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We firstly study the existence of PC-mild solutions for impulsive fractional semilinear integrodifferential equations and then present
controllability results for fractional impulsive integrodifferential systems in Banach spaces. The method we adopt is based on fixed
point theorem, semigroup theory, and generalized Bellman inequality.The results obtained in this paper improve and extend some
known results. At last, an example is presented to demonstrate the applications of our main results.

1. Introduction

Fractional calculus is an area having a long history whose
infancy dates back to three hundred years. However, at the
beginning of fractional calculus, it develops slowly due to the
disadvantage of technology. In recent decades, as the ancient
mathematicians expected, fractional differential equations
have been found to be a powerful tool in many fields, such as
viscoelasticity, electrochemistry, control, porous media, and
electromagnetic. For basic facts about fractional derivative
and fractional calculus, one can refer to the books [1–4].
Since the fractional theory has played a very significant role
in engineering, science, economy, and many other fields,
during the past decades, fractional differential equations
have attracted many authors, and there has been a great
deal of interest in the solutions of fractional differential
equations in analytical and numerical sense (see, e.g., [5–10]
and references therein).

On the other hand, the impulsive differential systems are
used to describe processes which are subjected to abrupt
changes at certain moments [11–13]. The study of dynamical
systems with impulsive effects has been an object of intensive
investigations. It is well known that controllability is a key
topic for control theory. Controllability means that it is
possible to steer any initial state of the system to any final
state in some finite time using an admissible control.We refer
the readers to the survey [14] and the reference therein for
controllability of nonlinear systems in Banach spaces. The

sufficient controllability conditions for fractional impulsive
integrodifferential systems in Banach spaces have already
been obtained in [15–18].

Balachandran and Park [17] studied the controllability
of fractional integrodifferential systems in Banach spaces
without impulse

𝑑
𝑞
𝑥 (𝑡)

𝑑𝑡𝑞
= 𝐴𝑥 (𝑡) + 𝑓(𝑡, 𝑥 (𝑡) , ∫

𝑡

0

ℎ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠)

+ 𝐵𝑢 (𝑡) , 𝑡 ∈ 𝐽 = [0, 𝑏] ,

𝑥 (0) = 𝑥0 ∈ X,

(1)

where 0 < 𝑞 < 1, the state 𝑥(⋅) takes values in the Banach
spaceX, 𝑓 : 𝐽 ×X×X → X, ℎ : Δ×X → X are continuous
functions, and here Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑏}. The control
function 𝑢 ∈ 𝐿

2
[𝐽, 𝑈], a Banach space of admissible control

functions with 𝑈 as a Banach space, and 𝐵 : 𝑈 → X is a
bounded linear operator.

In [19], Mophou considered the existence and uniqueness
of a mild solution for impulsive fractional semilinear differ-
ential equation

𝐷
𝛼

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐼 = [0, 𝑇] , 𝑡 ̸= 𝑡𝑘,

𝑥 (0) = 𝑥0 ∈ X,

Δ𝑥|𝑡=𝑡𝑘
= 𝐼𝑘 (𝑥 (𝑡

−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

(2)
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where 𝐷𝛼
𝑡
is the Caputo fractional derivative, and 0 < 𝛼 < 1.

The operator 𝐴 : 𝐷(𝐴) ⊂ X → X is a generator of C0-
semigroup (𝑇(𝑡))𝑡≥0 on a Banach space X, and 𝐼𝑘 : X → X

are impulsive functions.
To consider fractional systems in the infinite dimensional

space, the first important step is to define a new concept of
themild solution. Unfortunately, ByHernández et al. [20], we
know that the concept of mild solutions used in [15–17, 19],
inspired by Jaradat et al. [21], was not suitable for fractional
evolution systems at all. Therefore, it is necessary to restudy
this interesting and hot topic again.

Recently, in Wang and Zhou [18], a suitable concept of
mild solutions was introduced, using Krasnoselskii’s fixed
point theorem and Sadovskii’s fixed point theorem, inves-
tigating complete controllability of fractional evolution sys-
tems in the infinite dimensional spaces

𝑐
𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) + 𝐵𝑢 (𝑡) ,

𝑡 ∈ 𝐽 = [0, 𝑏] ,

𝑥 (0) = 𝑥0 ∈ X,

(3)

where 𝑐𝐷𝑞
𝑡
is the Caputo fractional derivative of the order

0 < 𝑞 ≤ 1 with the lower limit zero, the state 𝑥(⋅) takes values
in Banach space X, and the control function 𝑢(⋅) is given in
𝐿
2
[𝐽, 𝑈], with𝑈 as a Banach space.𝐴 : 𝐷(𝐴) ⊂ X → X is the

infinitesimal generator of a strongly continuous semigroup
(𝑇(𝑡))𝑡≥0 in X, 𝐵 is a bounded linear operator from 𝑈 to
X, and 𝑓 : 𝐽 × X → X is given X-value functions.
Some sufficient conditions for complete controllability of the
previous system were obtained.

Inspired by the work of the previous papers and many
known results in [22–24], we study the existence ofmild solu-
tions for impulsive fractional semilinear integrodifferential
equation

𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , (𝐻𝑥) (𝑡)) ,

𝑡 ∈ 𝐼 = [0, 𝑏] , 𝑡 ̸= 𝑡𝑘,

𝑥 (0) = 𝑥0 ∈ X,

Δ𝑥|𝑡=𝑡𝑘
= 𝐼𝑘 (𝑥 (𝑡

−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

(4)

where 𝐷𝑞
𝑡
is the Caputo fractional derivative, 0 < 𝑞 < 1, the

state 𝑥(⋅) takes values in Banach space X. 𝐴 : 𝐷(𝐴) ⊂ X →

X is the infinitesimal generator of a strongly continuous
semigroup (𝑇(𝑡))𝑡≥0 of a uniformly bounded operator on X,
and 𝐴 is a bounded linear operator. 𝑓 : 𝐽 × X × X → X is
givenX-value functions,𝐻 is defined as

(𝐻𝑥) (𝑡) = ∫

𝑡

0

ℎ (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠, (5)

where ℎ : Δ × X → X are continuous, here Δ = {(𝑡, 𝑠) : 0 ≤

𝑠 ≤ 𝑡 ≤ 𝑏}, 𝐼𝑘 : X → X are impulsive functions, 0 = 𝑡0 <

𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑚 < 𝑡𝑚+1 = 𝑏, Δ𝑥|𝑡=𝑡𝑘 = 𝑥(𝑡
+

𝑘
) − 𝑥(𝑡

−

𝑘
), and 𝑥(𝑡+

𝑘
) =

limℎ→0+𝑥(𝑡𝑘 +ℎ) and 𝑥(𝑡
−

𝑘
) = limℎ→0−𝑥(𝑡𝑘 +ℎ) represent the

right and left limits of 𝑥(𝑡) at 𝑡 = 𝑡𝑘, respectively.
We also define a control 𝑢 and present controllability

results for fractional integrodifferential systems in Banach
spaces

𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡) , (𝐻𝑥) (𝑡)) + 𝐵𝑢 (𝑡) ,

𝑡 ∈ 𝐼 = [0, 𝑏] , 𝑡 ̸= 𝑡𝑘,

𝑥 (0) = 𝑥0 ∈ X,

Δ𝑥|𝑡=𝑡𝑘
= 𝐼𝑘 (𝑥 (𝑡

−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

(6)

where 𝐵 is a bounded linear operator from 𝑈 to X, and the
control function 𝑢(⋅) is given in 𝐿2[𝐽, 𝑈], with 𝑈 as a Banach
space. The method we adopt is based on the ideas in [17–
19, 22–24]. Comparedwith the previous results, this paper has
three advantages. Firstly, we add operator𝐻 in the nonlinear
term 𝑓 and introduce a suitable concept of mild solutions
of (4) and (6). Secondly, we not only study the existence of
PC-mild solutions for impulsive fractional semilinear inte-
grodifferential equation (4) but also present controllability
results for fractional impulsive integrodifferential systems
(6), and the results in [17, 19] could be seen as the special
cases.Thirdly, ourmethod avoids the compactness conditions
on the semigroup (𝑇(𝑡))𝑡≥0, and some other hypotheses are
more general compared with the previous research (see the
conditions (𝐻1)–(𝐻3) and (𝐻5)–(𝐻8)).

The rest of the paper is organized as follows. In Section 2,
we present some preliminaries and lemmas that are to be used
later to prove our main results. In Section 3, the existence
of PC-mild solutions for (4) is discussed. In Section 4, by
introducing a class of controls, we present the controllability
results for fractional impulsive integrodifferential systems
(6). In Section 5, an example is given to illustrate the theory.

