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The effects of removable devices’ heterouse in different areas on the propagation ofmalware spreading via removable devices remain
unclear. As a result, in this paper, we present a model incorporating the heterogeneous use of removable devices, obtained by
dividing the using rate into local area’s rate, neighbour area’s rate and global area’s rate, and then getting the final rate by multiplying
the corresponding area ratio. The model’s equilibria and their stability conditions are obtained mathematically and verified by
deterministic and stochastic simulations. Simulation results also indicate that the heterogeneity in using rate significantly changes
the prospective propagation course of malware. Additionally, the thresholds of removable devices’ using rate in neighbour area are
given, which can guide us in designing effective countermalware method.

1. Introduction

The malicious programs or malware, including network
worms, Trojan programs, and various botnets, have posed
serious threats to the Internet [1–5]. Furthermore, removable
devices have become a common propagation method by
those recently detected malware, such as Stuxnet [6], Duqu
[7], and Flame [8], which aim at controlling computers
or other machinery, especially those physically isolated
machines. Thus, it is very necessary to explore the propaga-
tion behavior and control strategies of such malware.

To capture the influences of removable devices on
malware, some mathematical models have been proposed
[9–13]. In [9], Song et al. presented the model by cou-
pling a susceptible-infected-recovered (SIR) model with
a susceptible-infected-susceptible (SIS) model [14]. In the
model, a removable device would be infected with a certain
rate if it was used on an infectious computer and then
the infected removable device can infect other computers
whenever it was used on them.Todepict the computerswhich
have been infected but are not yet infectious, Jin and Wang
[10] put forward the susceptible-exposed-infected-recovered
(SEIR) model by introducing the “exposed” state into the SIR

model. L. X. Yang and X. Yang [11] further considered the
model where the “exposed” state had limited infection ability.
However, all of thesemodelswere homogeneousmodels.That
is to say, each removable device was used with the same
probability on all computers.

In [13], Peng et al. gave a model which divided the
Internet into many subnets and assumed that removable
devices were used equally within the subnet they belong
to, but they were used with a lower probability outside the
subnet. However, it is not a reasonable assumption that
removable devices are homogeneouslymixedwith computers
outside their subnet. Furthermore, under this assumption,
they cannot give an effective defense method concerning
removable devices’ using area and rate. Hence, we present
a heterogeneous model in this paper, which can give an
effective countermalwaremethod by exploring the influences
of removable devices’ using area and rate.

The remainder of this paper is organized as follows:
we give the model and interpret the parameters’ meanings
in Section 2. After that, we analyze its dynamical behavior
and illustrate our mathematical results by simulations in
Section 3. Then, some containment strategies are given in
Section 4. In the end, we summarize our work.
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2. The Model

The basic models used in this paper are the SIR model and
the SIS model. There are five compartments in our model:
susceptible computers (𝑆); infected computers (𝐼); immu-
nized computers (𝑅); susceptible media (𝑀𝑆)—removable
devices without malicious programs; infected media (𝑀𝐼)—
removable devices which have carried the malicious pro-
grams and can propagate them to susceptible computers.

To depict the influences of removable devices’ using area
and rate, we divide the whole area into many subareas and
each removable device belongs to an area named the local
area of the device. We also assume that removable devices
are used equally within the local area and used with a lower
probability in their neighbour areas but hardly used in any
other areas named global area here.

Let 𝛽1 be the susceptible computer’s infection rate caused
by the successful scans of an infected computer. 𝛽2 denotes
susceptible computer’s infection rate (susceptible medium’s
infection rate) due to an infected medium (an infected
computer) in the same local area. 𝑁 and𝑀 denote the total
number of computers and the total number of removable
devices, respectively. Here, we suppose that both 𝑁 and
𝑀 are constant. Then, the obsoleteness rate of computers
(removable devices) is given by 𝜇

1
(𝜇
2
).

To model the random discovery of infection by anti-
virus program, the recovery rate of infected computers is
given by 𝛿

1
. When infected devices are used on susceptible

or immunized computers, the malicious programs carried by
infected devices are likely to be detected. We denote this rate
by 𝛿2.

Then, the model is given as follows:
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(1)

where 𝐷(⋅) is the function of removable devices’ using area
and rate. For all removable devices, let 𝛼

1
(𝛼
2
) denote the

ratio of using rate in neighbour area (global area) to the
counterpart in local area and let 𝜆

1
(𝜆
2
) be the ratio of

neighbour area’s (global area’s) radius to local area’s radius.
Without loss of generality, both removable devices’ using rate
in local area and local area’s radius are set to 1. Then,
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As𝑁 = 𝑆+ 𝐼+𝑅 and𝑀 = 𝑀
𝑆
+𝑀
𝐼
, the model (1) can be

rewritten as
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Let

𝑅
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where 𝑅0 is the basic reproduction number [15].
For system (3), there are two equilibria: disease-free

equilibrium 𝐸
0
= (0, 0, 0) and positive equilibrium 𝐸∗ =

(𝐼
∗
, 𝑅
∗
,𝑀
∗

𝐼
) when 𝑅

0
> 1. The positive equilibrium is given

by
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3. Model Analysis

Theorem 1. If 𝑅0 < 1, 𝐸0 is asymptotically stable.

