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We prove the existence and uniqueness of a positive continuous solution to the following singular semilinear fractional Dirichlet
problem (−Δ)𝛼/2𝑢 = 𝑎

1
(𝑥)𝑢𝜎1 + 𝑎

2
(𝑥)𝑢𝜎2 , in 𝐷 lim

𝑥→𝑧∈𝜕𝐷
(𝛿(𝑥))

1−(𝛼/2)

𝑢(𝑥) = 0, where 0 < 𝛼 < 2, 𝜎
1
, 𝜎

2
∈ (−1, 1), 𝐷 is a bounded

𝐶
1,1-domain inR𝑛

, 𝑛 ≥ 2, and 𝛿(𝑥) denotes the Euclidian distance from 𝑥 to the boundary of𝐷.The nonnegative weight functions
𝑎
1
, 𝑎

2
are required to satisfy certain hypotheses related to theKaramata class.We also investigate the global behavior of such solution.

1. Introduction

In the last two decades, several studies have been performed
for the so-called fractional Laplacian, (−Δ)𝛼/2, 0 < 𝛼 < 2,
which can be defined by the integral representation

(−Δ)
𝛼/2

𝑢 (𝑥) = 𝑐
𝑛,𝛼
lim
𝜀↘0

∫
(|𝑥−𝑦|>𝜀)

𝑢 (𝑥) − 𝑢 (𝑦)
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨
𝑛+𝛼

𝑑𝑦, (1)

where 𝑐
𝑛,𝛼

= (𝛼2𝛼−1/𝜋𝑛/2)(Γ((𝑛 + 𝛼)/2)/Γ(1 − (𝛼/2))) is
a normalization constant; see, for instance, [1, 2]. From a
probabilistic point of view, the fractional Laplacian appears
as the infinitesimal generator of the stable Lévy process
[3, 4]; see also [5]. The fractional powers of the Laplacian
arise in a numerous variety of equations in mathematical
physics and related fields (see, for instance, [6–11] and the
references therein). Motivation from mechanics appears in
the Signorini problem (cf. [12, 13]). And there are applications
in fluid mechanics, (cf. [14]). The systematic study of the
corresponding PDE models is more recent and many of the

results have arisen in the last decade. The linear or quas-
ilinear elliptic theory has been actively studied recently in the
works of Caffarelli and collaborators [15, 16], Kassmann [17],
Silvestre [18], andmany others.The standard linear evolution
equation involving fractional diffusion is

𝜕𝑢

𝜕𝑡
+ (−Δ)

𝛼/2

𝑢 = 0. (2)

This is a model of the so-called anomalous diffusion, a much
studied topic in physics, probability, and finance (see [19–
23] and their references). For more applications, we refer the
reader to the survey papers [24, 25].

Throughout this paper, we consider a bounded 𝐶1,1-
domain 𝐷 in R𝑛, 𝑛 ≥ 2, and we denote by 𝛿(𝑥) the Euclidian
distance from 𝑥 to the boundary of 𝐷. For two nonnegative
functions 𝑓 and 𝑔 defined on a set 𝑆, the notation 𝑓(𝑥) ≈
𝑔(𝑥), 𝑥 ∈ 𝑆, means that there exists 𝑐 > 0 such that
(1/𝑐)𝑓(𝑥) ≤ 𝑔(𝑥) ≤ 𝑐𝑓(𝑥), for all 𝑥 ∈ 𝑆.



2 Abstract and Applied Analysis

Recently, in [26], the authors considered the following
problem:

{{

{{

{

(−Δ)
𝛼/2
𝑢 = 𝜑 (⋅, 𝑢) in𝐷(in the sense of distributions),

𝑢 > 0 in 𝐷,
lim
𝑥→𝑧∈𝜕𝐷

(𝛿 (𝑥))
1−(𝛼/2)

𝑢 (𝑥) = 0,

(3)

where 0 < 𝛼 < 2 and 𝜑 is a positive measurable function in
𝐷 × (0,∞) satisfying the following:
(A

1
) themap 𝑡 → 𝜑(𝑥, 𝑡) is continuous and nonincreasing
in (0,∞), for 𝑥 ∈ 𝐷;

(A
2
) for each 𝑐 > 0, the function 𝑥 →

(𝛿(𝑥))
1−(𝛼/2)

𝜑(𝑥, 𝑐(𝛿(𝑥))
(𝛼/2)−1

) is in 𝐾𝛼(𝐷) (see
Definition 1 below).

They have proved that problem (3) has a positive contin-
uous solution 𝑢 in𝐷 satisfying, for each 𝑥 ∈ 𝐷,

𝑢 (𝑥) = ∫
𝐷

𝐺
𝛼

𝐷
(𝑥, 𝑦) 𝜑 (𝑦, 𝑢 (𝑦)) 𝑑𝑦, (4)

where 𝐺𝛼

𝐷
(𝑥, 𝑦) denotes the Green function of the fractional

Laplacian (−Δ)𝛼/2 in 𝐷. However they have not investigated
the asymptotic behavior of such solution.

As a typical example of function 𝜑 satisfying (A
1
) and

(A
2
), we quote 𝜑(𝑥, 𝑢) = 𝑎(𝑥)𝑢𝜎, where 𝜎 ≤ 0 and 𝑎 is a

positive measurable function in𝐷 such that the function

𝑥 󳨀→ (𝛿 (𝑥))
((𝛼/2)−1)(𝜎−1)

𝑎 (𝑥) (5)

belongs to the Kato class 𝐾𝛼(𝐷) defined as follows.

Definition 1 (see [26]). A Borel measurable function 𝑞 in 𝐷
belongs to the Kato class 𝐾𝛼(𝐷) if

lim
𝑟→0

(sup
𝑥∈𝐷

∫
(|𝑥−𝑦|≤𝑟)∩𝐷

(
𝛿 (𝑦)

𝛿 (𝑥)
)

𝛼/2

𝐺
𝛼

𝐷
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨𝑞 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦) = 0.

(6)

It has been proved in [26] that the function

𝑥 󳨀→ (𝛿 (𝑥))
−𝜆 belongs to 𝐾𝛼

(𝐷) iff 𝜆 < 𝛼. (7)

For more examples of functions belonging to𝐾𝛼(𝐷), we refer
to [26]. Note that for the classical case (i.e., 𝛼 = 2) the class
𝐾

2

(𝐷) was introduced and studied in [27].
On the other hand, Chemmam et al. considered in [28]

the following semilinear fractional Dirichlet problem:

{{

{{

{

(−Δ)
𝛼/2
𝑢 = 𝑎 (𝑥) 𝑢

𝜎 in𝐷(in the sense of distributions),
𝑢 > 0 in 𝐷,
lim
𝑥→𝑧∈𝜕𝐷

(𝛿 (𝑥))
1−(𝛼/2)

𝑢 (𝑥) = 0,

(8)

where 0 < 𝛼 < 2, 𝜎 < 1, and 𝑎 satisfies the following
hypothesis:
(H

0
) 𝑎 ∈ 𝐶

𝛾

loc(𝐷), 0 < 𝛾 < 1, satisfying𝐷,

𝑎 (𝑥) ≈ (𝛿 (𝑥))
−𝜆

𝐿 (𝛿 (𝑥)) , (9)

where 𝜆 < (𝛼/2)(1+𝜎)+1−𝜎 and 𝐿 belongs to the Karamata
classK defined as follows.

