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The Filippov ratio-dependent prey-predator model with economic threshold is proposed and studied. In particular, the sliding
mode domain, sliding mode dynamics, and the existence of four types of equilibria and tangent points are investigated firstly.
Further, the stability of pseudoequilibrium is addressed by using theoretical and numerical methods, and also the local sliding
bifurcations including regular/virtual equilibrium bifurcations and boundary node bifurcations are studied. Finally, some global
sliding bifurcations are addressed numerically. The globally stable touching cycle indicates that the density of pest population can
be successfully maintained below the economic threshold level by designing suitable threshold policy strategies.

1. Introduction

Ordinary differential equation models (ODE models) are
widely used to describe the dynamics between predators and
their prey, which has long been and will continue to be one
of significant fields in mathematical ecology owing to its
universal existence and importance [1, 2]. The simplest prey-
predator dynamic model is the Lotka-Volterra model [3],
which has been modified in many ways since its original and
realism formulation in the 1920s.

One important component of the prey-predator relation
is predator’s functional response which refers to the change
in the density of prey attached per unit time per predator
as the prey density changes and makes the prey-predator
system more realistic. There are several famous functional
response types in previous work, which are monotonically
increasing and uniformly bounded functions in the first
quadrant. Another functional response is the Michaelis-
Menten (or Holling-type II) functional response, which is the
most common type of functional response among arthropod
predators [4, 5]. It takes the form 𝑝(𝑥, 𝑦) = 𝑎𝑥/(𝑏+𝑥), where
𝑎 and 𝑏 are positive constants that stand for capturing rate,
and half capturing saturation constant, respectively.

Considering predators having to search for food, a more
suitable general prey-predator theory based on the so-called

ratio-dependent theory is involved. It can be roughly com-
prehended as the per capita predator growth rate should be
a function of the ratio of prey to predator abundance. And
it is also strongly supported by numerous fields, laboratory
experiments, and observations [6–8].

Therefore, we can write the ratio-dependent prey-preda-
tor model with Michaelis-Menten functional response as fol-
lows:

�̇� (𝑡) = 𝑟𝑥 (1 −
𝑥

𝑘
) −

𝑎𝑥𝑦

𝑏𝑦 + 𝑥
,

̇𝑦 (𝑡) = −𝛿𝑦 +
𝛽𝑎𝑥𝑦

𝑏𝑦 + 𝑥
,

(1)

where 𝑥 and 𝑦 represent the density of prey (pest) and
predator (natural enemy), respectively. The prey is assumed
to grow logistically and 𝑘 is the carrying capacity of prey.The
positive constants 𝑟 and 𝛿 stand for intrinsic growth rate of
prey and mortality rate of predator, respectively. 𝛽 denotes
the conversion rate of prey captured by predator.

In population, both ecologist and mathematicians are
interested in the ratio-dependent prey-predator model with
Michaelis-Menten functional response [2, 7–9]. Hsu et al. [7]
resolved a complete classification of the asymptotic behavior
of the solutions of ratio-dependentmodel with theMichaelis-
Menten functional response. They also studied the global
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stability of all equilibria in various cases and reconsidered the
uniqueness of limit cycle.

It is well known that pests have been one of the principal
threats to crops, important plants, animals, and humans all
over the world. Therefore, it is necessary to apply acceptable
and effective strategies to control pest outbreak. In practice, it
is impossible to eradicate the pests completely, nor is it biolog-
ically or economically desirable. Integrated pest management
(IPM) is a long term management strategy [10–12], which
uses a combination of biological, cultural, and chemical
tactics so as to lower cost to the growers, minimize effect
on the environment, and maintain pest population below the
economic injury level (EIL). On the basis of IPM, biological
strategy is useful and effective to suppress pest population,
such as releasing beneficial natural enemies; culture strategy
makes the environment less favorable to pests, such as
catching or harvesting artificially. In most cropping systems,
when the above two tactics are unable to keep pest population
below the ET, chemical strategy (i.e., insecticide) is still a
principal means to control pests and prevent economic loss.
Thus, in order to control pest outbreak, we should carry
out control strategies when the number of pests reaches
or exceeds the ET which is lower than the EIL, and the
control strategies should be suspended once the density of
pest population falls below the ET, which is the so-called
threshold policy control (TPC). Considering IPM strategies,
either fixed moment or state-dependent impulsive models
with the ratio-dependent orMichaelis-Menten-type response
function of prey-predatormodel have been studied in [13–16].