2. Preliminaries and Lemmas

Let us consider the set of functions PC[𝐼,X] = {𝑥 : 𝐼 →

X : 𝑥 ∈ 𝐶[(𝑡𝑘, 𝑡𝑘+1),X], and there exist 𝑥(𝑡−
𝑘
) and 𝑥(𝑡

+

𝑘
),

𝑘 = 0, 1, 2, . . . , 𝑚 with 𝑥(𝑡
−

𝑘
) = 𝑥(𝑡𝑘)}. Endowed with the

norm ‖𝑥‖PC = sup
𝑡∈𝐼
‖𝑥(𝑡)‖, it is easy to know that (PC[𝐼,X],

‖ ⋅ ‖PC) is a Banach space. Throughout this paper, let 𝐴 be
the infinitesimal generator of a 𝐶0-semigroup (𝑇(𝑡))𝑡≥0 of a
uniformly bounded operators onX. Let 𝐿𝐵(X) be the Banach
space of all linear and bounded operator on X. For a 𝐶0-
semigroup (𝑇(𝑡))𝑡≥0, we set𝑀1 = sup

𝑡∈𝐼
‖𝑇(𝑡)‖

𝐿𝐵(X)
. For each

positive constant 𝑟, set 𝐵𝑟 = {𝑥 ∈ PC[𝐼,X] : ‖𝑥‖ ≤ 𝑟}.

Definition 1. The fractional integral of order 𝛾 with the lower
limit zero for a function 𝑓 is defined as

𝐼
𝛾
𝑓 (𝑡) =

1

Γ (𝛾)
∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
1−𝛾

𝑑𝑠, 𝑡 > 0, 𝛾 > 0, (7)

provided that the right side is point-wise defined on [0, +∞),
where Γ(⋅) is the gamma function.
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Definition 2. TheRiemann-Liouville derivative of the order 𝛾
with the lower limit zero for a function 𝑓 : [0,∞] → 𝑅 can
be written as
𝐿
𝐷
𝛾
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛾)

𝑑
𝑛

𝑑𝑡𝑛

× ∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
1−𝑛+𝛾

𝑑𝑠, 𝑡 > 0, 𝑛 − 1 < 𝛾 < 𝑛.

(8)

Definition 3. The Caputo derivative of the order 𝛾 for a
function 𝑓 : [0,∞] → 𝑅 can be written as

𝐷
𝛾
𝑓 (𝑡) =

𝐿
𝐷
𝛾

(𝑓 (𝑡) −

𝑛−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝑓
(𝑘)
(0)) ,

𝑡 > 0, 𝑛 − 1 < 𝛾 < 𝑛.

(9)

Remark 4. (1) If 𝑓(𝑡) ∈ 𝐶𝑛[0,∞), then

𝐷
𝛾
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛾)
∫

𝑡

0

𝑓
(𝑛)
(𝑠)

(𝑡 − 𝑠)
1−𝑛+𝛾

𝑑𝑠

= 𝐼
𝑛−𝑟
𝑓
(𝑛)
(𝑡) , 𝑡 > 0, 𝑛 − 1 < 𝛾 < 𝑛.

(10)

(2) The Caputo derivative of a constant is equal to zero.
(3) If 𝑓 is an abstract function with values in X, then

integrals which appear in Definitions 1, 2, and 3 are taken in
Bochner’s sense.

Definition 5 (see [22]). A mild solution of the following
nonhomogeneous impulsive linear fractional equation of the
form
𝐷
𝑞

𝑡
𝑥 (𝑡) = 𝐴𝑥 (𝑡) + ℎ (𝑡) , 𝑡 ∈ 𝐼 = [0, 𝑏] , 0 < 𝑞 < 1, 𝑡 ̸= 𝑡𝑘,

𝑥 (0) = 𝑥0 ∈ X,

Δ𝑥|𝑡=𝑡𝑘
= 𝐼𝑘 (𝑥 (𝑡

−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

(11)

is given by

𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥0+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠) ℎ (𝑠) 𝑑𝑠, 𝑡∈[0, 𝑡1] ,

T (𝑡) 𝑥0+T (𝑡−𝑡1) 𝐼1 (𝑥 (𝑡
−

1
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠) ℎ (𝑠) 𝑑𝑠, 𝑡∈(𝑡1, 𝑡2] ,

...

T (𝑡) 𝑥0+

𝑚

∑

𝑘=1

T (𝑡−𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡
−

𝑘
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠) ℎ (𝑠) 𝑑𝑠, 𝑡∈(𝑡𝑚, 𝑏] ,

(12)

whereT(⋅) and S(⋅) are called characteristic solution opera-
tors and given by

T (𝑡) = ∫

∞

0

𝜉𝑞 (𝜃) 𝑇 (𝑡
𝑞
𝜃) 𝑑𝜃,

S (𝑡) = 𝑞∫

∞

0

𝜃𝜉𝑞 (𝜃) 𝑇 (𝑡
𝑞
𝜃) 𝑑𝜃,

(13)

and for 𝜃 ∈ (0,∞),

𝜉𝑞 (𝜃) =
1

𝑞
𝜃
−1−(1/𝑞)

𝜛𝑞 (𝜃
−1/𝑞

) ≥ 0,

𝜛𝑞 (𝜃) =
1

𝜋

∞

∑

𝑛=1

(−1)
𝑛−1

𝜃
−𝑞𝑛−1

Γ (𝑛𝑞 + 1)

𝑛!
sin (𝑛𝜋𝑞) ,

(14)

where 𝜉𝑞 is a probability density function defined on (0,∞);
that is,

𝜉𝑞 (𝜃) ≥ 0, 𝜃 ∈ (0,∞) , ∫

∞

0

𝜉𝑞 (𝜃) 𝑑𝜃 = 1. (15)

Definition 6. By a PC-mild solution of (4), we mean that a
function 𝑥 ∈ PC[𝐼,X], which satisfies the following integral
equation:

𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥0+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈[0, 𝑡1] ,

T (𝑡) 𝑥0+T (𝑡 − 𝑡1) 𝐼1 (𝑥 (𝑡
−

1
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈(𝑡1, 𝑡2] ,

...

T (𝑡) 𝑥0+

𝑚

∑

𝑘=1

T (𝑡−𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡
−

𝑘
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈( 𝑡𝑚, 𝑏] .

(16)

Definition 7. By a PC-mild solution of the system (6), we
mean that a function 𝑥 ∈ PC[𝐼,X], which satisfies the follow-
ing integral equation:

𝑥 (𝑡)=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥0 + ∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×[𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

+𝐵𝑢 (𝑠) ] 𝑑𝑠, 𝑡∈[0, 𝑡1] ,

T (𝑡) 𝑥0+T (𝑡−𝑡1) 𝐼1 (𝑥 (𝑡
−

1
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×[𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

+𝐵𝑢 (𝑠) ] 𝑑𝑠, 𝑡∈(𝑡1, 𝑡2] ,

...

T (𝑡) 𝑥0+

𝑚

∑

𝑘=1

T (𝑡−𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡
−

𝑘
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×[𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

+𝐵𝑢 (𝑠) ] 𝑑𝑠, 𝑡∈( 𝑡𝑚, 𝑏] .

(17)

Definition 8. The system (6) is said to be controllable on the
interval 𝐽 if, for every 𝑥0, 𝑥1 ∈ X, there exists a control 𝑢 ∈

𝐿
2
(𝐽, 𝑈) such that a mild solution 𝑥 of (6) satisfies 𝑥(𝑏) = 𝑥1.
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Definition 9 (see [25]). Let X be a Banach space, and a one
parameter family 𝑇(𝑡), 0 ≤ 𝑡 < +∞, of bounded linear
operators from X to X is a semigroup of bounded linear
operators onX if

(1) 𝑇(0) = 𝐼 (here, 𝐼 is the identity operator onX);
(2) 𝑇(𝑡 + 𝑠) = 𝑇(𝑡)𝑇(𝑠) for every 𝑡, 𝑠 ≥ 0 (the semigroup

property).

A semigroup of bounded linear operator, 𝑇(𝑡), is uniformly
continuous if lim𝑡↓0‖𝑇(𝑡) − 𝐼‖ = 0.

Lemma 10 (see [25]). Linear operator 𝐴 is the infinitesimal
generator of a uniformly continuous semigroup if and only if𝐴
is a bounded linear operator.

Lemma 11 (see [19]). Let 𝑇 be a continuous and compact
mapping of a Banach space X into itself, such that

{𝑥 ∈ X : 𝑥 = 𝜆𝑇𝑥 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 0 ≤ 𝜆 ≤ 1} (18)

is bounded. Then, 𝑇 has a fixed point.

Lemma 12. The operators T(𝑡) and S(𝑡) have the following
properties.

