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Cognitive radar is an intelligent system, and it can adaptively transmit waveforms to the complex environment. The intelligent
radar system should be able to provide different trade-offs among a variety of performance objectives. In this paper, we investigate
the mutual information (MI) in signal-dependent interference and channel noise. We propose a waveform design method which
can efficiently synthesize waveforms and provide a trade-off between estimation performance and detection performance. After
obtaining a local optimal waveform, we apply the technique of generating a constant modulus signal with the given Fourier
transform magnitude to the waveform. Finally we obtain a waveform that has constant modulus property.

1. Introduction

Cognitive radar (CR) is a new concept of radar system pro-
posed by Haykin in 2006 [1, 2]. In CR, the radar continuously
learns about the environment through experience gained
from interactions of the receiver with the environment, the
transmitter adjusts its illumination of the environment in an
intelligent manner and the whole radar system constitutes a
closed-loop dynamic system. Therefore, adaptive waveform
design is important to the performance of radar system.
Recently, advances in flexible waveform generators and high-
speed signal processing hardware have made it possible for
transmitted waveforms to vary with the complex environ-
ment.

Many researches focused on waveform design for differ-
ent tasks, for example, target detection, estimation, tracking,
and recognition. An early attempt to the problem of matched
waveform design for detecting a known target in additive
Gaussian noise was addressed via the SNR criterion in [3].
From the frequency domain approach, the SNR-based opti-
mal matched waveform for a known target in signal-depend-
ent interference was derived in [4]. Information theory is
also an important tool for waveform design. Bell [5] firstly
proposed the method of maximizing the mutual information
between the received signal and target impulse response to
optimize the waveform, and many articles also used mutual

information as the optimal criterion for waveform design [6,
7]. Because a more flexible design framework is required, CR
should be able to provide different trade-offs among a variety
of performance objectives. Haykin et al. [8] proposed a wave-
form design method that efficiently synthesizes waveforms
which provide a trade-off between estimation performance
for aGaussian ensemble of targets and detection performance
for a specific target in channel-noise-only environment.

In this paper, we will consider a situation when the sig-
nal-dependent interference is not negligible, and provide an
optimal trade-off between the detection and estimation cri-
teria. Thus we seek to maximize the mutual information be-
tween a random target impulse response and the received
radar waveform, subjected to a lower bound on the SINR for
the target and energy constraints. We assume that the target
hypotheses are statistically characterized by known power
spectral density (PSD) as in [9]. Therefore, the actual target
realization is an unknown sample function generated from
the PSD of the true target class.

One consideration in forming practical radar waveforms
is the constant modulus constraint, which permits efficient
use of the front-end power amplifier [10]. With proper
manipulation of the waveforms in the temporal domain, it
should be possible to design constant modulus waveforms
that approximate MI-based waveform spectrum with some
loss of optimality. Pillai et al. give us a technique of generating
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a constant modulus signal with the given Fourier transform
magnitude in [11]; thus we can use this method to get a
waveform that has constant modulus property.

This paper is organized in the followingmanner. Section 2
describes the target model for waveform design in signal-
dependent interference. Section 3 explains how to gener-
ate the constant modulus waveform from a given Fourier
transform magnitude. Section 4 shows the derivation of the
mutual information between the random target impulse
response and the received radar waveform in signal-
dependent interference and waveform design technique for
target detection and estimation in signal-dependent inter-
ference. Section 5 shows some simulation results. The whole
paper is summarized in Section 6.

2. Signal Model

The block diagram in Figure 1 represents the signal model
of a target ensemble in ground clutter being considered. Let
𝑥(𝑡) be a finite-energy waveform with duration 𝑇. Let 𝑔(𝑡)
be a zero-mean extended target with energy spectral variance
𝜎
2

𝐺
(𝑓). Let 𝑇

𝑔
be the time duration where most of the target

impulse’s energy resides. It is necessary to have 𝑇
𝑔

> 𝑇 to
capture the target impulse response’s energy. The clutter 𝑐(𝑡)
is a zero-mean complexGaussian randomprocesswith power
spectral density (PSD) 𝜎

2

𝐶
(𝑓), and 𝑛(𝑡) is the zero-mean

receiver noise process with one-sided PSD𝑃
𝑛
(𝑓). In addition,

𝑛(𝑡) is assumed to be statistically independent of the transmit-
ted waveform 𝑥(𝑡), the target impulse response 𝑔(𝑡), and the
clutter 𝑐(𝑡).

