝑥
2
; 𝑞)
∞
𝑑𝑥

= 𝑞
−(
𝑚+1
2
)−(
𝑛+1
2
)
(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛
J

× (𝛼 −
1

2
, 𝑦
2
, 𝑚; 𝛽 −

1

2
, 𝑧
2
, 𝑛; 𝜇 −

1

2
) ,

∫

∞

−∞

G
(𝛼)

2𝑚+1
(𝑥𝑦; 𝑞)G

(𝛽)

2𝑛+1
(𝑥𝑧; 𝑞) |𝑥|

2𝜇
(−𝑥
2
; 𝑞)
∞
𝑑𝑥

= 𝑞
−(
𝑚+1
2
)−(
𝑛+1
2
)
𝑦𝑧(𝑞; 𝑞)

𝑚
(𝑞; 𝑞)
𝑛

×J(𝛼 +
1

2
, 𝑦
2
, 𝑚; 𝛽 +

1

2
, 𝑧
2
, 𝑛; 𝜇 +

1

2
) ,

(72)

which are two cases of Theorem 21; thus we obtain the proof.

Proof of Proposition 19 and Corollary 23. Let us consider first
that the case of both𝑚 and 𝑛 is even, and just take 𝛼 = 𝛽 = 𝜇

and 𝑦 = 𝑧 = 1 in Theorem 20. We have

∫

∞

−∞

H
(𝜇)

2𝑚
(𝑥; 𝑞)H

(𝜇)

2𝑛
(𝑥; 𝑞)

|𝑥|
2𝜇

(−𝑥2; 𝑞)
∞

𝑑𝑥

= (−1)
𝑚+𝑛

(𝑞; 𝑞)
𝑚
(𝑞; 𝑞)
𝑛
(1 − 𝑞)

𝜇+1/2

×
𝜋csc (−𝜇 + 1/2) 𝜋

Γ𝑞 (−𝜇 + 1/2)

min{𝑚,𝑛}
∑

𝑘=0

𝑞
−𝑘

×
1
𝜙
0
[

𝑞
𝑘−𝑚

−
; 𝑞
𝑚−𝑘

]
1
𝜙
0
[

𝑞
𝑘−𝑛

−
; 𝑞
𝑛−𝑘

]

× [
𝑚 + 𝛼 −

1

2
𝑚 − 𝑘

][
𝑛 + 𝛽 −

1

2
𝑛 − 𝑘

][
𝑘 + 𝜇 −

1

2
𝑘

]

= (𝑞; 𝑞)
𝑛
(𝑞; 𝑞)
𝑛
(1 − 𝑞)

𝜇+1/2

×
𝜋csc (−𝜇 + 1/2) 𝜋

Γ𝑞 (−𝜇 + 1/2)
𝑞
−𝑛

[
𝑛 + 𝜇 −

1

2
𝑛

] 𝛿𝑚𝑛

=
𝜋

cos 𝜇𝜋
(𝑞
1/2−𝜇

; 𝑞)
∞

(𝑞; 𝑞)
∞

𝑞
−𝑛

(𝑞; 𝑞)
𝑛
(𝑞
𝜇+1/2

; 𝑞)
𝑛
𝛿𝑚𝑛,

(73)
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∫

∞

−∞

H
(𝜇)

2𝑚+1
(𝑥; 𝑞)H

(𝜇)

2𝑛+1
(𝑥; 𝑞)

|𝑥|
2𝜇

(−𝑥2; 𝑞)
∞

𝑑𝑥

= (𝑞; 𝑞)
𝑛
(𝑞; 𝑞)
𝑛
(1 − 𝑞)

𝜇+3/2

×
𝜋csc (−𝜇 − 1/2) 𝜋

Γ𝑞 (−𝜇 − 1/2)
𝑞
−𝑛

[
𝑛 + 𝜇 +

1

2
𝑛

] 𝛿𝑚𝑛

= −
𝜋

cos𝜇𝜋
(𝑞
−𝜇−1/2

; 𝑞)
∞

(𝑞; 𝑞)
∞

× 𝑞
−𝑛

(𝑞; 𝑞)
𝑛

(𝑞; 𝑞)
𝑛+𝜇+1/2

(𝑞; 𝑞)
𝜇+1/2

𝛿𝑚𝑛

=
𝜋

cos 𝜇𝜋
(𝑞
1/2−𝜇

; 𝑞)
∞

(𝑞; 𝑞)
∞

× 𝑞
−𝑛−𝜇−1/2

(𝑞; 𝑞)
𝑛
(𝑞
𝜇+1/2

; 𝑞)
𝑛+1

𝛿𝑚𝑛.

(74)

Putting (73) and (74) together results in the orthogonality
relation (66). The proof of Proposition 19 is complete. By the
same way, we can deduce Corollary 23. This completes the
proof.
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gleichungen genügen,” Mathematische Nachrichten, vol. 2, pp.
4–34, 1949.

[17] R. Koekoek, “A generalization of Moak’s 𝑞-Laguerre polynomi-
als,” The Canadian Journal of Mathematics, vol. 42, no. 2, pp.
280–303, 1990.

[18] R. Koekoek, “Generalizations of a 𝑞-analogue of Laguerre
polynomials,” Journal of Approximation Theory, vol. 69, no. 1,
pp. 55–83, 1992.

[19] R. Koekoek and H. G. Meijer, “A generalization of Laguerre
polynomials,” SIAM Journal on Mathematical Analysis, vol. 24,
no. 3, pp. 768–782, 1993.

[20] M. E. H. Ismail and M. Rahman, “The 𝑞-Laguerre polynomials
and related moment problems,” Journal of Mathematical Analy-
sis and Applications, vol. 218, no. 1, pp. 155–174, 1998.

[21] Z.-G. Liu, “Two 𝑞-difference equations and 𝑞-operator identi-
ties,” Journal of Difference Equations and Applications, vol. 16,
no. 11, pp. 1293–1307, 2010.

[22] W. A. Al-Salam and L. Carlitz, “Some orthogonal 𝑞-
polynomials,” Mathematische Nachrichten, vol. 30, pp. 47–61,
1965.
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