However, Zhao et al. [17] have stated some disadvantages
of the impulsive differential equation models mentioned
above. First, in the fixed moment impulsive model, without
consideration whether the density of pest reaches the ET
or not, control strategies are invariably implemented, which
leads to consumption of vast resources. Second, in reality,
all kinds of control strategies need some time and cannot be
finished instantaneously, but in the state-dependent impul-
sive differential models, control strategies are carried out
instantaneously, which is not reasonable.

Therefore, we use Filippov system which is a vector
differential equation with discontinuous right-hand side to
describe prey-predator model with both noninstantaneous
interventions and the threshold policy. Recently, although
Filippov systems have been widely utilized in science
and engineering, including harvesting thresholds, oil well
drilling, and liquid-gas reaction [18–23]. However, very
little is involved that they are used to investigate the
ratio-dependent-type predator-prey model with Michaelis-
Menten-type functional response. We assume that a propor-
tion of preys are caught or transferred (culture strategy) or
killed (chemical strategy), denoted by 𝑞

1
; a proportion of

predators are released (biological strategy), denoted by 𝑞
2
. So

we have the following control model for 𝑥 > ET:

�̇� (𝑡) = 𝑟𝑥 (1 −
𝑥

𝑘
) −

𝑎𝑥𝑦

𝑏𝑦 + 𝑥
− 𝑞
1
𝑥,

̇𝑦 (𝑡) = −𝛿𝑦 +
𝛽𝑎𝑥𝑦

𝑏𝑦 + 𝑥
+ 𝑞
2
𝑦.

(2)

In this paper, we aim to give a detailed analysis of Filippov
ratio-dependent prey-predator model with threshold policy
control, which describes that control measures are imple-
mented only when the density of pest in a population exceeds
the ET. We investigate the sliding mode domain, sliding
mode dynamics, the existence of four types of equilibria and
tangent point of Filippov system, regular/virtual equilibrium
bifurcation, and boundary node bifurcations. In addition, the
local stability of pseudoequilibrium implies global stability
in our numerical simulations. Globally touching bifurcation
especially indicates that the density of pest can be successfully
maintained below the ET by designing suitable threshold pol-
icy strategy. Therefore our control objective can be achieved
in the above two cases, which are desired situations in crop,
livestock sectors and forestry.

The organization of this paper is as follows: in Section 2,
we give some basic results and preliminaries for ODE system
and Filippov system. In Section 3, the existence of sliding
segments and sliding mode dynamics for the Filippov system
(3) are addressed. In Section 4, we give the null-isoclines and
equilibria. Based on those results, in Section 5, we consider
the bifurcation sets of equilibria and sliding bifurcation
analyses. Then, in the last section, we give some discussions.

2. The ODE System and Filippov System

2.1. The Basic Preliminaries and Results for ODE System.
The ODE model (1) has been well studied in [2, 7], and a
complete classification of the asymptotic behavior of the solu-
tions of the ratio-dependent model with Michaelis-Menten
functional response has been proposed. In the following, we
present some primary results in the following Lemma which
are useful for this study.