Definition 2. The class K is the set of all the Karamata
functions 𝐿 defined on (0, 𝜂] by

𝐿 (𝑡) := 𝑐 exp(∫
𝜂

𝑡

𝑧 (𝑠)

𝑠
𝑑𝑠) , (10)

where 𝜂 > diam(𝐷), 𝑐 > 0, and 𝑧 ∈ 𝐶([0, 𝜂]) such that 𝑧(0) =
0.

As a typical example of a function belonging to the class
K(see [29–31]), we quote

𝐿 (𝑡) =

𝑚

∏
𝑘=1

(log
𝑘
(
𝜔

𝑡
))

−𝜉
𝑘

, (11)

where 𝜉
𝑘
are real numbers, log

𝑘
𝑥 = log ∘ log ∘ ⋅ ⋅ ⋅ log𝑥

(𝑘 times), and 𝜔 is a sufficiently large positive real number
such that 𝐿 is defined and positive on (0, 𝜂].

Using a fixed-point argument, the authors have proved in
[28] the existence and uniqueness of a positive continuous
solution 𝑢 for (8) satisfying, for 𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ (𝛿 (𝑥))
min(𝛼/2,(𝛼−𝜆)/(1−𝜎))

Ψ
𝐿,𝜆,𝜎

(𝛿 (𝑥)) , (12)

where the function Ψ
𝐿,𝜆,𝜎

is defined on (0, 𝜂) by

Ψ
𝐿,𝜆,𝜎

(𝑡) :=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

(𝐿 (𝑡))
1/(1−𝜎)

,

𝛼

2
(1 + 𝜎) < 𝜆

<
𝛼

2
(1 + 𝜎) + 1 − 𝜎,

(∫
𝜂

𝑡

𝐿 (𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎)

,
if 𝜆 = 𝛼

2
(1 + 𝜎) ,

1, if 𝜆 < 𝛼
2
(1 + 𝜎) .

(13)

In particular, they have extended the results of [32, 33].
In the present paper, we aim at studying the follow-

ing fractional nonlinear problem involving both singular
and sublinear nonlinearities with the reformulated Dirichlet
boundary condition:

{{{{{{{{

{{{{{{{{

{

(−Δ)
𝛼/2

𝑢 = 𝑎
1
(𝑥) 𝑢

𝜎1 + 𝑎
2
(𝑥) 𝑢

𝜎2

in 𝐷(in the sense of
distributions),

𝑢 > 0
in 𝐷,

lim
𝑥→𝑧∈𝜕𝐷

(𝛿 (𝑥))
1−(𝛼/2)

𝑢 (𝑥) = 0,

(14)

where 0 < 𝛼 < 2 and 𝜎
1
, 𝜎

2
∈ (−1, 1). We will address the

question of existence, uniqueness, and global behavior of a
positive continuous solution to problem (14).
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In the elliptic case (i.e., 𝛼 = 2), problems related to (14)
have been studied by several authors (see, e.g., [34–39] and
references therein). Using the subsupersolution method, the
authors in [36] have established the existence and uniqueness
of a positive continuous solution to (14) for 𝛼 = 2, 𝜎

1
, 𝜎

2
<

1, where the functions 𝑎
1
, 𝑎

2
are required to satisfy some

adequate assumptions related to the Karamata classK.
Here, our goal is to study problem (14) for 0 < 𝛼 < 2. To

this end, we assume that the potential functions 𝑎
1
, 𝑎

2
satisfy

the following hypothesis.
(H) for 𝑖 ∈ {1, 2}, 𝑎

𝑖
∈ 𝐶

𝛾

loc(𝐷), 0 < 𝛾 < 1, and satisfies,
for 𝑥 ∈ 𝐷,

𝑎
𝑖
(𝑥) ≈ (𝛿 (𝑥))

−𝜆
𝑖𝐿

𝑖
(𝛿 (𝑥)) , (15)

where 𝜆
𝑖
< (𝛼/2)(1+𝜎

𝑖
)+1−𝜎

𝑖
and 𝐿

𝑖
∈K defined on (0, 𝜂]

with 𝜂 > diam(𝐷).
As it turns out, estimates (12) depend closely on

min(𝛼/2, (𝛼−𝜆)/(1−𝜎)). Also, as it will be seen, the numbers

𝛽
1
:= min(𝛼

2
,
𝛼 − 𝜆

1

1 − 𝜎
1

) , 𝛽
2
:= min(𝛼

2
,
𝛼 − 𝜆

2

1 − 𝜎
2

) (16)

play an important role in the combined effect of singular and
superlinear nonlinearities in (14) and lead to a competition.
It is not obvious which wins, essentially in the estimates of
solution. From here on and without loss of generality, wemay
assume that (𝛼 − 𝜆

1
)/(1 − 𝜎

1
) ≤ (𝛼 − 𝜆

2
)/(1 − 𝜎

2
) and we

introduce the function 𝜃 defined on (0, 𝜂) by

𝜃 (𝑡) = {
𝑡𝛽1Ψ

𝐿
1
,𝜆
1
,𝜎
1
(𝑡) if 𝛽

1
< 𝛽

2
,

𝑡𝛽1 (Ψ
𝐿
1
,𝜆
1
,𝜎
1
(𝑡) + Ψ

𝐿
2
,𝜆
2
,𝜎
2
(𝑡)) if 𝛽

1
= 𝛽

2
.

(17)

For an explicit form of the function 𝜃, see (36).
Throughout this paper, we define the potential kernel 𝐺𝛼

𝐷

by

𝐺
𝛼

𝐷
𝑓 (𝑥) := ∫

𝐷

𝐺
𝛼

𝐷
(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦, for 𝑥 ∈ 𝐷, 𝑓 ∈ 𝐵+ (𝐷) ,

(18)

where 𝐵+(𝐷) denotes the set of the nonnegative Borel meas-
urable functions in𝐷.

Our main results are the following.