The waveform received at the receiver is filtered by the
ideal lowpass filter 𝐵(𝑓), passing only frequencies in the
band 𝜔. This is just a statement of the fact that we assume
that the transmitted signal has no significant energy outside
the frequency interval 𝑤 = [−𝑊,𝑊]. Since 𝑧(𝑡) and 𝑑(𝑡) are
the response of a linear time-invariant system to the trans-
mitted signal, they do not have significant energy outside the
frequency interval 𝑤 = [−𝑊,𝑊]. Hence we will not consider
frequencies outside this interval.

Let 𝑦(𝑡) be the received signal given by

𝑦 (𝑡) = 𝑧 (𝑡) + 𝑑 (𝑡) + 𝑛 (𝑡) . (1)

𝑧(𝑡) and 𝑑(𝑡) are defined by

𝑧 (𝑡) = 𝑥 (𝑡) ∗ 𝑔 (𝑡) ,

𝑑 (𝑡) = 𝑥 (𝑡) ∗ 𝑐 (𝑡) ,

(2)

where ∗ denotes the convolution operator.

3. Constant Envelope Signals with Given
Fourier Transform Magnitude

Pillai et al. give us a technique of generating a constant mod-
ulus signal with the given Fourier transform magnitude in
[11]. It is summarized as follows.

Let 𝐶
𝑀

denote the set of functions {𝑔(𝑡)} that have the
prescribed Fourier transform magnitude 𝑀(𝜔) over a pre-
scribed frequency set Ω. The operator 𝑃

𝑀
will assign every

g(t)

c(t)

n(t)

x(t) y(t)z(t)

d(t)

Ideal
LPF B(f)

Figure 1: Signal model of a target ensemble in signal-dependent
interference.

arbitrary function 𝑥(𝑡) a “nearest neighbor” 𝑃
𝑀
𝑥(𝑡) that be-

longs to 𝐶
𝑀

such that there exists no other element 𝑔 ∈ 𝐶
𝑀

for which ‖𝑥 − 𝑔‖ < ‖𝑥 − 𝑃
𝑀
𝑥‖ is satisfied.

Given an arbitrary function 𝑥(𝑡), its corresponding Fou-
rier transform is𝑋(𝜔) = |𝑋(𝜔)|𝑒

𝑗Ω(𝜔) and themagnitude pro-
jection of 𝑥(𝑡) is defined as

𝑃
𝑀
𝑥 (𝑡) ←→ {

𝑀(𝜔) 𝑒
𝑗Ω(𝜔)

, 𝜔 ∈ Ω

𝑋 (𝜔) , 𝜔 ∈ Ω
󸀠
.

(3)

For a constant envelope signal 𝑥(𝑡), it can be expressed as

𝑥 (𝑡) = 𝐴𝑒
𝑗𝜃(𝑡)

, (4)

where 𝐴 is a suitable positive constant that can be used to
maintain a prescribed energy level for 𝑥(𝑡).

Interestingly, constant envelope signals also share prop-
erties similar to the Fourier transform magnitude situation.
Notice that if 𝐶

𝐴
denotes the set of functions {𝑔(𝑡)} which

have constant envelope level 𝐴, the operator 𝑃
𝐴
will assign

every arbitrary function 𝑥(𝑡) a nearest neighbor 𝑃
𝐴
𝑥(𝑡) that

belongs to 𝐶
𝐴
such that no other element 𝑔 ∈ 𝐶

𝐴
satisfies

‖𝑥 − 𝑔‖ < ‖𝑥 − 𝑃
𝐴
𝑥‖.

Given an arbitrary signal 𝑥(𝑡) = 𝑎(𝑡)𝑒
𝑗𝜃(𝑡), the projection

procedure is

𝑃
𝐴
𝑥 (𝑡) = {

𝐴𝑒
𝑗𝜃(𝑡)

, 𝑡 ∈ 𝑇

𝑥 (𝑡) , otherwise.
(5)

The magnitude and amplitude projection are combined
according to

𝑥
𝑘+1

= 𝑃
𝐴
𝑃
𝑀
𝑥
𝑘
, (6)

where 𝑥
𝑘
is the 𝑘th iterative function. After a number of mag-

nitude and amplitude projections, the function 𝑥
𝑘
satisfies

the constant modulus property exactly while approximately
maintaining the prescribed Fourier transform magnitude.