(i) For any fixed 𝑡 ≥ 0, T(𝑡) and S(𝑡) are linear and
bounded operators; that is, for any 𝑥 ∈ X,

‖T (𝑡) 𝑥‖ ≤ 𝑀1 ‖𝑥‖ , ‖S (𝑡) 𝑥‖ ≤
𝑞𝑀1

Γ (1 + 𝑞)
‖𝑥‖ . (19)

(ii) {T(𝑡), 𝑡 ≥ 0} and {S(𝑡), 𝑡 ≥ 0} are strongly continuous.
(iii) {T(𝑡), 𝑡 ≥ 0} and {S(𝑡), 𝑡 ≥ 0} are uniformly

continuous; that is, for each fixed 𝑡 > 0, and 𝜖 > 0,
there exists ℎ > 0 such that

‖T (𝑡 + 𝜖) −T (𝑡)‖ ≤ 𝜀, 𝑓𝑜𝑟 𝑡 + 𝜖 ≥ 0, |𝜖| < ℎ,

‖S (𝑡 + 𝜖) −S (𝑡)‖ ≤ 𝜀, 𝑓𝑜𝑟 𝑡 + 𝜖 ≥ 0, |𝜖| < ℎ.

(20)

Proof. For the proof of (i) and (ii), the reader can refer to [23,
Lemma 2.9] and [24, Lemmas 3.2–3.5]. For each fixed 𝑡 > 0,
and ℎ > 𝜖 > 0, one can obtain

‖T (𝑡 + 𝜖)−T (𝑡)‖

≤∫

∞

0

𝜉𝑞 (𝜃)
󵄩󵄩󵄩󵄩𝑇 ((𝑡 + 𝜖)

𝑞
𝜃)−𝑇 (𝑡

𝑞
𝜃)
󵄩󵄩󵄩󵄩 𝑑𝜃

≤𝑀1 ∫

∞

0

𝜉𝑞 (𝜃)
󵄩󵄩󵄩󵄩𝑇 ((𝑡 + 𝜖)

𝑞
𝜃−𝑡
𝑞
𝜃) − 𝐼

󵄩󵄩󵄩󵄩 𝑑𝜃,

‖S (𝑡 + 𝜖) −S (𝑡)‖

≤ 𝑞𝑀1 ∫

∞

0

𝜃𝜉𝑞 (𝜃)
󵄩󵄩󵄩󵄩𝑇 ((𝑡 + 𝜖)

𝑞
𝜃 − 𝑡
𝑞
𝜃) − 𝐼

󵄩󵄩󵄩󵄩 𝑑𝜃.

(21)

Because 𝐴 is a bounded linear operator, from Lemma 10 and
Definition 9, we know that𝐴 is the infinitesimal generator of

a uniformly continuous semigroup.Thus, by the properties of
uniformly continuous semigroup (𝑇(𝑡))𝑡≥0, we get

‖T (𝑡 + 𝜖) −T (𝑡)‖ ≤ 𝜀,

‖S (𝑡 + 𝜖) −S (𝑡)‖ ≤ 𝜀;

(22)

that is, {T(𝑡), 𝑡 ≥ 0} and {S(𝑡), 𝑡 ≥ 0} are uniformly
continuous.

We list here the hypotheses to be used later.

(𝐻1) 𝑓 : 𝐼 × X × X → X is continuous and there exist
functions 𝜇1, 𝜇2 ∈ 𝐿[𝐼,R

+
] such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥1, 𝑦1) − 𝑓 (𝑡, 𝑥2, 𝑦2)
󵄩󵄩󵄩󵄩

≤ 𝜇1 (𝑡)
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩 + 𝜇2 (𝑡)
󵄩󵄩󵄩󵄩𝑦1 − 𝑦2

󵄩󵄩󵄩󵄩 ,

𝑥1, 𝑥2, 𝑦1, 𝑦2 ∈ X.

(23)

(𝐻2) ℎ : Δ × X × X → X is continuous and there exist
function ]1 ∈ 𝐶[𝐼,R

+
] such that

󵄩󵄩󵄩󵄩ℎ (𝑡, 𝑠, 𝑥1) − ℎ (𝑡, 𝑠, 𝑥2)
󵄩󵄩󵄩󵄩 ≤ ]1 (𝑡)

󵄩󵄩󵄩󵄩𝑥1 − 𝑥2
󵄩󵄩󵄩󵄩 , 𝑥1, 𝑥2 ∈ X.

(24)

(𝐻3) There exist 𝜔𝑘 ∈ 𝐶[𝐼,R
+
] such that

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥1) − 𝐼𝑘 (𝑥2)
󵄩󵄩󵄩󵄩 ≤ 𝜔𝑘 (𝑡)

󵄩󵄩󵄩󵄩𝑥1 − 𝑥2
󵄩󵄩󵄩󵄩 ,

𝑥1, 𝑥2 ∈ X, 𝑘 = 1, 2, . . . , 𝑚.

(25)

(𝐻4) The functionΩ𝑚(𝑡) : 𝐼 → R+ is defined by

Ω𝑚 (𝑡) =
𝑞𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇1 (𝑠) + ]
0

1
𝑏𝜇2 (𝑠)) 𝑑𝑠

+ 𝑚𝜔0𝑀1,

(26)

where ]0
1
= max{]1(𝑡) | 𝑡 ∈ 𝐼}, 𝜔0 = max{𝜔𝑘(𝑡)𝑡 ∈

𝐼, 𝑘 = 1, 2, . . . , 𝑚}, and 0 < Ω𝑚(𝑡) < 1, 𝑡 ∈ 𝐼.

(𝐻󸀠
4
) The constantsΩ𝑢 andΩ

󸀠

𝑚
(𝑡) : 𝐼 → R+ are defined by

Ω𝑢 =
𝑞𝑀1𝐾

Γ (1 + 𝑞)
∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

(𝜇1 (𝑠) + ]
0

1
𝑏𝜇2 (𝑠)) 𝑑𝑠

+ 𝜔0𝑚𝑀1,

Ω
󸀠

𝑚
(𝑡) =

𝑞𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇1 (𝑠) + ]
0

1
𝑏𝜇2 (𝑠)) 𝑑𝑠

+
𝑞𝑀1Ω𝑢

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑑𝑠 + 𝜔0𝑚𝑀1,

(27)

and 0 < Ω
󸀠

𝑚
(𝑡) < 1, 𝑡 ∈ 𝐼.
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3. Existence of Mild Solutions

Theorem 13. If the hypotheses (𝐻1)–(𝐻4) are satisfied, then
the fractional impulsive integrodifferential equation (4) has a
unique mild solution 𝑥 ∈ PC[𝐼,X].

Proof. Define an operator 𝑄 on PC[𝐼,X] by

(𝑄𝑥) (𝑡)=

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥0+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) ,

(𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈[0, 𝑡1] ,

T (𝑡) 𝑥0+T (𝑡−𝑡1) 𝐼1 (𝑥 (𝑡
−

1
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈( 𝑡1, 𝑡2] ,

...

T (𝑡) 𝑥0+

𝑚

∑

𝑘=1

T (𝑡−𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡
−

𝑘
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈( 𝑡𝑚, 𝑏] .

(28)

We will show that 𝑄 is well defined on PC[𝐼,X]. For 0 ≤ 𝜏 <

𝑡 ≤ 𝑡1, applying (28), we obtain

‖(𝑄𝑥) (𝑡) − (𝑄𝑥) (𝜏)‖

≤ ‖T (𝑡) −T (𝜏)‖
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

𝜏

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

+ ∫

𝜏

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

+ ∫

𝜏

0

(𝑡 − 𝑠)
𝑞−1

S (𝜏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

− ∫

𝜏

0

(𝑡 − 𝑠)
𝑞−1

S (𝜏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

− ∫

𝜏

0

(𝜏 − 𝑠)
𝑞−1

S (𝜏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ ‖T (𝑡) −T (𝜏)‖
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

𝜏

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝜏

0

(𝑡 − 𝑠)
𝑞−1

[S (𝑡 − 𝑠) −S (𝜏 − 𝑠)]

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝜏

0

[(𝑡 − 𝑠)
𝑞−1

− (𝜏 − 𝑠)
𝑞−1

]

×S (𝜏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
.

(29)

From the well-known inequality |𝑡
𝜎
− 𝜏
𝜎
| ≤ (𝑡 − 𝜏)

𝜎 for
𝜎 ∈ (0, 1] and 0 < 𝜏 ≤ 𝑡 and Lemma 12, it is obvious that
‖(𝑄𝑥)(𝑡) − (𝑄𝑥)(𝜏)‖ → 0 as 𝑡 → 𝜏. Thus, we deduce that
𝑄𝑥 ∈ 𝐶[[0, 𝑡1],X].

For 𝑡1 < 𝜏 < 𝑡 ≤ 𝑡2, we have

‖(𝑄𝑥) (𝑡) − (𝑄𝑥) (𝜏)‖

≤ ‖T (𝑡) −T (𝜏)‖
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩T (𝑡 − 𝑡1) −T (𝜏 − 𝑡1)

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝐼1 (𝑥 (𝑡

−

1
))
󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

𝜏

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝜏

0

(𝑡 − 𝑠)
𝑞−1

[S (𝑡 − 𝑠) −S (𝜏 − 𝑠)]

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝜏

0

[(𝑡 − 𝑠)
𝑞−1

− (𝜏 − 𝑠)
𝑞−1

]

×S (𝜏 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
.