Theorem 3. Let 𝜎
1
, 𝜎

2
∈ (−1, 1) and assume (𝐻). Then one

has, for 𝑥 ∈ 𝐷,

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎
1 (𝛿 (⋅)) + 𝑎

2
𝜃
𝜎
2 (𝛿 (⋅))] (𝑥) ≈ 𝜃 (𝛿 (𝑥)) . (19)

UsingTheorem 3 and the Schauder fixed-point theorem,wewill
prove the following.

Theorem 4. Let 𝜎
1
, 𝜎

2
∈ (−1, 1) and assume (𝐻). Then

problem (14) has a unique positive continuous solution 𝑢 in 𝐷
satisfying, for 𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ 𝜃 (𝛿 (𝑥)) . (20)

In particular, we generalize the result obtained in [36] to the
fractional setting and we recover the result obtained in [28].

The content of this paper is organized as follows. In
Section 2, we collect some properties of functions belonging
to the Karamata classK and the Kato class𝐾𝛼(𝐷), which are
useful to establish our results. In Section 3, we prove ourmain
results.

As usual, we denote by 𝐶
0
(𝐷) the set of continuous

functions in 𝐷 vanishing continuously on 𝜕𝐷. Note that
𝐶
0
(𝐷) is a Banach space with respect to the uniform norm

‖𝑢‖
∞
= sup

𝑥∈𝐷
|𝑢(𝑥)|. As in the elliptic case, if 𝑓 ∈ 𝐵+(𝐷)

satisfies ∫
𝐷

(𝛿(𝑦))
𝛼/2

𝑓(𝑦)𝑑𝑦 < ∞, then the functions 𝑓 and
𝐺𝛼

𝐷
𝑓 are in 𝐿1loc(𝐷) and we have in the distributional sense

(−Δ)
𝛼/2

𝐺
𝛼

𝐷
𝑓 = 𝑓, in 𝐷. (21)

2. The Karamata Class K and the
Kato Class 𝐾𝛼

(𝐷)

We collect in this paragraph some properties of the Karamata
classK and the Kato class𝐾𝛼

(𝐷). We recall that a function 𝐿
defined on (0, 𝜂] belongs to the classK if

𝐿 (𝑡) := 𝑐 exp(∫
𝜂

𝑡

𝑧 (𝑠)

𝑠
𝑑𝑠) , (22)

where 𝜂 > diam(𝐷), 𝑐 > 0, and 𝑧 ∈ 𝐶([0, 𝜂]) such that 𝑧(0) =
0.

Proposition 5 (see [30, 31]). (i) A function 𝐿 is in K if and
only if 𝐿 is a positive function in 𝐶1((0, 𝜂]) such that

lim
𝑡→0
+

𝑡𝐿󸀠 (𝑡)

𝐿 (𝑡)
= 0. (23)

(ii) Let 𝐿
1
, 𝐿

2
∈K, 𝑝 ∈ R. Then one has

𝐿
1
+ 𝐿

2
∈K, 𝐿

1
𝐿
2
∈K, 𝐿

𝑝

1
∈K. (24)

(iii) Let 𝐿 ∈K and 𝜀 > 0. Then one has

lim
𝑡→0
+

𝑡
𝜀

𝐿 (𝑡) = 0. (25)

ApplyingKaramata’s theorem (see [30, 31]), we get the fol-
lowing.

Lemma 6. Let 𝜇 ∈ R and let 𝐿 be a function in K. One has
the following:

(i) if 𝜇 < −1, then ∫𝜂
0

𝑠𝜇𝐿(𝑠)𝑑𝑠 diverges and ∫𝜂
𝑡

𝑠𝜇𝐿(𝑠)

𝑑𝑠 ∼
𝑡→0
+(−𝑡1+𝜇𝐿(𝑡))/(𝜇 + 1);
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(ii) if 𝜇 > −1, then ∫𝜂
0

𝑠𝜇𝐿(𝑠)𝑑𝑠 converges and ∫𝑡
0

𝑠𝜇𝐿(𝑠)

𝑑𝑠 ∼
𝑡→0
+(𝑡1+𝜇𝐿(𝑡))/(𝜇 + 1).

Lemma 7 (see [36]). Let 𝐿 be a function inK. Then one has

lim
𝑡→0
+

𝐿 (𝑡)

∫
𝜂

𝑡

(𝐿 (𝑠) /𝑠) 𝑑𝑠
= 0. (26)

In particular

𝑡 → ∫
𝜂

𝑡

𝐿 (𝑠)

𝑠
𝑑𝑠 ∈K. (27)

Proposition 8 (see [40, 41]). For (𝑥, 𝑦) ∈ 𝐷 × 𝐷, one has

𝐺
𝛼

𝐷
(𝑥, 𝑦) ≈

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝛼−𝑛 min(1,

(𝛿(𝑥)𝛿(𝑦))
𝛼/2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨
𝛼

) . (28)

Proposition 9 (see [26, Corollary 6]). Let 𝑞 be a nonnegative
function in 𝐾𝛼(𝐷); then the family of functions

Λ
𝑞
={𝑥 󳨀→∫

𝐷

(
𝛿 (𝑦)

𝛿 (𝑥)
)

(𝛼/2)−1

𝐺
𝛼

𝐷
(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦,

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 ≤ 𝑞}

(29)

is uniformly bounded and equicontinuous in 𝐷. Consequently
Λ

𝑞
is relatively compact in 𝐶

0
(𝐷).

3. Proofs of the Main Results

In this section we aim at proving Theorems 3 and 4. To this
end, we need the following lemmas.

3.1. Technical Lemmas

Lemma 10. For 𝑟, 𝑠 > 0, one has

2
−max(1−𝜎

1
,1−𝜎
2
)

(𝑟 + 𝑠)

≤ 𝑟
1−𝜎
1(𝑟 + 𝑠)

𝜎
1 + 𝑠

1−𝜎
2(𝑟 + 𝑠)

𝜎
2 ≤ 2 (𝑟 + 𝑠) .

(30)

Proof. Let 𝑟, 𝑠 > 0 and put 𝑡 = 𝑟/(𝑟 + 𝑠). Since 0 ≤ 𝑡 ≤ 1, then
we get obviously

2
−max(1−𝜎

1
,1−𝜎
2
)

≤ 𝑡
1−𝜎
1 + (1 − 𝑡)

1−𝜎
2 ≤ 2. (31)

Lemma 11 provides sharp estimates on some Riesz potential
functions.