Proof. The characteristic equation of (3) at 𝐸
0 is given by
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Then, we have
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When𝑅
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𝑀)/𝑁 > 0, all eigenvalues of (7) have negative

real parts. Thus, 𝐸
0
is asymptotically stable. The theorem is

proven.

Theorem 2. If 𝑅
0
> 1, the endemic equilibrium 𝐸∗ is

asymptotically stable.

Proof. The characteristic equation of (3) at 𝐸∗ is given by
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According to the Hurwitz criteria [16, 17], we have
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If 𝑅0 > 1, we have 𝐻1 > 0, 𝐻2 > 0, and 𝐻3 > 0 and
then all eigenvalues of (9) have negative real parts.Thus, there
exists an endemic equilibrium 𝐸∗ and it is asymptotically
stable when 𝑅0 > 1. The proof is completed.

To validate the accuracy of Theorems 1 and 2, we used
both deterministic method and stochastic method to simu-
late the system (3) with 𝑁 = 1000000, 𝑀 = 400000, 𝜇1 =
𝜇2 = 0.00046, and 𝛽2 = 0.098 and two sets of other variables:
(i) 𝛽1 = 0.24, 𝛿1 = 0.05, and 𝛿2 = 0.05, where 𝑅0 ≈ 5.98; (ii)
𝛽1 = 0.05, 𝛿1 = 0.1, and 𝛿2 = 0.1, where 𝑅0 ≈ 0.85.

As shown in Figure 1, when 𝑅
0
> 1, in both deterministic

and stochastic simulations, the number of infected computers
tends to the theoretical value predicted by (5a) finally, which
indicates an endemic state 𝐸∗. However, in Figure 2, when
𝑅
0
< 1, the steady-state number of 𝐼 is zero in accordance

with the number predicted by disease-free state 𝐸
0
.

4. Control Strategies

We first give the convergence proof of the numerical method,
the improved Euler method, used in the simulation. Let
I = (𝐼, 𝑅,𝑀

𝐼
). Then, we can rewrite the system (3) as ̇I =

f(𝑡, I). Obviously, f is a continuous and differential function
in 𝑅4. Thus, f satisfies the Lipschitz condition and ‖𝑓(𝑡, I1) −
𝑓(𝑡, I2)‖ ≤ 𝐿‖I1 − I2‖, where 𝐿 is a constant.

TheEuler iteration equation is I(𝑘+1)
𝑛+1
= I𝑛+(ℎ/2)[f(𝑡𝑛, I𝑛)+

f(𝑡
𝑛+1
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𝑛+1
)] where 𝑘 = 0, 1, 2, . . ., I(0)

𝑛+1
= I
𝑛
+ ℎf(𝑡

𝑛
, I
𝑛
) and
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Figure 1: Fraction of infected computers when 𝑅
0
> 1. (a)

Blue (dash line): deterministic simulation; (b) black (solid line):
theoretical value; (c) purple (dot-dash line): stochastic simulation.

𝑛 = 0, 1, 2, . . .. ℎ = 𝑡𝑛+1 − 𝑡𝑛, representing the step value in the
Euler iteration algorithm.Then, we have

󵄩󵄩󵄩󵄩󵄩
I(𝑘+1)
𝑛+1
− I(𝑘)
𝑛+1

󵄩󵄩󵄩󵄩󵄩
=
ℎ

2

󵄩󵄩󵄩󵄩󵄩
f (𝑡
𝑛+1
, I(𝑘)
𝑛+1
) − f (𝑡

𝑛+1
, I(𝑘−1)
𝑛+1
)
󵄩󵄩󵄩󵄩󵄩

≤
ℎ𝐿

2

󵄩󵄩󵄩󵄩󵄩
I(𝑘)
𝑛+1
− I(𝑘−1)
𝑛+1

󵄩󵄩󵄩󵄩󵄩

≤ (
ℎ𝐿

2
)

2
󵄩󵄩󵄩󵄩󵄩
I(𝑘−1)
𝑛+1
− I(𝑘−2)
𝑛+1

󵄩󵄩󵄩󵄩󵄩

≤ ⋅ ⋅ ⋅

≤ (
ℎ𝐿

2
)

𝑘
󵄩󵄩󵄩󵄩󵄩
I(1)
𝑛+1
− I(0)
𝑛+1

󵄩󵄩󵄩󵄩󵄩
.

(11)

Thus, the numerical technique used here is convergent as we
can ensure that ℎ𝐿/2 < 1 by selecting a small value of ℎ.