(30)

It is easy to get that, as 𝑡 → 𝜏, the right-hand side of the
previous inequality tends to zero. Thus, we can deduce that
𝑄𝑥 ∈ 𝐶[(𝑡1, 𝑡2],X]. By repeating the same procedure, we can
also obtain that 𝑄𝑥 ∈ 𝐶[(𝑡2, 𝑡3],X], . . . , 𝑄𝑥 ∈ 𝐶[(𝑡𝑚, 𝑏],X].
That is, 𝑄𝑥 ∈ PC[𝐼,X].

Take 𝑡 ∈ [0, 𝑡1]; then,
󵄩󵄩󵄩󵄩(𝑄𝑥) (𝑡) − (𝑄𝑦) (𝑡)

󵄩󵄩󵄩󵄩

≤ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩S (𝑡 − 𝑠)

× (𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

−𝑓 (𝑠, 𝑦 (𝑠) , (𝐻𝑦) (𝑠)))
󵄩󵄩󵄩󵄩 𝑑𝑠

≤
𝑞𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

× (𝜇1 (𝑠)
󵄩󵄩󵄩󵄩𝑥 (𝑠) − 𝑦 (𝑠)

󵄩󵄩󵄩󵄩

+𝜇2 (𝑠)
󵄩󵄩󵄩󵄩(𝐻𝑥) (𝑠) − (𝐻𝑦) (𝑠)

󵄩󵄩󵄩󵄩) 𝑑𝑠.

(31)

From (𝐻2) and (𝐻4), we obtain
󵄩󵄩󵄩󵄩(𝑄𝑥) (𝑡) − (𝑄𝑦) (𝑡)

󵄩󵄩󵄩󵄩

≤
𝑞𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇1 (𝑠) + ]
0

1
𝑏𝜇2 (𝑠))

×
󵄩󵄩󵄩󵄩𝑥 (𝑠) − 𝑦 (𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠.

(32)

So we deduce that
󵄩󵄩󵄩󵄩(𝑄𝑥) (𝑡) − (𝑄𝑦) (𝑡)

󵄩󵄩󵄩󵄩PC

≤
𝑞𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇1 (𝑠) + ]
0

1
𝑏𝜇2 (𝑠)) 𝑑𝑠

×
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC.

(33)
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In general, for each 𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1], 1 ≤ 𝑖 ≤ 𝑚, using the assump-
tions,
󵄩󵄩󵄩󵄩(𝑄𝑥) (𝑡) − (𝑄𝑦) (𝑡)

󵄩󵄩󵄩󵄩PC

≤
𝑞𝑀1

Γ (1+𝑞)
∫

𝑡

0

(𝑡−𝑠)
𝑞−1

(𝜇1 (𝑠)+]
0

1
𝑏𝜇2 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩𝑥−𝑦
󵄩󵄩󵄩󵄩PC

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑖

∑

𝑘=1

T (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡
−

𝑘
))

−

𝑖

∑

𝑘=1

T (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑦 (𝑡
−

𝑘
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ (
𝑞𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇1 (𝑡) + ]
0

1
𝑏𝜇2 (𝑡)) 𝑑𝑠

+𝑖𝜔0𝑀1)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC

≤ Ω𝑖 (𝑡)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC;

(34)

when 𝑖 = 𝑚, obviously
󵄩󵄩󵄩󵄩(𝑄𝑥) (𝑡) − (𝑄𝑦)(𝑡)

󵄩󵄩󵄩󵄩PC

≤ (
𝑞𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇1 (𝑠) + ]
0

1
𝑏𝜇2 (𝑠)) 𝑑𝑠

+𝑚𝜔0𝑀1)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC

≤ Ω𝑚 (𝑡)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩PC.

(35)

Noting that Ω𝑖(𝑡) ≤ Ω𝑚(𝑡), with assumption (𝐻4) and in the
view of the contraction mapping principle, we know that 𝑄
has a unique fixed point 𝑥 ∈ PC[𝐼,X]; that is,

𝑥 (𝑡)=

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥0+∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈[0, 𝑡1] ,

T (𝑡) 𝑥0 +T (𝑡 − 𝑡1) 𝐼1 (𝑥 (𝑡
−

1
))

+∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈(𝑡1, 𝑡2] ,

...

T (𝑡) 𝑥0+

𝑚

∑

𝑘=1

T (𝑡−𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡
−

𝑘
))

+∫

𝑡

0

(𝑡−𝑠)
𝑞−1

S (𝑡−𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡∈(𝑡𝑚, 𝑏] ,

(36)

is a PC-mild solution of (4).

In order to obtain results by the Schaefer fixed point
theorem, let us list the following hypotheses.

(𝐻5) 𝑓 : 𝐼 × X × X → X is continuous and there exist
functions 𝜇3, 𝜇4, 𝜇5 ∈ 𝐿[𝐼,R

+
] such that

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥, 𝑦)
󵄩󵄩󵄩󵄩≤𝜇3 (𝑡) + 𝜇4 (𝑡) ‖𝑥‖+𝜇5 (𝑡)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 , 𝑡∈𝐼, 𝑥, 𝑦∈X.

(37)

(𝐻6) ℎ : Δ × X × X → X is continuous and there exist
functions ]2, ]3 ∈ 𝐶[𝐼,R

+
] such that

‖ℎ (𝑡, 𝑠, 𝑥)‖ ≤ ]2 (𝑠) + ]3 (𝑠) ‖𝑥‖ , 𝑥 ∈ X. (38)

(𝐻7) There exist 𝜓𝑘 ∈ 𝐶[𝐼,R
+
] such that

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝜓𝑘 (𝑡) ‖𝑥‖ , 𝑥 ∈ X. (39)

(𝐻8) For all bounded subsets 𝐵𝑟, the set

Πℎ,𝛿 (𝑡) = {T𝛿 (𝑡) 𝑥0

+ ∫

𝑡−ℎ

0

(𝑡 − 𝑠)
𝑞−1

S𝛿 (𝑡 − 𝑠) 𝐹 (𝑠) 𝑑𝑠

+

𝑚

∑

𝑘=1

T𝛿 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡
−

𝑘
)) : 𝑥 ∈ 𝐵𝑟}

(40)

is relatively compact in X for arbitrary ℎ ∈ (0, 𝑡) and
𝛿 > 0, where

T𝛿 (𝑡) = ∫

∞

𝛿

𝜉𝑞 (𝜃) 𝑇 (𝑡
𝑞
𝜃) 𝑑𝜃,

S𝛿 (𝑡) = 𝑞∫

∞

𝛿

𝜃𝜉𝑞 (𝜃) 𝑇 (𝑡
𝑞
𝜃) 𝑑𝜃.

(41)

(𝐻󸀠
8
) For all bounded subsets 𝐵𝑟, the set

Π
󸀠

ℎ,𝛿
(𝑡) = {T𝛿 (𝑡) 𝑥0

+ ∫

𝑡−ℎ

0

(𝑡 − 𝑠)
𝑞−1

S𝛿 (𝑡 − 𝑠) [𝐹 (𝑠) + 𝐵𝑢 (𝑠)] 𝑑𝑠

+

𝑚

∑

𝑘=1

T𝛿 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡
−

𝑘
)) : 𝑥 ∈ 𝐵𝑟}

(42)

is relatively compact in X for arbitrary ℎ ∈ (0, 𝑡) and
𝛿 > 0.

Theorem 14. If the hypotheses (𝐻5)–(𝐻8) are satisfied, the
fractional impulsive integrodifferential equation (4) has at least
one mild solution 𝑥 ∈ PC[𝐼,X].
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Proof. FromTheorem 13, we know that operator𝑄 is defined
as follows:

(𝑄𝑥) (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥0 + ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) ,

(𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑡
1
] ,

T (𝑡) 𝑥0 +T (𝑡 − 𝑡
1
) 𝐼
1
(𝑥 (𝑡
−

1
))

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ ( 𝑡
1
, 𝑡
2
] ,

...

T (𝑡) 𝑥0 +

𝑚

∑

𝑘=1

T (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ ( 𝑡
𝑚
, 𝑏] .

(43)

We will prove the results in five steps.

Step 1 (continuity of 𝑄 on (𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1, 2, . . . , 𝑚)). Let
𝑥𝑛, 𝑥 ∈ PC[𝐼,X] such that ‖ 𝑥𝑛 − 𝑥

∗
‖PC → 0 (𝑛 → +∞),

and then 𝑟 = sup
𝑛
‖𝑥𝑛‖PC < ∞ and ‖𝑥

∗
‖PC < 𝑟; for every

𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1, 2, . . . , 𝑚), we have

󵄩󵄩󵄩󵄩(𝑄𝑥𝑛) (𝑡) − (𝑄𝑥) (𝑡)
󵄩󵄩󵄩󵄩

≤
𝑞𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

×
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠))

−𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

∑

𝑘=1

T (𝑡−𝑡𝑘) 𝐼𝑘 (𝑥𝑛 (𝑡
−

𝑘
))−

𝑚

∑

𝑘=1

T (𝑡−𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡
−

𝑘
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

.