Lemma 11 (see [28, Proposition 3.1]). Let 𝜇 ≤ (𝛼/2) + 1 and
let 𝐿 be a function inK such that ∫𝜂

0

𝑡
(𝛼/2)−𝜇

𝐿(𝑡)𝑑𝑡 < ∞. Let 𝑞
be a positive measurable function in𝐷 such that, for 𝑥 ∈ 𝐷,

𝑞 (𝑥) ≈ (𝛿 (𝑥))
−𝜇

𝐿 (𝛿 (𝑥)) . (32)

Then, for 𝑥 ∈ 𝐷, one has

𝐺
𝛼

𝐷
𝑞 (𝑥) ≈ 𝜓 (𝛿 (𝑥)) , (33)

where 𝜓 is the function defined on (0, 𝜂) by

𝜓 (𝑡) :=

{{{{{{{{{{

{{{{{{{{{{

{

𝑡
(𝛼/2)−1

∫
𝑡

0

𝐿 (𝑠)

𝑠
𝑑𝑠, if 𝜇 = 𝛼

2
+ 1,

𝑡
𝛼−𝜇

𝐿 (𝑡) , if 𝛼
2
< 𝜇 <

𝛼

2
+ 1,

𝑡𝛼/2 ∫
𝜂

𝑡

𝐿 (𝑠)

𝑠
𝑑𝑠, if 𝜇 = 𝛼

2
,

𝑡𝛼/2, if 𝜇 < 𝛼
2
.

(34)

Lemma 12. Assume (𝐻). Let 𝑢 be a continuous function in 𝐷
such that, for 𝑥 ∈ 𝐷, 𝑢(𝑥) ≈ 𝜃(𝛿(𝑥)). Then 𝑢 is a solution of
problem (14) if and only if

𝑢 (𝑥) = ∫
𝐷

𝐺
𝛼

𝐷
(𝑥, 𝑦) [𝑎

1
(𝑦) 𝑢

𝜎
1 (𝑦) + 𝑎

2
(𝑦) 𝑢

𝜎
2 (𝑦)] 𝑑𝑦,

𝑥 ∈ 𝐷.

(35)

Proof. Assume (H). First we will give an explicit form of the
function 𝜃. We recall that, for 𝑖 ∈ {1, 2}, 𝜆

𝑖
< (𝛼/2)(1 + 𝜎

𝑖
) +

1 − 𝜎
𝑖
and 𝛽

𝑖
:= min(𝛼/2, (𝛼 − 𝜆

𝑖
)/(1 − 𝜎

𝑖
)). Since 𝛽

1
< 𝛽

2

is equivalent to (𝛼 − 𝜆
1
)/(1 − 𝜎

1
) < (𝛼 − 𝜆

2
)/(1 − 𝜎

2
) and

(𝛼/2)(1 + 𝜎
1
) < 𝜆

1
, we deduce that, for 𝑡 ∈ (0, 𝜂), we have

𝜃 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝑡
(𝛼−𝜆
1
)/(1−𝜎

1
)

(𝐿
1
(𝑡))

1/(1−𝜎
1
)

,

if 𝛼 − 𝜆1
1 − 𝜎

1

<
𝛼 − 𝜆

2

1 − 𝜎
2

,

𝛼

2
(1 + 𝜎

1
) < 𝜆

1
,

𝑡(𝛼−𝜆1)/(1−𝜎1)𝐿 (𝑡) ,

if 𝛼 − 𝜆1
1 − 𝜎

1

=
𝛼 − 𝜆

2

1 − 𝜎
2

,

𝛼

2
(1 + 𝜎

1
) < 𝜆

1
,

𝑡𝛼/2𝑀(𝑡) ,

if 𝜆
1
=
𝛼

2
(1 + 𝜎

1
) ,

𝜆
2
=
𝛼

2
(1 + 𝜎

2
) ,

𝑡𝛼/2(∫
𝜂

𝑡

𝐿
1
(𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎
1
)

,

if 𝜆
1
=
𝛼

2
(1 + 𝜎

1
) ,

𝜆
2
<
𝛼

2
(1 + 𝜎

2
) ,

𝑡𝛼/2 if 𝜆
1
<
𝛼

2
(1 + 𝜎

1
) ,

(36)

where

𝐿 (𝑡) := (𝐿
1
(𝑡))

1/(1−𝜎
1
)

+ (𝐿
2
(𝑡))

1/(1−𝜎
2
)

,

𝑀 (𝑡) := (∫
𝜂

𝑡

𝐿
1
(𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎
1
)

+ (∫
𝜂

𝑡

𝐿
2
(𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎
2
)

.

(37)

Now using the fact that 𝑢(𝑥) ≈ 𝜃(𝛿(𝑥)), we deduce by simple
computation from hypothesis (H), (36), and Proposition 5
that

𝑎
1
(𝑥) 𝑢

𝜎
1 (𝑥) + 𝑎

2
(𝑥) 𝑢

𝜎
2 (𝑥) ≈ (𝛿 (𝑥))

(𝛼/2)−1

ℎ (𝛿 (𝑥)) , (38)

where ℎ is defined in (0, 𝜂) by
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ℎ (𝑡) :=

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

𝑡
1−(𝛼/2)−((𝜆

1
−𝛼𝜎
1
)/(1−𝜎

1
))(𝐿

1
(𝑡))

1/(1−𝜎
1
)

, if 𝛼 − 𝜆1
1 − 𝜎

1

<
𝛼 − 𝜆

2

1 − 𝜎
2

,
𝛼

2
(1 + 𝜎

1
) < 𝜆

1
,

𝑡1−(𝛼/2)−((𝜆1−𝛼𝜎1)/(1−𝜎1)) (𝐿
1
𝐿𝜎1 + 𝐿

2
𝐿𝜎2) (𝑡) , if 𝛼 − 𝜆1

1 − 𝜎
1

=
𝛼 − 𝜆

2

1 − 𝜎
2

,
𝛼

2
(1 + 𝜎

1
) < 𝜆

1
,

𝑡1−𝛼 (𝐿
1
𝑀𝜎
1 + 𝐿

2
𝑀𝜎
2) (𝑡) , if 𝜆

1
=
𝛼

2
(1 + 𝜎

1
) , 𝜆

2
=
𝛼

2
(1 + 𝜎

2
) ,

𝑡1−𝛼𝐿
1
(𝑡) (∫

𝜂

𝑡

𝐿
1
(𝑠)

𝑠
𝑑𝑠)

𝜎
1
/(1−𝜎

1
)

, if 𝜆
1
=
𝛼

2
(1 + 𝜎

1
) , 𝜆

2
<
𝛼

2
(1 + 𝜎

2
) ,

𝑡1+(𝛼/2)(𝜎1−1)−𝜆1𝐿
1
(𝑡) + 𝑡

1+(𝛼/2)(𝜎
2
−1)−𝜆

2𝐿
2
(𝑡) , if 𝜆

1
<
𝛼

2
(1 + 𝜎

1
) .