Lemma 1. System (1) includes three equilibria (0, 0), (𝑘, 0),
and a unique positive equilibrium 𝐸

∗
(𝑥
∗
, 𝑦
∗
) if and only if the

following two conditions are true: 𝛽𝑎 − 𝛿 > 0 and 𝑟 > (𝛽𝑎 −

𝛿)/𝛽𝑏, where 𝐸∗ = (𝑥
∗
, 𝑦
∗
) = (𝑘(𝛽𝑏𝑟 + 𝛿 − 𝛽𝑎)/𝛽𝑏𝑟, 𝑘(𝛽𝑎 −

𝛿)(𝛽𝑏𝑟 + 𝛿 − 𝛽𝑎)/𝛽𝑏
2
𝑟𝛿). If 𝛽𝑎 − 𝛿 > 0 and 𝛽𝑎 − 𝛿 < 𝑟 ≤

(𝑎 − 𝑏𝛿)/𝑏, (0, 0) is globally asymptotically stable; if 𝛽𝑎− 𝛿 < 0

and 𝑟 ≥ (𝑎 − 𝑏𝛿)/𝑏, (𝑘, 0) is globally asymptotically stable; if
𝛽𝑎 − 𝛿 > 0 and (𝛽𝑎 − 𝛿)/𝛽𝑏 < 𝑟 ≤ 𝛽𝑎 − 𝛿 or 𝛽𝑎 − 𝛿 > 0,
𝑟 > 𝛽𝑎 − 𝛿, and 𝑟 ≥ (𝑎 − 𝑏𝛿)/𝑏, the positive equilibrium
of 𝐸∗ = (𝑥

∗
, 𝑦
∗
) is globally asymptotically stable. However if

the positive equilibrium is locally asymptotically stable, then
the system (1) has no nontrivial positive periodic solutions. If
𝛽𝑎 − 𝛿 > 0 and max{𝛽𝑎 − 𝛿, (𝛽𝑎 − 𝛿)/𝛽𝑏} < 𝑟 < (𝑎 − 𝑏𝛿)/𝑏

hold true, then the system (1) has at most one stable limit cycle.

2.2. Filippov Ratio-Dependent Prey-Predator Model and Pre-
liminaries. By now, based on IPM strategies and TPC, the
models (1) and (2) can be incorporated and rewritten in the
following form:

�̇� (𝑡) = 𝑟𝑥 (1 −
𝑥

𝑘
) −

𝑎𝑥𝑦

𝑏𝑦 + 𝑥
− 𝜀𝑞
1
𝑥,

̇𝑦 (𝑡) = −𝛿𝑦 +
𝛽𝑎𝑥𝑦

𝑏𝑦 + 𝑥
+ 𝜀𝑞
2
𝑦,

(3)
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with

𝜀 = {
0, 𝑥 < ET,
1, 𝑥 > ET.

(4)

We first introduce some useful properties and definitions
on Filippov system according to [24, 25], so that we can
investigate the model (3) in more detail. Let𝐻(𝑍) = 𝑥 − ET
with vector 𝑍 = (𝑥, 𝑦)

𝑇, and

𝐹
𝑆
1
(𝑍)

= (𝑟𝑥 (1 −
𝑥

𝑘
) −

𝑎𝑥𝑦

𝑏𝑦 + 𝑥
, −𝛿𝑦 +

𝛽𝑎𝑥𝑦

𝑏𝑦 + 𝑥
)

𝑇

,

𝐹
𝑆
2
(𝑍)

= (𝑟𝑥 (1 −
𝑥

𝑘
) −

𝑎𝑥𝑦

𝑏𝑦 + 𝑥
− 𝑞
1
𝑥, −𝛿𝑦 +

𝛽𝑎𝑥𝑦

𝑏𝑦 + 𝑥
+ 𝑞
2
𝑦)

𝑇

.

(5)

Then the system (3) can be rewritten as the following Filippov
system:

�̇� (𝑡) = {
𝐹
𝑆
1
(𝑍) , 𝑍 ∈ 𝑆

1
,

𝐹
𝑆
2
(𝑍) , 𝑍 ∈ 𝑆

2
.

(6)

In addition, we define the discontinuity boundary set (or
the switching line) Σ = {𝑍 ∈ 𝑅

2

+
| 𝐻(𝑍) = 0}, which divides

𝑅
2

+
into two regions 𝑆

1
and 𝑆
2
, where

𝑆
1
= {𝑍 ∈ 𝑅

2

+
| 𝐻 (𝑍) < 0} ,

𝑆
2
= {𝑍 ∈ 𝑅

2

+
| 𝐻 (𝑍) > 0} .