4. Waveform Design Based on Constant
Modulus Constraint

We note that 𝑥(𝑡) is a deterministic waveform. It is explicitly
denoted in 𝐼(𝑦(𝑡); 𝑔(𝑡) | 𝑥(𝑡)) because the mutual informa-
tion is a function of 𝑥(𝑡), and we are interested in finding
those functions 𝑥(𝑡) that maximize 𝐼(𝑦(𝑡); 𝑔(𝑡) | 𝑥(𝑡)) under
constrains on their energy and bandwidth.
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Bell proposed the derivation of the mutual information
in the channel-noise-only case and derived the information-
based waveform solution. Here we provide the derivation of
the mutual information in the presence of signal-dependent
clutter.

Here we have a channel (as shown in Figure 2) with input
𝑍 (a zero-mean Gaussian random variable with variance 𝜎2

𝑍
),

clutter 𝐷 (a zero-mean Gaussian random variable with var-
iance 𝜎

2

𝐷
), and additive zero-mean Gaussian noise 𝑁 with

variance 𝜎2
𝑁
. The mutual information 𝐼(𝑌; 𝑍) between 𝑌 and

𝑍 is

𝐼 (𝑌; 𝑍) = 𝐻 (𝑌) − 𝐻 (𝑌 | 𝑍) . (7)

The differential entropies𝐻(𝑌) and𝐻(𝑌 | 𝑍) are

𝐻(𝑌) =

1

2

ln 2𝜋𝜎
2

𝑌
=

1

2

ln 2𝜋 (𝜎
2

𝑍
+ 𝜎
2

𝑁
+ 𝜎
2

𝐷
) ,

𝐻 (𝑌 | 𝑍) =

1

2

ln 2𝜋 (𝜎
2

𝑁
+ 𝜎
2

𝐷
) .

(8)

Thus the mutual information is given by the expression

𝐼 (𝑌; 𝑍) = 𝐻 (𝑌) − 𝐻 (𝑌 | 𝑍) =

1

2

ln(1 +

𝜎
2

𝑍

𝜎
2

𝑁
+ 𝜎
2

𝐷

) . (9)

Consider again the signal model of Figure 1. Assume that
𝑧̂
𝑘
(𝑡), 𝑦
𝑘
(𝑡), ̂

𝑑
𝑘
(𝑡), and 𝑛

𝑘
(𝑡) are the sample signal in the fre-

quency band 𝐹
𝑘
= [𝑓
𝑘
, 𝑓
𝑘
+Δ𝑓] and the sampling rate is 2Δ𝑓.

The samples 𝑧̂
𝑘
(𝑡) are independent, identically distributed

random variables with zero mean and variance 𝜎2
𝑍
. Note that

the total energy of 𝑧̂
𝑘
(𝑡) is

𝜀
𝑍
(𝐹
𝑘
) = 2Δ𝑓

󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓
𝑘
)
󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐺
(𝑓
𝑘
) . (10)

The factor 2 in the previous formula is due to the fact that
𝑋(𝑓
𝑘
) is the two-sided spectrumof 𝑥(𝑡) and that we are carry-

ing out our calculations using only positive frequencies. In the
time interval 𝑇

𝑦
, the total samples statistically independent

are 2Δ𝑓𝑇
𝑦
. So the variance of each sample is

𝜎
2

𝑍
=

𝜀
𝑍
(𝐹
𝑘
)

2Δ𝑓𝑇
𝑦

=

2Δ𝑓
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓
𝑘
)
󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐺
(𝑓
𝑘
)

2Δ𝑓𝑇
𝑦

=

󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓
𝑘
)
󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐺
(𝑓
𝑘
)

𝑇
𝑦

.

(11)

The clutter process has the total energy on the interval 𝑇
𝑦

given by

𝜀
𝐷
(𝐹
𝑘
) = 2Δ𝑓

󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓
𝑘
)
󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝑐
(𝑓
𝑘
) 𝑇
𝑦
. (12)

The variance of each sample is

𝜎
2

𝐷
=

𝜀
𝐷
(𝐹
𝑘
)

2Δ𝑓𝑇
𝑦

=

2Δ𝑓
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓
𝑘
)
󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐶
(𝑓
𝑘
) 𝑇
𝑦

2Δ𝑓𝑇
𝑦

=
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓
𝑘
)
󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐶
(𝑓
𝑘
) .

(13)

Y
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Figure 2: Channel model in the presence of clutter and additive
Gaussian noise.