(39)

We point out that for each case, the function ℎ(𝑡) can be
written as a sum of terms of the form 𝑡−𝜇𝐿̃(𝑡), where 𝜇 < 𝛼.
By Proposition 5 and Lemma 7, we have 𝐿̃ ∈ K. On
the other hand, since by Proposition 5, the function 𝑥 →

(𝛿(𝑥))
(𝛼−𝜇)/2

𝐿̃(𝛿(𝑥)) is positive and belongs to 𝐶
0
(𝐷), then

there exists 𝑐 > 0 such that for each 𝑥 ∈ 𝐷

0 < (𝛿 (𝑥))
−𝜇

𝐿̃ (𝛿 (𝑥)) ≤ 𝑐(𝛿 (𝑥))
−(𝛼+𝜇)/2

. (40)

Hence we deduce from (7) that the function 𝑥 → ℎ(𝛿(𝑥)) is
in𝐾𝛼(𝐷).

Now using Proposition 9, we obtain that 𝑥 →

(𝛿(𝑥))
1−(𝛼/2)

𝐺𝛼

𝐷
[𝑎

1
𝑢𝜎1 + 𝑎

2
𝑢𝜎2](𝑥) is in 𝐶

0
(𝐷). In particular,

we have

lim
𝑥→𝑧∈𝜕𝐷

(𝛿 (𝑥))
1−(𝛼/2)

𝐺
𝛼

𝐷
(𝑎

1
𝑢
𝜎
1 + 𝑎

2
𝑢
𝜎
2) (𝑥) = 0,

(−Δ)
𝛼/2

𝐺
𝛼

𝐷
(𝑎

1
𝑢
𝜎
1 + 𝑎

2
𝑢
𝜎
2) = 𝑎

1
(𝑥) 𝑢

𝜎
1 + 𝑎

2
(𝑥) 𝑢

𝜎
2

in 𝐷 (in the sense of distributions) .

(41)

Consequently, it follows by (41) that 𝑢 is a weak continuous
solution of problem (14) if and only if 𝑢 satisfies

{
(−Δ)

𝛼/2

(𝑢 − 𝐺𝛼

𝐷
(𝑎

1
𝑢𝜎1 + 𝑎

2
𝑢𝜎2)) = 0 in 𝐷

lim
𝑥→𝑧∈𝜕𝐷

(𝛿 (𝑥))
1−(𝛼/2)

(𝑢 − 𝐺𝛼

𝐷
(𝑎

1
𝑢𝜎1 + 𝑎

2
𝑢𝜎2)) = 0.

(42)

We deduce by [26,Theorem 6] that 𝑢−𝐺𝛼

𝐷
(𝑎

1
𝑢𝜎1 +𝑎

2
𝑢𝜎2) = 0

in𝐷. The proof is complete.

Lemma 13. For 𝑖 ∈ {1, 2}, let 𝐿
𝑖
∈ K defined on (0, 𝜂] with

𝜂 > diam(𝐷) and let 𝑀 be the function given by (37). Then
one has, for 𝑡 ∈ (0, 𝜂),

∫
𝜂

𝑡

(𝐿
1
𝑀𝜎
1 + 𝐿

2
𝑀𝜎
2) (𝑠)

𝑠
𝑑𝑠 ≈ 𝑀 (𝑡) . (43)

Proof. The proof can be found in [36].

Now we are ready to prove our main results.

3.2. Proof of Theorem 3. Assume (H). For 𝑖 ∈ {1, 2}, let
𝐿
𝑖
∈ K defined on (0, 𝜂] with 𝜂 > diam(𝐷) and define the

nonnegative functions 𝑏
𝑖
in (0, 𝜂) by

𝑏
𝑖
(𝑡) = (∫

𝜂

𝑡

𝐿
𝑖
(𝑠)

𝑠
𝑑𝑠)

1/(1−𝜎
𝑖
)

. (44)

Let 𝜃 be the function given by (36). To prove Theorem 3, we
distinguish the following cases.

Case 1. (𝛼−𝜆
1
)/(1−𝜎

1
) < (𝛼−𝜆

2
)/(1−𝜎

2
) and (𝛼/2)(1+𝜎

1
) <

𝜆
1
< (𝛼/2)(1 + 𝜎

1
) + 1 − 𝜎

1
.

Since 𝜃(𝑡) = 𝑡(𝛼−𝜆1)/(1−𝜎1)(𝐿
1
(𝑡))

1/(1−𝜎
1
), then we have

𝑎
1
(𝑥) 𝜃

𝜎
1 (𝛿 (𝑥)) ≈ (𝛿 (𝑥))

(𝛼𝜎
1
−𝜆
1
)/(1−𝜎

1
)

(𝐿
1
(𝛿 (𝑥)))

1/(1−𝜎
1
)

,

𝑎
2
(𝑥) 𝜃

𝜎
2 (𝛿 (𝑥))

≈ (𝛿 (𝑥))
((𝛼−𝜆

1
)/(1−𝜎

1
))𝜎
2
−𝜆
2 (𝐿

2
𝐿
𝜎
2
/(1−𝜎

1
)

1
) (𝛿 (𝑥)) .

(45)

Using the fact that (𝛼𝜎
1
−𝜆

1
)/(1−𝜎

1
) < ((𝛼−𝜆

1
)/(1−𝜎

1
))𝜎

2
−

𝜆
2
, we deduce by Proposition 5 that

𝑎
1
(𝑥) 𝜃

𝜎
1 (𝛿 (𝑥)) + 𝑎

2
(𝑥) 𝜃

𝜎
2 (𝛿 (𝑥))

≈ (𝛿 (𝑥))
(𝛼𝜎
1
−𝜆
1
)/(1−𝜎

1
)

(𝐿
1
(𝛿 (𝑥)))

1/(1−𝜎
1
)

.

(46)

Since, for 𝜇 = (𝜆
1
− 𝛼𝜎

1
)/(1 − 𝜎

1
) ∈ (𝛼/2, (𝛼/2) + 1), we have

∫
𝜂

0

𝑡(𝛼/2)−𝜇(𝐿
1
(𝑡))

1/(1−𝜎
1
)

𝑑𝑡 < ∞, then applying Lemma 11, we
deduce that

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎
1 (𝛿 (⋅)) + 𝑎

2
𝜃
𝜎
2 (𝛿 (⋅))] (𝑥)

≈ 𝐺
𝛼

𝐷
[(𝛿 (⋅))

(𝛼𝜎
1
−𝜆
1
)/(1−𝜎

1
)

(𝐿
1
(𝛿 (⋅)))

1/(1−𝜎
1
)

] (𝑥)

≈ (𝛿 (𝑥))
(𝛼−𝜆
1
)/(1−𝜎

1
)

(𝐿
1
(𝛿 (𝑥)))

1/(1−𝜎
1
)

= 𝜃 (𝛿 (𝑥)) .