(44)

Since the functions 𝑓 and 𝐼𝑘 are continuous,

𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠)) 󳨀→ 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) ,

𝐼𝑘 (𝑥𝑛 (𝑡
−

𝑘
)) 󳨀→ 𝐼𝑘 (𝑥 (𝑡

−

𝑘
)) 𝑛 󳨀→ ∞.

(45)

By conditions (𝐻5) and (𝐻6), we know that

󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))
󵄩󵄩󵄩󵄩

≤ 2𝜇3 (𝑠) + 𝜇4 (𝑠) (‖𝑥‖ +
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩)

+ 𝜇5 (𝑠) (‖𝐻𝑥‖ +
󵄩󵄩󵄩󵄩𝐻𝑥𝑛

󵄩󵄩󵄩󵄩)

≤ 2𝜇3 (𝑠) + 2𝜇5 (𝑠) ∫

𝑠

0

]2 (𝜃) 𝑑𝜃

+ (𝜇4 (𝑠) + 𝜇5 (𝑠) ∫

𝑠

0

]3 (𝜃) 𝑑𝜃) (‖𝑥‖ +
󵄩󵄩󵄩󵄩𝑥𝑛

󵄩󵄩󵄩󵄩)

≤ 2𝜇3 (𝑠) + 2𝜇5 (𝑠) ∫

𝑠

0

]2 (𝜃) 𝑑𝜃

+ (2𝜇4 (𝑠) + 2𝜇5 (𝑠) ∫

𝑠

0

]3 (𝜃) 𝑑𝜃) 𝑟.

(46)

Hence,

(𝑡 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠))

−𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))
󵄩󵄩󵄩󵄩 ∈ 𝐿
1
[𝐼,R
+
] .

(47)

By the Lebesgue dominated convergence theorem, we get

∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠))

−𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠 󳨀→ 0.

(48)

It is easy to obtain that

lim
𝑛→∞

󵄩󵄩󵄩󵄩(𝑄𝑥𝑛)(𝑡) − (𝑄𝑥)(𝑡)
󵄩󵄩󵄩󵄩PC = 0. (49)

Thus, 𝑄 is continuous on (𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1, 2, . . . , 𝑚).

Step 2 (𝑄maps bounded sets into bounded sets in PC[𝐼,X]).
From (43), we get

‖(𝑄𝑥) (𝑡)‖

≤
󵄩󵄩󵄩󵄩T (𝑡) 𝑥0

󵄩󵄩󵄩󵄩 +
𝑞𝑀1

Γ (1 + 𝑞)

×∫

𝑡

0

(𝑡−𝑠)
𝑞−1󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

+ 𝑚
󵄩󵄩󵄩󵄩T (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡

−

𝑘
))
󵄩󵄩󵄩󵄩 ,

(50)

and we know that
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

󵄩󵄩󵄩󵄩

≤ 𝜇3 (𝑠) + 𝜇5 (𝑠) ∫

𝑠

0

]2 (𝜃) 𝑑𝜃

+(𝜇4 (𝑠)+𝜇5 (𝑠) ∫

𝑠

0

]3 (𝜃) 𝑑𝜃) ‖𝑥‖

≤ 𝜑1 (𝑠) + 𝜑2 (𝑠) ‖𝑥‖ .

(51)

From (50) and (51), we obtain
‖(𝑄𝑥) (𝑡)‖ ≤ 𝑀1

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 + 𝑚𝑀1𝜓0 ‖𝑥‖

+
𝑞𝑏
𝑞
𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝜑1 (𝑠) + 𝜑2 (𝑠) ‖𝑥‖) 𝑑𝑠,

(52)

where 𝜓0 = max{𝜓𝑘(𝑡) | 𝑡 ∈ 𝐼, 𝑘 = 1, 2, . . . , 𝑚}. Thus, for any
𝑥 ∈ 𝐵𝑟 = {𝑥 ∈ PC[𝐼,X] : ‖𝑥‖PC ≤ 𝑟},

‖(𝑄𝑥) (𝑡)‖

≤ 𝑀1
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +
𝑞𝑏
𝑞
𝑀1

Γ (1 + 𝑞)
∫

𝑏

0

𝜑1 (𝑠) 𝑑𝑠

+ (
𝑞𝑏
𝑞
𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

𝜑2 (𝑠) 𝑑𝑠 + 𝑚𝑀𝜓0) 𝑟 = 𝛾1.

(53)

Hence, we deduce that ‖(𝑄𝑥)(𝑡)‖ ≤ 𝛾1; that is, 𝑄 maps
bounded sets to bounded sets in PC[𝐼,X].
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Step 3. (𝑄(𝐵𝑟) is equicontinuous with 𝐵𝑟 on (𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1,

2, . . . , 𝑚)). For any𝑥 ∈ 𝐵𝑟, 𝑡
󸀠
, 𝑡
󸀠󸀠
∈ (𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1, 2, . . . , 𝑚),

we obtain
󵄩󵄩󵄩󵄩󵄩
(𝑄𝑥) (𝑡

󸀠󸀠
) − (𝑄𝑥) (𝑡

󸀠
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
T (𝑡
󸀠󸀠
) 𝑥0 −T (𝑡

󸀠
) 𝑥0

󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
󸀠󸀠

0

(𝑡
󸀠󸀠
− 𝑠)
𝑞−1

S (𝑡
󸀠󸀠
− 𝑠) 𝐹 (𝑠) 𝑑𝑠

−∫

𝑡
󸀠

0

(𝑡
󸀠
− 𝑠)
𝑞−1

S (𝑡
󸀠
− 𝑠) 𝐹 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

∑

𝑘=1

T (𝑡
󸀠󸀠
− 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡

−

𝑘
))

−

𝑚

∑

𝑘=1

T (𝑡
󸀠
− 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡

−

𝑘
))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

;

(54)

after some elementary computation, we have
󵄩󵄩󵄩󵄩󵄩
(𝑄𝑥) (𝑡

󸀠󸀠
) − (𝑄𝑥) (𝑡

󸀠
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
T (𝑡
󸀠󸀠
) −T (𝑡

󸀠
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
󸀠󸀠

𝑡󸀠
(𝑡
󸀠󸀠
− 𝑠)
𝑞−1

S (𝑡
󸀠󸀠
− 𝑠) 𝐹 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
󸀠

0

[(𝑡
󸀠󸀠
− 𝑠)
𝑞−1

− (𝑡
󸀠
− 𝑠)
𝑞−1

]S (𝑡
󸀠󸀠
− 𝑠) 𝐹 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡
󸀠

0

(𝑡
󸀠
− 𝑠)
𝑞−1

[S (𝑡
󸀠󸀠
− 𝑠) −S (𝑡

󸀠
− 𝑠)] 𝐹 (𝑠) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+ 𝑚
󵄩󵄩󵄩󵄩󵄩
T (𝑡
󸀠󸀠
− 𝑡
󸀠
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥 (𝑡
−

𝑘
))
󵄩󵄩󵄩󵄩 .

(55)

Using the fact that T(𝑡) and S(𝑡) are uniformly continuous,
and the well-known inequality |𝑡󸀠𝜎 − 𝑡

󸀠󸀠𝜎
| ≤ (𝑡

󸀠󸀠
− 𝑡
󸀠
)
𝜎 for

𝜎 ∈ (0, 1] and 0 < 𝑡
󸀠

≤ 𝑡
󸀠󸀠, we can conclude that

lim𝑡󸀠󸀠→𝑡󸀠‖(𝑄𝑥)(𝑡
󸀠󸀠
) − (𝑄𝑥)(𝑡

󸀠
)‖ = 0. Thus 𝑄(𝐵𝑟) is equicon-

tinuous with 𝐵𝑟 on (𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1, 2, . . . , 𝑚).

Step 4 (𝑄 maps 𝐵𝑟 into a precompact set in X). We define
Π = 𝑄𝐵𝑟 and Π(𝑡) = {(𝑄𝑥)(𝑡) : 𝑥 ∈ 𝐵𝑟} for 𝑡 ∈ 𝐼. Set

Πℎ,𝛿 (𝑡) = {(𝑄ℎ,𝛿𝑥) (𝑡) : 𝑥 ∈ 𝐵𝑟} , (56)

where

Πℎ,𝛿 (𝑡) = {T𝛿 (𝑡) 𝑥0 + ∫
𝑡−ℎ

0

(𝑡 − 𝑠)
𝑞−1

S𝛿 (𝑡 − 𝑠) 𝐹 (𝑠) 𝑑𝑠

+

𝑚

∑

𝑘=1

T𝛿 (𝑡 − 𝑡𝑘) 𝐼𝑘 (𝑥 (𝑡
−

𝑘
)) : 𝑥 ∈ 𝐵𝑟} .