The noise process has the total energy on the interval 𝑇
𝑦

given by

𝜀
𝑁
(𝐹
𝑘
) = Δ𝑓𝑃

𝑛
(𝑓) 𝑇
𝑦
. (14)

Hence, the variance 𝜎2
𝑁
of each sample is

𝜎
2

𝑁
=

𝜀
𝑁
(𝐹
𝑘
)

2Δ𝑓𝑇
𝑦

=

Δ𝑓𝑃
𝑛
(𝑓) 𝑇
𝑦

2Δ𝑓𝑇
𝑦

=

𝑃
𝑛
(𝑓)

2

. (15)

Themutual information between each sample𝑍
𝑚
of 𝑧̂
𝑘
(𝑡)

and the corresponding sample 𝑌
𝑚
of 𝑦
𝑘
(𝑡) is

𝐼 (𝑌
𝑚
; 𝑍
𝑚
) =

1

2

ln[

[

1 +

2
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓
𝑘
)
󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐺
(𝑓
𝑘
)

𝑇
𝑦
{𝑃
𝑛
(𝑓
𝑘
) + 2

󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓
𝑘
)
󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐶
(𝑓
𝑘
)}

]

]

.

(16)

Now there are 2Δ𝑓𝑇
𝑦
statistically independent sample

values for both 𝑧̂
𝑘
(𝑡) and 𝑦

𝑘
(𝑡) in the observation interval 𝑇

𝑦
.

Thus,

𝐼 (𝑦
𝑘
(𝑡) ; 𝑧̂
𝑘
(𝑡) | 𝑥 (𝑡))

= 2Δ𝑓𝑇
𝑦
𝐼 (𝑌
𝑚
; 𝑍
𝑚
)

= Δ𝑓𝑇
𝑦
ln[

[

1 +

2
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓
𝑘
)
󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐺
(𝑓
𝑘
)

𝑇
𝑦
{𝑃
𝑛
(𝑓
𝑘
) + 2

󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓
𝑘
)
󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐶
(𝑓
𝑘
)}

]

]

.

(17)

If we now consider the frequency interval 𝜔 = [0,𝑊],
partition it into a large number of disjoint intervals of band-
width Δ𝑓; then let the number of intervals increase as Δ𝑓 →

0, in the limit we obtain an integral for the mutual infor-
mation 𝐼(𝑦(𝑡); 𝑧(𝑡) | 𝑥(𝑡)), where we assume the 𝑥(𝑡), 𝑦(𝑡),
and 𝑧(𝑡) are confined to the frequency interval 𝜔. Hence the
mutual information 𝐼(𝑦(𝑡); 𝑧(𝑡) | 𝑥(𝑡)) is

𝐼 (𝑦 (𝑡) ; 𝑧 (𝑡) | 𝑥 (𝑡))

= 𝑇
𝑦
∫

𝑊

ln(1 +

2
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐺
(𝑓)

𝑇
𝑦
{𝑃
𝑛
(𝑓) + 2

󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐶
(𝑓)}

)𝑑𝑓,

(18)
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as

𝐼 (𝑦 (𝑡) ; 𝑔 (𝑡) | 𝑥 (𝑡)) = 𝐼 (𝑦 (𝑡) ; 𝑧 (𝑡) | 𝑥 (𝑡)) . (19)

Thus the mutual information between the random target
impulse response and the received radar waveform is

𝐼 (𝑦 (𝑡) ; 𝑔 (𝑡) | 𝑥 (𝑡))

= 𝑇
𝑦
∫

𝑊

ln(1 +

2
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐺
(𝑓)

𝑇
𝑦
{𝑃
𝑛
(𝑓) + 2

󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐶
(𝑓)}

)𝑑𝑓.

(20)

For the MI waveform derivation, we treat the receiver
filter as an ideal lowpass filter with approximate time duration
𝑇
𝐵
≤ 𝑇 and 𝑇

𝐵
≤ 𝑇
𝑔
. Therefore 𝑇

𝐵
can be effectively ignored,

and the receive filter simply becomes an explicit statement
that the radar system is band limited. Therefore, 𝑇

𝑦
is

𝑇
𝑦
= 𝑇 + 𝑇

𝑔
. (21)

The mutual information between the random target im-
pulse response and the received radar waveform is shown in
formula (20).The output SINR is defined to be the ratio of the
average power of the signal component to the average power
of the noise and interference component [12]. Thus, SINR is
expressed as

SINR = ∫

𝑊

2
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐺
(𝑓)

𝑃
𝑛
(𝑓) + 2

󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐶
(𝑓)

𝑑𝑓. (22)

We can assume a lower bound SINR
0
on the SINR for the

target

∫

𝑊

2
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐺
(𝑓)

𝑃
𝑛
(𝑓) + 2

󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐶
(𝑓)

𝑑𝑓 ≥ SINR
0
. (23)

The energy constraint in the band𝜔 = [0,𝑊] is expressed
as

∫

𝑊

󵄨
󵄨
󵄨
󵄨
𝑋(𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑓 ≤ 𝐸
𝑥
. (24)