(47)

Case 2. (𝛼−𝜆
1
)/(1−𝜎

1
) = (𝛼−𝜆

2
)/(1−𝜎

2
) and (𝛼/2)(1+𝜎

1
) <

𝜆
1
< (𝛼/2)(1 + 𝜎

1
) + 1 − 𝜎

1
.

In this case 𝜃(𝑡) = 𝑡(𝛼−𝜆1)/(1−𝜎1)𝐿(𝑡). Therefore

𝑎
1
(𝑥) 𝜃

𝜎
1 (𝛿 (𝑥)) ≈ (𝛿 (𝑥))

(𝛼𝜎
1
−𝜆
1
)/(1−𝜎

1
)

(𝐿
1
𝐿
𝜎
1) (𝛿 (𝑥)) .

(48)
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So we obtain by Proposition 5 and Lemma 11 with 𝜇 = (𝜆
1
−

𝛼𝜎
1
)/(1 − 𝜎

1
) ∈ (𝛼/2, (𝛼/2) + 1),

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎
1 (𝛿 (⋅))] (𝑥) ≈ (𝛿 (𝑥))

(𝛼−𝜆
1
)/(1−𝜎

1
)

(𝐿
1
𝐿
𝜎
1) (𝛿 (𝑥)) .

(49)

Similarly, since (𝛼/2)(1 + 𝜎
2
) < 𝜆

2
< (𝛼/2)(1 + 𝜎

2
) + 1 − 𝜎

2
,

we obtain

𝐺
𝛼

𝐷
[𝑎

2
𝜃
𝜎
2 (𝛿 (⋅))] (𝑥)

≈ (𝛿 (𝑥))
(𝛼−𝜆
2
)/(1−𝜎

2
)

(𝐿
2
𝐿
𝜎
2) (𝛿 (𝑥))

≈ (𝛿 (𝑥))
(𝛼−𝜆
1
)/(1−𝜎

1
)

(𝐿
2
𝐿
𝜎
2) (𝛿 (𝑥)) .

(50)

Hence by using (30), we deduce that

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎
1 (𝛿 (⋅)) + 𝑎

2
𝜃
𝜎
2 (𝛿 (⋅))] (𝑥)

≈ (𝛿 (𝑥))
(𝛼−𝜆
1
)/(1−𝜎

1
)

(𝐿
1
𝐿
𝜎
1 + 𝐿

2
𝐿
𝜎
2) (𝛿 (𝑥))

≈ (𝛿 (𝑥))
(𝛼−𝜆
1
)/(1−𝜎

1
)

𝐿 (𝛿 (𝑥)) = 𝜃 (𝛿 (𝑥)) .

(51)

Case 3. If 𝜆
1
= (𝛼/2)(1+𝜎

1
) and 𝜆

2
= (𝛼/2)(1+𝜎

2
) and since

𝜃(𝑡) = 𝑡𝛼/2𝑀(𝑡), then we have

𝑎
1
(𝑥) 𝜃

𝜎
1 (𝛿 (𝑥)) + 𝑎

2
(𝑥) 𝜃

𝜎
2 (𝛿 (𝑥))

≈ (𝛿 (𝑥))
−𝛼/2

(𝐿
1
𝑀

𝜎
1 + 𝐿

2
𝑀

𝜎
2) (𝛿 (𝑥)) .

(52)

So by Proposition 5, Lemma 11 with 𝜇 = 𝛼/2, and Lemma 13,
we deduce that

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎
1 (𝛿 (⋅)) + 𝑎

2
𝜃
𝜎
2 (𝛿 (⋅))] (𝑥)

≈ (𝛿 (𝑥))
𝛼/2

∫
𝜂

𝛿(𝑥)

(𝐿
1
𝑀𝜎
1 + 𝐿

2
𝑀𝜎
2) (𝑠)

𝑠
𝑑𝑠

≈ (𝛿 (𝑥))
𝛼/2

𝑀(𝛿 (𝑥)) = 𝜃 (𝛿 (𝑥)) .

(53)

Case 4. 𝜆
1
= (𝛼/2)(1 + 𝜎

1
) and 𝜆

2
< (𝛼/2)(1 + 𝜎

2
).

In this case 𝜃(𝑡) = 𝑡𝛼/2𝑏
1
(𝑡). Since 𝜆

2
− (𝛼𝜎

2
/2) < (𝛼/2),

we deduce by Proposition 5 that

𝑎
1
(𝑥) 𝜃

𝜎
1 (𝛿 (𝑥)) + 𝑎

2
(𝑥) 𝜃

𝜎
2 (𝛿 (𝑥))

≈ (𝛿 (𝑥))
−𝛼/2

(𝐿
1
𝑏
𝜎
1

1
) (𝛿 (𝑥))

+ (𝛿 (𝑥))
(𝛼𝜎
2
/2)−𝜆

2 (𝐿
2
𝑏
𝜎
2

1
) (𝛿 (𝑥))

≈ (𝛿 (𝑥))
−𝛼/2

(𝐿
1
𝑏
𝜎
1

1
) (𝛿 (𝑥)) .

(54)

Hence applying Lemma 11 with 𝜇 = 𝛼/2, we obtain

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎
1 (𝛿 (⋅)) + 𝑎

2
𝜃
𝜎
2 (𝛿 (⋅))] (𝑥)

≈ 𝐺
𝛼

𝐷
[(𝛿 (⋅))

−𝛼/2

(𝐿
1
𝑏
𝜎
1

1
) (𝛿 (⋅))] (𝑥)

≈ (𝛿 (𝑥))
𝛼/2

∫
𝜂

𝛿(𝑥)

(𝐿
1
𝑏
𝜎
1

1
) (𝑠)

𝑠
𝑑𝑠

≈ (𝛿 (𝑥))
𝛼/2

𝑏
1
(𝛿 (𝑥)) = 𝜃 (𝛿 (𝑥)) .

(55)

Case 5. 𝜆
1
< (𝛼/2)(1 + 𝜎

1
).

We have 𝜃(𝑡) = 𝑡𝛼/2. So

𝑎
1
(𝑥) 𝜃

𝜎
1 (𝛿 (𝑥)) ≈ (𝛿 (𝑥))

−(𝜆
1
−(𝛼𝜎
1
/2))

𝐿
1
(𝛿 (𝑥)) . (56)

Applying again Lemma 11 with 𝜇 = 𝜆
1
− (𝛼𝜎

1
/2) < (𝛼/2), we

obtain

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎
1 (𝛿 (⋅))] (𝑥) ≈ (𝛿 (𝑥))

𝛼/2

. (57)

On the other hand, since (𝛼/2) < (𝛼 − 𝜆
1
)/(1 − 𝜎

1
) ≤ (𝛼 −

𝜆
2
)/(1 − 𝜎

2
), then 𝜆

1
< (𝛼/2)(1 + 𝜎

1
) and therefore

𝐺
𝛼

𝐷
[𝑎

2
𝜃
𝜎
2 (𝛿 (⋅))] (𝑥) ≈ (𝛿 (𝑥))

𝛼/2

. (58)

Hence

𝐺
𝛼

𝐷
[𝑎

1
𝜃
𝜎
1 (𝛿 (⋅)) + 𝑎

2
𝜃
𝜎
2 (𝛿 (⋅))] (𝑥) ≈ (𝛿 (𝑥))

𝛼/2

= 𝜃 (𝛿 (𝑥)) .