(7)

From now on, Filippov system (3) in different regions 𝑆
1

or 𝑆
2
is named as system 𝑆

1
(i.e., system (1)) or system 𝑆

2
(i.e.,

system (2)) correspondingly.
Denote

𝜎 (𝑍) = ⟨𝐻
𝑍
(𝑍) , 𝐹

𝑆
1
(𝑍)⟩ ⟨𝐻

𝑍
(𝑍) , 𝐹

𝑆
2
(𝑍)⟩ , (8)

where 𝐻
𝑍
is a nonvanishing gradient of the smooth scale

function𝐻 on Σ, and ⟨⋅⟩ denotes the standard scalar product;
then the sliding mode domain can be defined as

Σ
𝑆
= {𝑍 ∈ Σ | 𝜎 (𝑍) ≤ 0} . (9)

We distinguish the following regions on Σ:

(i) Σ
1
∈ Σ is the escaping region if ⟨𝐻

𝑍
(𝑍), 𝐹

𝑆
1

(𝑍)⟩ < 0

and ⟨𝐻
𝑍
(𝑍), 𝐹

𝑆
2

(𝑍)⟩ > 0 on Σ
1
;

(ii) Σ
2
∈ Σ is the sliding region if ⟨𝐻

𝑍
(𝑍), 𝐹

𝑆
1

(𝑍)⟩ > 0

and ⟨𝐻
𝑍
(𝑍), 𝐹

𝑆
2

(𝑍)⟩ < 0 on Σ
2
;

(iii) Σ
3

∈ Σ is the sewing region if ⟨𝐻
𝑍
(𝑍), 𝐹

𝑆
1

(𝑍)⟩

⟨𝐻
𝑍
(𝑍), 𝐹

𝑆
2

(𝑍)⟩ > 0 on Σ
3
.

The following definitions about all types of equilibria for
Filippov system are necessary throughout the paper, so we list
them as follows.

Definition 2. A point 𝑍∗ is called a regular equilibrium of
system (3) if 𝐹

𝑆
1

(𝑍
∗
) = 0, with 𝐻(𝑍∗) < 0, or 𝐹

𝑆
2

(𝑍
∗
) = 0,

with𝐻(𝑍∗) > 0. A point 𝑍∗ is called a virtual equilibrium of
system (3), if 𝐹

𝑆
1

(𝑍
∗
) = 0, with 𝐻(𝑍∗) > 0, or 𝐹

𝑆
2

(𝑍
∗
) = 0,

with𝐻(𝑍∗) < 0.

Definition 3. A point 𝑍∗ is called a pseudoequilibrium if it
is an equilibrium of the sliding mode of system (3); that is,
(1 − 𝜆)𝐹

𝑆
1

(𝑍
∗
) + 𝜆𝐹

𝑆
2

(𝑍
∗
) = 0, 𝐻(𝑍∗) = 0, and 0 < 𝜆 < 1,

where

𝜆 =
⟨𝐻
𝑍
(𝑍) , 𝐹

𝑆
1
(𝑍)⟩

⟨𝐻
𝑍
(𝑍) , 𝐹

𝑆
1
(𝑍) − 𝐹

𝑆
2
(𝑍)⟩

. (10)

Definition 4. A point 𝑍∗ is called a boundary equilibrium of
system (3) if 𝐹

𝑆
1

(𝑍
∗
) = 0, with 𝐻(𝑍∗) = 0, or 𝐹

𝑆
2

(𝑍
∗
) = 0,

with𝐻(𝑍∗) = 0.

Definition 5. A point 𝑍∗ is called a tangent point of sys-
tem (3) if 𝑍∗ ∈ Σ

𝑆
and ⟨𝐻

𝑍
(𝑍
∗
), 𝐹
𝑆
1

(𝑍
∗
)⟩ = 0, or

⟨𝐻
𝑍
(𝑍
∗
), 𝐹
𝑆
2

(𝑍
∗
)⟩ = 0.