With these constraints in mind, we can now formulate
the arbitrary waveform design problem as the following con-
strained optimization problem:

max 𝑇
𝑦
∫

𝑊

ln(1 +

2
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐺
(𝑓)

𝑇
𝑦
{2

󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐶
(𝑓) + 𝑃

𝑛
(𝑓)}

)𝑑𝑓

s.t. ∫

𝑊

2
󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐺
(𝑓)

𝑃
𝑛
(𝑓) + 2

󵄨
󵄨
󵄨
󵄨
𝑋 (𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝜎
2

𝐶
(𝑓)

𝑑𝑓 ≥ SINR
0

∫

𝑊

󵄨
󵄨
󵄨
󵄨
𝑋(𝑓)

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑓 − 𝐸
𝑥
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The previous constrained problem can be formulated as
a convex optimization problem by introducing the autocor-
relation sequence of the transmitted signal. Then an interior-
point method can be used to carry out the optimization task.
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Figure 3: Closed-loop radar system.

Although the solution to this formulation is local optimal,
this process is complicated. We need to solve the nonlinear
constrained maximization problem.

After applying the technique of generating a constant
modulus signal with the given Fourier transform magnitude
to the above obtained waveform, we can get a waveform
under multiple constraints.

Figure 3 represents the closed-loop radar system in sig-
nal-dependent interference proposed for target detection and
estimation. In this figure, the CR signal processing involved is
best described by a block labeled “COGNITIVERADAR”. CR
is an intelligent system. Through sensing the environment,
CR transmits the waveform suited to the working conditions.
The radar returns and environment factors help to construct
the new waveform that achieves a trade-off between the
mutual information and the SINR for the target, that is,
an optimal trade-off between the detection and estimation
criteria. Then it reconstructs a signal with constant envelope
property in the time domain according to its Fourier trans-
form magnitude. The signal satisfies the constant modulus
property exactly while approximately maintaining the pre-
scribed Fourier transform magnitude. Then the waveform is
transmitted to the environment. It forms a feed-back loop,
and the cycle goes on and on.

5. Simulation

We consider an arbitrary target spectrum and clutter spec-
trum shown in Figure 4. The total energy is 1. The noise var-
iance is 0.1. The lower bound SINR

0
is −8 dB. The number of

sample points is 128. Sampling frequency is 2. Modulus value
is 0.25.

Figure 5 is energy spectrum of unconstrained waveform.
It shows that the optimized radar waveform only selects
the dominant frequency components of the target spectrum.
However, it does not distribute energy amongdifferentmodes
of the target. Investigating the reason, there are approximately
two: one is the spectrum amplitudes scale in order to com-
pensate for the clutter spectrum, and the other is to balance
the detection performance. Hence it provides an optimal
trade-off between the detection and estimation criteria.

Figure 6 is energy spectrum of constant modulus con-
strained waveform. It shows that the constant modulus
constraint spreads the waveform energy into additional fre-
quency bands, but the four peak amplitudes are maintained.
The energy spectrum of constant modulus constrained wave-
form in Figure 6 is similar to the energy spectrum of uncon-
strained waveform in Figure 5. Thus it guarantees the perfor-
mance of the nonconstant modulus optimized waveform.
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Figure 5: Energy spectrum of unconstrained waveform.
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form.
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Figure 7: Complex constellation of constant modulus constrained
waveform.

Figure 7 shows the time domain representation of the
signal in the complex domain with real and imaginary parts
of each instant plotted as 𝑥-axis and 𝑦-axis. The figure shows
that after applying the constant modulus constraint, the tem-
poral waveformhas constant amplitude.Thus the transmitted
waveform has no longer high peak amplitude in time domain
and can effectively through DAC and PA of transmitter.

6. Conclusions

In this paper, we investigate the mutual information between
the target impulse response and received radar waveform in
signal-dependent interference and channel noise. Then we
discuss the problem of radar waveformdesign undermultiple
constraints. Here we consider a situation when the signal-
dependent interference is not negligible. An optimal trade-
off between the detection and estimation criteria is provided.
After applying the technique of generating a constant mod-
ulus signal with the given Fourier transform magnitude to
the optimal waveform, a waveform that has constant mod-
ulus property is obtained. Simulation results have a signif-
icant meaning in the waveform design in cognitive radar.
They show that the energy spectrum of constant modulus
constrained waveform is similar to the energy spectrum of
unconstrainedwaveform.Hence the performance of the non-
constant modulus optimized waveform is guaranteed. The
waveform can also be applied to a CR performing target iden-
tification.
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