(59)

The proof is complete.

3.3. Proof ofTheorem 4. Let 𝜎
1
, 𝜎

2
∈ (−1, 1), assume (H), and

consider V := 𝐺𝐷

𝛼
[𝑎

1
𝜃𝜎1(𝛿(⋅))+𝑎

2
𝜃𝜎2(𝛿(⋅))]. UsingTheorem 3,

there exists𝑚 > 1 such that
1

𝑚
V (𝑥) ≤ 𝜃 (𝛿 (𝑥)) ≤ 𝑚V (𝑥) . (60)

Put 𝜎 := max(|𝜎
1
|, |𝜎

2
|), 𝑐 := 𝑚𝜎/(1−𝜎) and consider the set

Γ := {𝜔 ∈ 𝐶
0
(𝐷) :

1

𝑐
(𝛿 (𝑥))

1−(𝛼/2)V (𝑥) ≤ 𝜔 (𝑥)

≤ 𝑐(𝛿 (𝑥))
1−(𝛼/2)V (𝑥) , 𝑥 ∈ 𝐷} .

(61)

Let ℎ be the function given by (39). Since 𝑎
1
(𝑥)𝜃𝜎1(𝛿(𝑥)) +

𝑎
2
(𝑥)𝜃𝜎2(𝛿(𝑥)) ≈ (𝛿(𝑥))

(𝛼/2)−1

ℎ(𝛿(𝑥)) and the function 𝑥 →
ℎ(𝛿(𝑥)) is in 𝐾

𝛼
(𝐷), it follows by Proposition 9 that 𝑥 →

(𝛿(𝑥))
1−(𝛼/2)V(𝑥) is in 𝐶

0
(𝐷). So Γ is a nonempty, closed,

bounded, and convex set in 𝐶
0
(𝐷). Define the operator 𝑇 on

Γ by

𝑇𝜔 (𝑥) := (𝛿 (𝑥))
1−(𝛼/2)

𝐺
𝐷

𝛼
(((𝛿 (⋅))

(𝛼/2)−1

𝜔)
𝜎
1

𝑎
1

+((𝛿 (⋅))
(𝛼/2)−1

𝜔)
𝜎
2

𝑎
2
) (𝑥) .

(62)

We will prove that 𝑇 has a fixed point. Since there exists a
constant 𝑐 > 0 such that for all 𝜔 ∈ Γ we have
󵄨󵄨󵄨󵄨󵄨󵄨
𝑎
1
(𝑥) ((𝛿 (𝑥))

(𝛼/2)−1

𝜔 (𝑥))
𝜎
1

+𝑎
2
(𝑥) ((𝛿 (𝑥))

(𝛼/2)−1

𝜔 (𝑥))
𝜎
2
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑐(𝛿 (𝑥))

(𝛼/2)−1

ℎ (𝛿 (𝑥)) ,

(63)

where the function 𝑥 → ℎ(𝛿(𝑥)) is in 𝐾
𝛼
(𝐷), it follows that

𝑇(Γ) ⊂ Λ
ℎ(𝛿(⋅))

, where Λ
ℎ(𝛿(⋅))

is given by (29). Therefore by
Proposition 9, the family of functions {𝑥 → 𝑇𝜔(𝑥), 𝜔 ∈ Γ} is
relatively compact in 𝐶

0
(𝐷).

Next, we will prove that 𝑇maps Γ into itself.
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Indeed, by using (60) we have for all 𝜔 ∈ Γ

𝐺
𝐷

𝛼
(𝑎

1
((𝛿 (⋅))

(𝛼/2)−1

𝜔)
𝜎
1

+ 𝑎
2
((𝛿 (⋅))

(𝛼/2)−1

𝜔)
𝜎
2

)

≤ 𝐺
𝐷

𝛼
(𝑎

1
𝑐
𝜎

𝑚
𝜎

𝜃
𝜎
1 (𝛿 (⋅)) + 𝑎

2
𝑐
𝜎

𝑚
𝜎

𝜃
𝜎
2 (𝛿 (⋅)))

= 𝑐V.

(64)

On the other hand, we have

𝐺
𝐷

𝛼
(𝑎

1
((𝛿 (⋅))

(𝛼/2)−1

𝜔)
𝜎
1

+ 𝑎
2
((𝛿 (⋅))

(𝛼/2)−1

𝜔)
𝜎
2

)

≥ 𝐺
𝐷

𝛼
(𝑎

1
𝑐
−𝜎

𝑚
−𝜎

𝜃
𝜎
1 (𝛿 (⋅)) + 𝑎

2
𝑐
−𝜎

𝑚
−𝜎

𝜃
𝜎
2 (𝛿 (⋅)))

=
1

𝑐
V.

(65)

This implies that 𝑇(Γ) ⊂ Γ.
Now, we will prove the continuity of the operator 𝑇 in Γ

in the supremum norm. Let (𝜔
𝑘
)
𝑘∈N be a sequence in Γwhich

converges uniformly to a function 𝜔 in Γ. Then, for each 𝑥 ∈
𝐷, we have
󵄨󵄨󵄨󵄨𝑇𝜔𝑘 (𝑥) − 𝑇𝜔 (𝑥)

󵄨󵄨󵄨󵄨

≤ (𝛿 (𝑥))
1−(𝛼/2)

𝐺
𝐷

𝛼
(𝑎

1
(𝛿 (.))

((𝛼/2)−1)𝜎
1
󵄨󵄨󵄨󵄨𝜔

𝜎
1

𝑘
− 𝜔

𝜎
1
󵄨󵄨󵄨󵄨

+𝑎
2
(𝛿 (⋅))

((𝛼/2)−1)𝜎
2
󵄨󵄨󵄨󵄨𝜔

𝜎
2

𝑘
− 𝜔

𝜎
2
󵄨󵄨󵄨󵄨) (𝑥) .