(57)

From Lemma 12(ii)-(iii), (𝐻8), and the same method used in
Theorem 3.2 of [18], we can verify that the set Π(𝑡) can be
arbitrary approximated by the relatively compact set Πℎ,𝛿(𝑡).
Thus, 𝑄(𝐵𝑟)(𝑡) is relatively compact inX.

Step 5 (the set 𝐸 = {𝑥 ∈ PC[𝐼,X] : 𝑥 = 𝜆𝑄𝑥 for some 0 < 𝜆 <

1} is bounded). Let 𝑥 ∈ 𝐸, and then

𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{

{

𝜆T (𝑡) 𝑥0 + 𝜆∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑡
1
] ,

𝜆T (𝑡) 𝑥0 + 𝜆T (𝑡 − 𝑡
1
) 𝐼
1
(𝑥 (𝑡
−

1
))

+ 𝜆∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡
1
, 𝑡
2
] ,

...

𝜆T (𝑡) 𝑥0 + 𝜆

𝑚

∑

𝑘=1

T (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+ 𝜆∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠, 𝑡 ∈ (𝑡
𝑚
, 𝑏] .

(58)

Similar to the results of (53), we know that

‖𝑥 (𝑡)‖ ≤ 𝜆𝑀1
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +
𝜆𝑞𝑏
𝑞
𝑀1

Γ (1 + 𝑞)
∫

𝑏

0

𝜑1 (𝑠) 𝑑𝑠

+ 𝜆(
𝑞𝑏
𝑞
𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

𝜑2 (𝑠) 𝑑𝑠 + 𝑚𝑀1𝜓0) ‖𝑥 (𝑡)‖ .

(59)

Obviously there exists 𝜆 sufficiently small such that 𝜌 = 1 −

𝜆𝑚𝑀1𝜓0 > 0, and then we get

‖𝑥 (𝑡)‖ ≤
𝜆𝑀1

𝜌

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 +

𝜆𝑞𝑏
𝑞
𝑀1

𝜌Γ (1 + 𝑞)
∫

𝑏

0

𝜑1 (𝑠) 𝑑𝑠

+
𝜆𝑞𝑏
𝑞
𝑀1

𝜌Γ (1 + 𝑞)
∫

𝑡

0

𝜑2 (𝑠) ‖𝑥 (𝑠)‖ 𝑑𝑠.

(60)

Let

𝑁3 =
𝜆𝑀1

𝜌

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 +

𝜆𝑞𝑏
𝑞
𝑀1

𝜌Γ (1 + 𝑞)
∫

𝑏

0

𝜑1 (𝑠) 𝑑𝑠,

𝑓 (𝑡) =
𝜆𝑞𝑏
𝑞
𝑀1

𝜌Γ (1 + 𝑞)
∫

𝑡

0

𝜑2 (𝑠) 𝑑𝑠.

(61)

It is clear that 𝑓(𝑡) is nonnegative continuous function on
[0, +∞), and generalized Bellman inequality implies that

‖𝑥 (𝑡)‖ ≤ 𝑁3𝑒
∫
𝑡

0
𝑓(𝑠)𝑑𝑠

≤ 𝑁3𝑒
∫
𝑏

0
𝑓(𝑠)𝑑𝑠

= 𝐶0,
(62)

where 𝐶0 is a constant. Obviously, the set 𝐸 is bounded
on (𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1, 2, . . . , 𝑚). Since 𝑄 is continuous and
compact, thanks to Schaefer’s fixed point Theorem, 𝑄 has a
fixed point (36) which is a PC-mild solution of (4).

4. Controllability Results

By introducing a class of controls, we present the controllabil-
ity results for fractional impulsive integrodifferential systems
(6).
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(𝐻9) The linear operator 𝑊𝑖 from 𝐿
2
[(𝑡𝑖−1, 𝑡𝑖], 𝑈] into X

defined by

𝑊𝑖𝑢 = ∫

𝑡𝑖

0

(𝑡𝑖 − 𝑠)
𝑞−1

S (𝑡𝑖 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑚,𝑚 + 1,

(63)

induces an invertible operator 𝑊̃
−

𝑖
defined on

𝐿
2
[(𝑡𝑖−1, 𝑡𝑖], 𝑈]/Ker𝑊𝑖, and there exists a positive

constant𝐾 > 0 such that ‖𝐵𝑊̃−
𝑖
‖ ≤ 𝐾.

Theorem 15. If the hypotheses (𝐻1)–(𝐻3), (𝐻󸀠4), and (𝐻9)

are satisfied, then the fractional impulsive integrodifferential
system (6) is controllable on 𝐼.

Proof. Using the condition (𝐻9), for an arbitrary function
𝑥(⋅), define the control

𝑢 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑊̃
−

1
[𝑥
0
+
𝑥
1
− 𝑥
0

𝑚 + 1
−T (𝑡

1
) 𝑥
0

−∫

𝑡1

0

(𝑡
1
− 𝑠)
𝑞−1

S (𝑡
1
− 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠] (𝑡) , 𝑡 ∈ [0, 𝑡
1
] ,

𝑊̃
−

2
[𝑥
0
+
2 (𝑥
1
− 𝑥
0
)

𝑚 + 1
−T (𝑡

2
) 𝑥
0

−∫

𝑡2

0

(𝑡
2
− 𝑠)
𝑞−1

S (𝑡
2
− 𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

−T (𝑡
2
− 𝑡
1
) 𝐼
1
(𝑥 (𝑡
−

1
)) ] (𝑡) , 𝑡 ∈ (𝑡

1
, 𝑡
2
] ,

...

𝑊̃
−

𝑚+1
[𝑥
1
−T (𝑏) 𝑥0

−∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

S (𝑏 − 𝑠)

×𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

−

𝑚

∑

𝑘=1

T (𝑏 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))] (𝑡) , 𝑡 ∈ (𝑡

𝑚
, 𝑏] .

(64)

Define the operator 𝑄 : PC[𝐼,X] → PC[𝐼,X], where

(𝑄𝑥) (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

T (𝑡) 𝑥0 + ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× [𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

+𝐵𝑢 (𝑠) ] 𝑑𝑠, 𝑡 ∈ [0, 𝑡
1
]

T (𝑡) 𝑥0 +T (𝑡 − 𝑡
1
) 𝐼
1
(𝑥 (𝑡
−

1
))

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× [𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

+𝐵𝑢 (𝑠) ] 𝑑𝑠, 𝑡 ∈ ( 𝑡
1
, 𝑡
2
] ,

...

T (𝑡) 𝑥0 +

𝑚

∑

𝑘=1

T (𝑡 − 𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

S (𝑡 − 𝑠)

× [𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

+𝐵𝑢 (𝑠) ] 𝑑𝑠, 𝑡 ∈ ( 𝑡
𝑚
, 𝑏] .

(65)

By Theorem 13, we know that 𝑄 is well defined, and we will
prove that when using the previous control, operator 𝑄 has a
fixed point. Clearly, this fixed point is a PC-mild solution of
the control problem (6) and 𝑥(𝑏) = 𝑥1; that is, the control we
defined steers the system (6) from initial 𝑥0 to 𝑥1 in the time
𝑏.

For any 𝑥1, 𝑥2 ∈ 𝐶[(𝑡𝑖, 𝑡𝑖+1],X] (𝑖 = 0, 1, 2, . . . , 𝑚), by
conditions (𝐻1)–(𝐻3), (𝐻

󸀠

4
), and (𝐻9), we get

󵄩󵄩󵄩󵄩𝐵𝑢1 (𝑡) − 𝐵𝑢2 (𝑡)
󵄩󵄩󵄩󵄩

≤ (
𝑞𝑀1𝐾

Γ (1 + 𝑞)
∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

× (𝜇1 (𝑠) + ]
0

1
𝑏𝜇2 (𝑠)) 𝑑𝑠

+𝜔0𝑚𝑀1)

×
󵄩󵄩󵄩󵄩𝑥1(𝑠) − 𝑥2(𝑠)

󵄩󵄩󵄩󵄩PC

≤ Ω𝑢
󵄩󵄩󵄩󵄩𝑥1 (𝑠) − 𝑥2 (𝑠)

󵄩󵄩󵄩󵄩PC,

(66)

󵄩󵄩󵄩󵄩(𝑄𝑥1) (𝑡)−(𝑄𝑥2) (𝑡)
󵄩󵄩󵄩󵄩

≤∫

𝑡

0

(𝑡−𝑠)
𝑞−1 󵄩󵄩󵄩󵄩S (𝑡−𝑠)

× [𝑓 (𝑠, 𝑥1 (𝑠) , (𝐻𝑥1) (𝑠))

−𝑓 (𝑠, 𝑥2 (𝑠) , (𝐻𝑥2) (𝑠))]
󵄩󵄩󵄩󵄩 𝑑𝑠

+∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

×
󵄩󵄩󵄩󵄩S (𝑡−𝑠) [𝐵𝑢1 (𝑠)−𝐵𝑢2 (𝑠)]

󵄩󵄩󵄩󵄩 𝑑𝑠

+

𝑚

∑

𝑘=1

󵄩󵄩󵄩󵄩T (𝑡−𝑡𝑘) (𝐼𝑘 (𝑥1 (𝑡
−

𝑘
))

−𝐼𝑘 (𝑥2 (𝑡
−

𝑘
)))

󵄩󵄩󵄩󵄩 .