In this paper, we also use a Monte Carlo algorithm
to simulate the propagation of malware [18, 19]. In all
simulations given below, we set 𝑁 = 𝑀 = 1000000, 𝜇

1
=

𝜇
2
= 0.00046, 𝛽

1
= 0.06, 𝛽

2
= 2, 𝛿

1
= 0.06, 𝛿

2
= 0.033, 𝛼

2
=

0.0001, and 𝜆2 = 32, where 𝛽1 ≪ 𝛽2 because that malware
such as Stuxnet is mainly spreading via removable devices to
infect physically isolated machines. The initial numbers of 𝐼
and𝑀𝐼 are set to 1000 and 0, respectively.

First, we compared three different models with the same
parameters: homogeneous model presented in [9] where
removable devices are assumed to be used with the same
probability on all computers; heterogeneousmodel presented
in [13] where the using rate of removable devices is divided
into two rates (using rate on local computers andusing rate on
the other computers); and themodel in this paper.We ran the
simulation 100 times and got the average number of infected
computers. Figure 3 shows the simulation results.
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Figure 2: Fraction of infected computers when 𝑅
0
< 1. (a)

Blue (dash line): deterministic simulation; (b) black (solid line):
theoretical value; (c) purple (dot-dash line): stochastic simulation.

As shown in Figure 3, the model in this paper leads to
the lowest infection rate and propagation speed. As it is
established under the most reasonable assumptions among
three models, its prediction is in accordance with the real
propagation process to the most degree. The homogeneous
model obtains the highest infection rate and the fastest
propagation speed. Although the heterogeneity in removable
devices’ using rate is included in the model given in [13], this
simplistic division of removable devices’ using rate also leads
to a great deviation.

We also simulated various 𝛼
1
and 𝜆

1
to gain some insight

into the containment of themalware considered in this paper.
Figures 4(a) and 4(b) give the simulation results with fixed 𝜆

1

and fixed 𝛼1, respectively.
Figures 4(a) and 4(b) show that the radius of neighbour

area (𝜆
1) and the using rate (𝛼1) in this area have great

influences on the propagation of malware. The infection rate
and speed decrease rapidly with the decrease of using rate
(𝛼
1
) or neighbour area’s radius (𝜆

1
). In Figure 4(a) with fixed

𝜆
1(10), the malware dies out directly when 𝛼1 = 0.05, which

means an effective countermalware method.
To get the effective countermalware thresholds under

various values of 𝜆
1
, we further simulated the system (3) and

got the values of 𝛼
1
below which the malware would die out.

Figure 5 plots the simulation results.
As it is shown in Figure 5, the points in left area can

guarantee the extinction of malware. However, the malware
can self perpetuate in the right area. The threshold of 𝛼1
decreases with the increase of 𝜆1 and this decrease is much
faster in the area between two arrows (𝜆∗

1
< 𝜆
1
< 5).

Furthermore, when the radius of neighbour area is less than
two times of the radius of local area, corresponding to 𝜆

1
≤

𝜆
∗

1
(=2), the malware will die out no matter what value 𝛼

1
is,

which gives a promising countermalware threshold.
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Figure 3: Fraction of infected computers based on the model in this paper (blue, heterogeneous model where three areas divided according
to the removable device’s using rate are considered) compared to the counterparts based on the model presented in [9] (green, homogeneous
model) and in [13] (red, heterogeneous model where two areas are considered).
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Figure 4: Fraction of infected computers based on model (3) with (a) 𝛼
1
= 0.4 (blue), 0.2 (green), 0.05 (red), and 𝜆

1
= 10; (b) 𝜆

1
= 10 (blue),

8 (green), 6 (red), and 𝛼
1
= 0.2. The other parameters are the same as in Figure 3.

5. Conclusion

Recently, the researches concerningmalware have focused on
those piecesmalware spreading via removable devices [9–13].
Different from these researches, we present a model with a
detailed depiction of the heterogeneity in removable devices’
using rate. This consideration of heterogeneity can lead to an
effective countermalware method by controlling the remov-
able devices’ using rate in neighbour area. Furthermore, when
𝛼
1 = 𝛼2 = 1, themodel presented in this paper corresponds to

the model given in [9, 12]; when 𝛼
1
= 𝛼
2
< 1, it corresponds

to the model given in [13]. Thus, the model in this paper is a
more general model and can depict the malware’s spreading
process more precisely.

Mathematical analysis and stochastic simulations indi-
cate that the dynamics are determined by the value of 𝑅0.
Simulation results have also shown that removable devices’
using rate and the radius of neighbour area have great
influences on the dynamics of malware. Specifically, we have
obtained the thresholds of removable devices’ using rate (𝛼1)
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Figure 5: The relationship between 𝛼
1
and 𝜆

1
under the phase

transition condition where 𝜇
1
= 0.00046, 𝜇

2
= 0.00046, 𝛽

1
= 0.06,

𝛽
2
= 2, 𝛿

1
= 0.06, 𝛿

2
= 0.033, 𝛼

2
= 0.0001, and 𝜆

2
= 32.

when different values of 𝜆1 (the radius of neighbour area)
are considered, which can guide us in designing effective
countermalware method.

In the future, we plan to use real trace data to test our
model, especially the special value of removable devices’
using area (𝜆∗

1
) and then get the most effective policy to

help people in defending their devices and machines against
malware.
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