(66)

On the other hand, by similar arguments to the previous ones,
we have

𝑎
1
(𝑥) (𝛿 (𝑥))

((𝛼/2)−1)𝜎
1
󵄨󵄨󵄨󵄨𝜔

𝜎
1

𝑘
− 𝜔

𝜎
1
󵄨󵄨󵄨󵄨 (𝑥)

+ 𝑎
2
(𝑥) (𝛿 (𝑥))

((𝛼/2)−1)𝜎
2
󵄨󵄨󵄨󵄨𝜔

𝜎
2

𝑘
− 𝜔

𝜎
2
󵄨󵄨󵄨󵄨 (𝑥)

≤ 𝑐(𝛿 (𝑥))
(𝛼/2)−1

ℎ (𝛿 (𝑥)) .

(67)

We conclude by Proposition 9 and the dominated conver-
gence theorem that, for all 𝑥 ∈ 𝐷,

𝑇𝜔
𝑘
(𝑥) 󳨀→ 𝑇𝜔 (𝑥) as 𝑘 󳨀→ +∞. (68)

Consequently, as 𝑇(Γ) is relatively compact in 𝐶
0
(𝐷), we

deduce that the pointwise convergence implies the uniform
convergence; namely,

󵄩󵄩󵄩󵄩𝑇𝜔𝑘 − 𝑇𝜔
󵄩󵄩󵄩󵄩∞ 󳨀→ 0 as 𝑘 󳨀→ +∞. (69)

Therefore, 𝑇 is a compact operator from Γ into itself. So the
Schauder fixed-point theorem implies the existence of 𝜔 ∈ Γ
such that

𝜔 (𝑥) = (𝛿 (𝑥))
1−(𝛼/2)

𝐺
𝐷

𝛼
(𝑎

1
((𝛿 (⋅))

(𝛼/2)−1

𝜔)
𝜎
1

+𝑎
2
((𝛿 (⋅))

(𝛼/2)−1

𝜔)
𝜎
2

) (𝑥) .

(70)

Put 𝑢(𝑥) = (𝛿(𝑥))
(𝛼/2)−1

𝜔(𝑥). Then 𝑢 is continuous and
satisfies

𝑢 (𝑥) = 𝐺
𝐷

𝛼
(𝑎

1
𝑢
𝜎
1 + 𝑎

2
𝑢
𝜎
2) (𝑥) . (71)

Hence by Lemma 12 andTheorem 3, 𝑢 is a required solution.

Next, we aim at proving the uniqueness in the cone

𝑆 := {𝑢 ∈ 𝐶 (𝐷) : 𝑢 (𝑥) ≈ 𝜃 (𝛿 (𝑥))} . (72)

Let 𝑢 and V be two solutions of (14) in 𝑆. Then there exists a
constant𝑚 > 1 such that

1

𝑚
≤
𝑢

V
≤ 𝑚. (73)

This implies that the set

𝐽 = {𝑡 ∈ (1,∞) ,
1

𝑡
V ≤ 𝑢 ≤ 𝑡V} (74)

is not empty. Let 𝑐
0
:= inf 𝐽 and put 𝑤 = V − 𝑐−𝜎

0
𝑢 with 𝜎 =

max(|𝜎
1
|, |𝜎

2
|).

We claim that 𝑐
0
= 1. Indeed, assume that 𝑐

0
> 1; then by

using Lemma 12, we deduce that

𝑤 = 𝐺
𝐷

𝛼
(𝑎

1
(V𝜎1 − 𝑐−𝜎

0
𝑢
𝜎
1) + 𝑎

2
(V𝜎2 − 𝑐−𝜎

0
𝑢
𝜎
2))

≥ 0 in 𝐷,
(75)

which implies that

V ≥ 𝑐−𝜎
0
𝑢. (76)

By symmetry, we deduce that

V ≤ 𝑐𝜎
0
𝑢. (77)

So 𝑐𝜎
0
∈ 𝐽. Since 𝜎 < 1, then we have 𝑐𝜎

0
< 𝑐

0
. This is a

contradiction to the fact that 𝑐
0
:= inf 𝐽. Hence 𝑐

0
= 1 and

so 𝑢 = V. This completes the proof.

Example 14. Let 𝜎
1
∈ (−1, 0), let 𝜎

2
∈ (0, 1), and put 𝑑 =

diam(𝐷). For 𝑖 ∈ {1, 2}, let 𝑎
𝑖
∈ 𝐶

𝛾

loc(𝐷), 0 < 𝛾 < 1, satisfying

𝑎
1
(𝑥) ≈ (𝛿 (𝑥))

−𝜆
1(log( 3𝑑

𝛿 (𝑥)
))

−1

,

𝑎
2
(𝑥) ≈ (𝛿(𝑥))

−𝜆
2 ,

(78)

where 𝜆
𝑖
< (𝛼/2)(1+𝜎

𝑖
) + 1−𝜎

𝑖
, such that (𝛼−𝜆

1
)/(1−𝜎

1
) ≤

(𝛼 − 𝜆
2
)/(1 − 𝜎

2
). Then using Theorem 4, problem (14) has

a unique positive continuous solution 𝑢 in 𝐷 satisfying the
following estimates:

(i) if (𝛼 − 𝜆
1
)/(1 − 𝜎

1
) < (𝛼 − 𝜆

2
)/(1 − 𝜎

2
) and (𝛼/2)(1 +

𝜎
1
) < 𝜆

1
, then, for 𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ (𝛿 (𝑥))
(𝛼−𝜆
1
)/(1−𝜎

1
)

(log( 3𝑑
𝛿 (𝑥)

))

−1/(1−𝜎
1
)

; (79)

(ii) if (𝛼 − 𝜆
1
)/(1 − 𝜎

1
) = (𝛼 − 𝜆

2
)/(1 − 𝜎

2
) and (𝛼/2)(1 +

𝜎
1
) < 𝜆

1
, then, for 𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ (𝛿 (𝑥))
(𝛼−𝜆
1
)/(1−𝜎

1
)

; (80)

(iii) if 𝜆
1
= (𝛼/2)(1 + 𝜎

1
) and 𝜆

2
= (𝛼/2)(1 + 𝜎

2
), then, for

𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ (𝛿 (𝑥))
𝛼/2

(log( 3𝑑
𝛿 (𝑥)

))

1/(1−𝜎
2
)

; (81)
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(iv) if 𝜆
1
= (𝛼/2)(1 + 𝜎

1
) and 𝜆

2
< (𝛼/2)(1 + 𝜎

2
), then, for

𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ (𝛿 (𝑥))
𝛼/2

(log ∘ log( 3𝑑
𝛿 (𝑥)

))

1/(1−𝜎
1
)

; (82)

(v) if 𝜆
1
< (𝛼/2)(1 + 𝜎

1
), then, for 𝑥 ∈ 𝐷,

𝑢 (𝑥) ≈ (𝛿 (𝑥))
(𝛼/2)

. (83)
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