(67)

Therefore,
󵄩󵄩󵄩󵄩(𝑄𝑥1) (𝑡) − (𝑄𝑥2) (𝑡)

󵄩󵄩󵄩󵄩

≤ (
𝑞𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

(𝜇1 (𝑠) + ]
0

1
𝑏𝜇2 (𝑠)) 𝑑𝑠

+
𝑞𝑀1Ω𝑢

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑑𝑠 + 𝜔0𝑚𝑀1)

×
󵄩󵄩󵄩󵄩𝑥1(𝑠) − 𝑥2(𝑠)

󵄩󵄩󵄩󵄩PC

≤ Ω
󸀠

𝑚
(𝑡)

󵄩󵄩󵄩󵄩𝑥1(𝑠) − 𝑥2(𝑠)
󵄩󵄩󵄩󵄩PC.

(68)

Since 0 < Ω
󸀠

𝑚
(𝑡) < 1, then 𝑄 is contraction mapping. Any

fixed point of 𝑄 is a PC-mild solution of (6) which satisfies
𝑥(𝑏) = 𝑥1. Thus, the system (6) is controllable on 𝐼.

Theorem 16. If the hypotheses (𝐻5)–(𝐻7), (𝐻󸀠8), and (𝐻9) are
satisfied, the fractional impulsive integrodifferential system (6)
is controllable on 𝐼.
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Proof. Using the condition (𝐻9), for an arbitrary function
𝑥(⋅), define the control

𝑢 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑊̃
−

1
[𝑥
0
+
𝑥
1
− 𝑥
0

𝑚 + 1
−T (𝑡

1
) 𝑥
0

−∫

𝑡1

0

(𝑡
1
− 𝑠)
𝑞−1

S (𝑡
1
− 𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠] (𝑡) , 𝑡∈[0, 𝑡
1
] ,

𝑊̃
−

2
[𝑥
0
+
2 (𝑥
1
−𝑥
0
)

𝑚 + 1
−T (𝑡

2
) 𝑥
0

−∫

𝑡2

0

(𝑡
2
−𝑠)
𝑞−1

S (𝑡
2
−𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

−T (𝑡
2
−𝑡
1
) 𝐼
1
(𝑥 (𝑡
−

1
)) ] (𝑡) , 𝑡∈( 𝑡

1
, 𝑡
2
] ,

...

𝑊̃
−

𝑚+1
[𝑥
1
−T (𝑏) 𝑥0

−∫

𝑏

0

(𝑏−𝑠)
𝑞−1

S (𝑏−𝑠)

× 𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠)) 𝑑𝑠

−

𝑚

∑

𝑘=1

T (𝑏−𝑡
𝑘
) 𝐼
𝑘
(𝑥 (𝑡
−

𝑘
))] (𝑡) , 𝑡∈( 𝑡

𝑚
, 𝑏] .

(69)

We will prove that when using the previous control, operator
𝑄 defined in (65) has a fixed point.

We discuss that in five steps.

Step 1 (continuity of 𝑄 on (𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1, 2, . . . , 𝑚)). Let
𝑥𝑛, 𝑥 ∈ PC[𝐼,X] such that ‖𝑥𝑛 − 𝑥

∗
‖PC → 0 (𝑛 → +∞),

and then 𝑟 = sup
𝑛
‖𝑥𝑛‖PC < ∞ and ‖𝑥∗‖PC < 𝑟. For every

𝑡 ∈ (𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1, 2, . . . , 𝑚), we have
󵄩󵄩󵄩󵄩𝑄𝑥𝑛 (𝑡) − 𝑄𝑥 (𝑡)

󵄩󵄩󵄩󵄩

≤
𝑞𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

×
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠))

−𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠

+
𝑞𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝐵𝑥𝑛 (𝑠) − 𝐵𝑥 (𝑠)

󵄩󵄩󵄩󵄩 𝑑𝑠

+ 𝜓0𝑀1

𝑚

∑

𝑘=1

󵄩󵄩󵄩󵄩𝐼𝑘 (𝑥𝑛 (𝑡
−

𝑘
)) − 𝐼𝑘 (𝑥 (𝑡

−

𝑘
))
󵄩󵄩󵄩󵄩 .

(70)

Since
󵄩󵄩󵄩󵄩𝐵𝑥𝑛 (𝑠) − 𝐵𝑥 (𝑠)

󵄩󵄩󵄩󵄩

≤ (
𝑞𝑀1𝐾

Γ (1 + 𝑞)
∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

×
󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥𝑛 (𝑠) , (𝐻𝑥𝑛) (𝑠))

−𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))
󵄩󵄩󵄩󵄩 𝑑𝑠)

+ 𝜓0𝑀

𝑚

∑

𝑘=1

󵄩󵄩󵄩󵄩𝑥𝑛 (𝑡
−

𝑘
) − 𝑥 (𝑡

−

𝑘
)
󵄩󵄩󵄩󵄩 ,

(71)

by (47), (71), and the Lebesgue dominated convergence
theorem, it is easy to know that

lim
𝑛→∞

󵄩󵄩󵄩󵄩(𝑄𝑥𝑛) (𝑡) − (𝑄𝑥) (𝑡)
󵄩󵄩󵄩󵄩PC = 0. (72)

Consequently,𝑄 is continuous on (𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1, 2, . . . , 𝑚).

Step 2. (𝑄maps bounded sets into bounded sets in PC[𝐼,X]).
Since

‖𝐵𝑢 (𝑠)‖ ≤
󵄩󵄩󵄩󵄩󵄩
𝐵𝑊̃
−

𝑖

󵄩󵄩󵄩󵄩󵄩

× (
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 + 2
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 +𝑀1
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +
𝑞𝑀1

Γ (1 + 𝑞)

× ∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1 󵄩󵄩󵄩󵄩𝑓 (𝑠, 𝑥 (𝑠) , (𝐻𝑥) (𝑠))

󵄩󵄩󵄩󵄩 𝑑𝑠

+ 𝜓0𝑀

𝑚

∑

𝑘=1

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑘
)
󵄩󵄩󵄩󵄩)

≤
󵄩󵄩󵄩󵄩󵄩
𝐵𝑊̃
−

𝑖

󵄩󵄩󵄩󵄩󵄩
× (

𝑞𝑀1

Γ (1 + 𝑞)
∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

𝜑1 (𝑠) 𝑑𝑠
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩

+ 2
󵄩󵄩󵄩󵄩𝑥1

󵄩󵄩󵄩󵄩 +𝑀1
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +
𝑞𝑀1 ‖𝑥‖

Γ (1 + 𝑞)

× ∫

𝑏

0

(𝑏 − 𝑠)
𝑞−1

𝜑2 (𝑠) 𝑑𝑠

+𝜓0𝑀

𝑚

∑

𝑘=1

󵄩󵄩󵄩󵄩𝑥 (𝑡
−

𝑘
)
󵄩󵄩󵄩󵄩)

≤ 𝑁1 + 𝑁2 ‖𝑥‖ ,

(73)

thus, from (65), we get, for any 𝑥 ∈ 𝐵𝑟 = {𝑥 ∈ PC[𝐼,X] :
‖𝑥‖PC ≤ 𝑟},

‖(𝑄𝑥) (𝑡)‖

≤ 𝑀1
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 +
𝑞𝑏
𝑞
𝑀1

Γ (1 + 𝑞)
∫

𝑏

0

(𝜑1 (𝑠) + 𝑁1) 𝑑𝑠

+ (
𝑞𝑏
𝑞
𝑀1

Γ (1 + 𝑞)
∫

𝑏

0

(𝜑2 (𝑠) + 𝑁2) 𝑑𝑠 + 𝑚𝑀𝜓0) 𝑟 = 𝛾2.

(74)

Hence, we deduce that ‖(𝑄𝑥)(𝑡)‖ ≤ 𝛾2; that is, 𝑄 maps
bounded sets to bounded sets in PC[𝐼,X]. Using the same
method used in Theorem 14, we can verify that 𝑄(𝐵𝑟) is
equicontinuous with 𝐵𝑟 on (𝑡𝑖, 𝑡𝑖+1] (𝑖 = 0, 1, 2, . . . , 𝑚), 𝑄
maps 𝐵𝑟 into a precompact set inX, and𝑄(𝐵𝑟)(𝑡) is relatively
compact inX. Steps 3 and 4 are omitted.

Step 5 (the set 𝐸 = {𝑥 ∈ PC[𝐼,X] : 𝑥 = 𝜆𝑄𝑥 for some 0 <

𝜆 < 1} is bounded). Let 𝑥 ∈ 𝐸, and similar to the results (74)
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we know that
‖𝑥 (𝑡)‖ ≤ 𝜆𝑀1

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩

+
𝜆𝑞𝑏
𝑞
𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝜑1 (𝑠) + 𝑁1) 𝑑𝑠

+ (
𝜆𝑞𝑏
𝑞
𝑀1

Γ (1 + 𝑞)
∫

𝑡

0

(𝜑2 (𝑠) + 𝑁2) 𝑑𝑠 + 𝜆𝑚𝑀𝜓0)

× ‖𝑥 (𝑡)‖ .

(75)

There exists a 𝜆 sufficiently small such that 𝜌2 = 1−𝜆𝑚𝑀𝜓0 >

0, and then

‖𝑥 (𝑡)‖ ≤
𝜆𝑀1

𝜌2

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 +

𝜆𝑞𝑏
𝑞
𝑀1

𝜌2Γ (1 + 𝑞)
∫

𝑏

0

(𝜑1 (𝑠) + 𝑁1) 𝑑𝑠

+
𝜆𝑞𝑏
𝑞
𝑀1

𝜌2Γ (1 + 𝑞)
∫

𝑡

0

(𝜑1 (𝑠) + 𝑁1) ‖𝑥 (𝑠)‖ 𝑑𝑠.

(76)

Let

𝑁4 =
𝜆𝑀1

𝜌2

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 +

𝜆𝑞𝑏
𝑞
𝑀1

𝜌2Γ (1 + 𝑞)
∫

𝑏

0

(𝜑1 (𝑠) + 𝑁1) 𝑑𝑠,

𝑓 (𝑠) =
𝜆𝑞𝑏
𝑞
𝑀1

𝜌2Γ (1 + 𝑞)
∫

𝑡

0

(𝜑2 (𝑠) + 𝑁2) 𝑑𝑠.

(77)

It is clear that 𝑓(𝑠) is nonnegative continuous function on
[0, +∞), and generalized Bellman inequality implies that

‖𝑥 (𝑡)‖ ≤ 𝑁4𝑒
∫
𝑡

0
𝑓(𝑠)𝑑𝑠

≤ 𝑁4𝑒
∫
𝑏

0
𝑓(𝑠)𝑑𝑠

= 𝐶1,
(78)

where 𝐶1 is a constant. Thus the set 𝐸 is bounded. Since 𝑄
is continuous and compact, thanks to Schaefer’s fixed point
Theorem, 𝑄 has a fixed point (36), and this fixed point is a
PC-mild solution of (6) which satisfies 𝑥(𝑏) = 𝑥1. Hence, the
system (6) is controllable on 𝐼.

5. An Example

Consider the following nonlinear partial integrodifferential
equation of the form

𝜕
2/3

𝜕𝑡2/3
𝑧 (𝑡, 𝑦) = ∫

1

0

(𝑦 − 𝑠) 𝑧 (𝑠, 𝑦) 𝑑𝑠

+ 𝑓 (𝑡, 𝑧 (𝑡, 𝑦) ,𝐻𝑧 (𝑡, 𝑦))

+ 𝜇 (𝑡, 𝑦) , 𝑡 ∈ 𝐽 = [0, 1] ,

𝑧 (𝑡, 0) = 𝑧 (𝑡, 1) = 0,

𝑧 (0, 𝑦) = 0, 0 < 𝑦 < 1,

Δ𝑧|𝑡=1/2 = 𝐼1 (𝑧(
1

2

−

, 𝑦)) ,

(79)

where 0 < 𝑞 < 1, 𝜇 : 𝐽 × (0, 1) → (0, 1) is continuous. Let us
take X = 𝐶([0, 1]). Consider the operator 𝐴 : 𝐷(𝐴) ⊂ X →

X defined by

(𝐴𝑤) (𝑡) = ∫

1

0

(𝑦 − 𝑠)𝑤 (𝑠) 𝑑𝑠. (80)

It is easy to get

‖𝐴𝑤‖ = ‖𝑤‖∫

1

0

󵄨󵄨󵄨󵄨𝑦 − 𝑠
󵄨󵄨󵄨󵄨 𝑑𝑠 = (

1

2
− 𝑦 (1 − 𝑦)) ‖𝑤‖ ≤

1

2
‖𝑤‖ ;

(81)

clearly 𝐴 is the infinitesimal generator of a uniformly con-
tinuous semigroup (𝑇(𝑡))𝑡≥0 on X. Put 𝑥(𝑡) = 𝑧(𝑡, ⋅) and
𝑢(𝑡) = 𝜇(𝑡, ⋅), and take

𝑓 (𝑡, 𝑥,𝐻𝑥) = 𝑒
𝑡
+ 𝑎 (𝑡) (

‖𝑥‖

1 + ‖𝑥‖
)

+ ∫

𝑡

0

𝑘 (𝑡, 𝑠) (
‖𝑥‖

1 + ‖𝑥‖
) 𝑑𝑠,

𝐼1 (𝑥) = ‖𝑥‖ ,

(82)

where 𝑎(𝑡) ∈ 𝐶[0, 1], 𝑘(𝑡, 𝑠) ∈ 𝐶([0, 1] × [0, 1]). Then
clearly, 𝑓 : [0, 1] × R × R → R and 𝐼1 : R → R

are continuous functions. 𝑓, 𝐼1, and ℎ satisfy (𝐻5)–(𝐻
󸀠

8
),

respectively. Equations (79) are an abstract formulation of
(6). For 𝑦 ∈ (0, 1), we define

𝑊1𝑢 = ∫

1/2

0

(
1

2
− 𝑠)

−1/3

S(
1

2
− 𝑠)𝐵𝑢 (𝑠) 𝑑𝑠,

𝑊2𝑢 = ∫

1

0

(1 − 𝑠)
−1/3

S (1 − 𝑠) 𝐵𝑢 (𝑠) 𝑑𝑠,

(83)

where

T (𝑡) 𝑤 (𝑠) = ∫

∞

0

𝜉2/3 (𝜃) 𝑤 (𝑡
2/3
𝜃 + 𝑠) 𝑑𝜃,

S (𝑡) 𝑤 (𝑠) =
2

3
∫

∞

0

𝜃𝜉2/3 (𝜃) 𝑤 (𝑡
2/3
𝜃 + 𝑠) 𝑑𝜃,

(84)

and for 𝜃 ∈ (0,∞),

𝜉2/3 (𝜃) =
3

2
𝜃
−5/2

𝜛2/3 (𝜃
−3/2

) ,

𝜛2/3 (𝜃) =
1

𝜋

∞

∑

𝑛=1

(−1)
𝑛−1

𝜃
−((2𝑛+3)/3) Γ ((2𝑛 + 3) /3)

𝑛!
sin(2𝑛𝜋

3
) .

(85)

Assume that the linear operator𝑊𝑖 from 𝐿
2
[(𝑡𝑖−1, 𝑡𝑖], 𝑈] (𝑖 =

1, 2) into X induces an invertible operator 𝑊̃−
𝑖
defined on

𝐿
2
[(𝑡𝑖−1, 𝑡𝑖], 𝑈]/Ker𝑊𝑖 and there exists a positive constant

𝐾 > 0 such that ‖𝐵𝑊̃−
𝑖
‖ ≤ 𝐾. Moreover, (𝐻9) is satisfied.

All conditions of Theorem 16 are now fulfilled, so we deduce
that (79) is controllable on 𝐼. On the other hand, we have

󵄩󵄩󵄩󵄩𝑓 (𝑡, 𝑥,𝐻𝑥) − 𝑓 (𝑡, 𝑦,𝐻𝑦)
󵄩󵄩󵄩󵄩

≤ 𝑎 (𝑡)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 + ∫

𝑡

0

𝑘 (𝑡, 𝑠)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 𝑑𝑠,

𝑘 (𝑡, 𝑠) ‖𝑥‖ − 𝑘 (𝑡, 𝑠)
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑘0 (‖𝑥‖ −

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩) ,

𝑘0 = max {𝑘 (𝑡, 𝑠) | (𝑡, 𝑠) ∈ 𝐼 × 𝐼} ,
󵄩󵄩󵄩󵄩𝐼1 (𝑥) − 𝐼1 (𝑦)

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(86)



12 Abstract and Applied Analysis

Further, other conditions (𝐻1)–(𝐻3) are satisfied and it is
possible to choose 𝑎(𝑡), 𝑘(𝑡, 𝑠) in such a way that condition
(𝐻
󸀠

4
) is satisfied. Hence, by Theorem 15, the system (79) is

controllable on 𝐼.
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