The details and knowledge about the Filippov system,
such as the concepts of Filippov solution, sliding mode solu-
tion, and bifurcation can be found in reference [24].

3. Sliding Region and Sliding Mode Dynamics

A sliding mode exists if there are regions in the discontinuity
boundary Σ, where the vectors for the two subsystems of the
system (3) are directed towards each other. It is well known
that two basic methods the so-called Filippov convexmethod
[24] andUtkin equivalent control method [18], are developed
for the sliding mode and its domains, which are shown in the
appendix.

3.1. Sliding Segment and Region. Based on the appendix, we
have

𝜆 (𝑍) =
𝑟 (1 − ET/𝑘) − 𝑎𝑦/ (𝑏𝑦 + ET)

𝑞
1

, (11)

because the sliding mode regions can be determined by solv-
ing the inequalities; that is, 𝜆(𝑍) ≥ 0 and 𝜆(𝑍) ≤ 1. In order
to solve the above two inequalities with respect to 𝑦, we need
to consider the following two algebraic equations:

𝑟 (1 −
ET
𝑘
) −

𝑎𝑦

𝑏𝑦 + ET
= 0,

𝑟 (1 −
ET
𝑘
) −

𝑎𝑦

𝑏𝑦 + ET
− 𝑞
1
= 0.

(12)

Solving the above two algebraic equations with respect to
𝑦 yields two roots, denoted by

𝑦
1
=

𝑟ET (𝑘 − ET)
𝑎𝑘 − 𝑏𝑟 (𝑘 − ET)

, 𝑦
2
=

(𝑟 (𝑘 − ET) − 𝑞
1
𝑘)ET

𝑎𝑘 − 𝑏 (𝑟 (𝑘 − ET) − 𝑞
1
𝑘)
.

(13)
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Based on the relations between 𝑦
1
and 𝑦

2
, there exist two

cases for the existence of sliding segments of Filippov system
(3). By simply calculating and arranging, we have the follow-
ing results.

(i) When 𝑟 < 𝑎𝑘/𝑏(𝑘 − ET), the sliding segment can be
described as

Σ
1

𝑆
= {(𝑥, 𝑦) | max {0, 𝑦

2
} ≤ 𝑦 ≤ 𝑦

1
, 𝑥 = ET} . (14)

(ii) When max{𝑞
1
𝑘/(𝑘 − ET), 𝑎𝑘/𝑏(𝑘 − ET)} < 𝑟 <

min{𝑘(𝑎 + 𝑏𝑞
1
)/𝑏(𝑘 − ET), 𝑎(𝑘 + 𝑏𝑞

1
)/𝑏(𝑘 − ET)}, the

sliding segment can be described as

Σ
2

𝑆
= {(𝑥, 𝑦) | 0 ≤ 𝑦 ≤ 𝑦

2
, 𝑥 = ET} . (15)

3.2. Sliding Mode Dynamics. Filippov system (3) only has
one piece of sliding segment, and the solutions defined in
it can be obtained from the sliding mode dynamics, which
can be determined by employing theUtkin equivalent control
method (see the appendix).

From𝐻 = 0, we get that

𝐻
𝑍
= 𝑥

= 𝑟𝑥 (1 −

𝑥

𝑘
) −

𝑎𝑥𝑦

𝑏𝑦 + 𝑥
− 𝜀𝑞
1
𝑥 = 0, 𝑥 = ET.

(16)

And solving the above equations with respect to 𝜀 yields

𝜀 =
𝑟 (1 − ET/𝑘) − 𝑎𝑦/ (𝑏𝑦 + ET)

𝑞
1

. (17)

Hence, the dynamics on the slidingmodeΣ
𝑆
can be deter-

mined by the following scalar differential equation:

̇𝑦 (𝑡) = − 𝛿𝑦 +
𝛽𝑎𝑦ET
𝑏𝑦 + ET

+
𝑟 (1 − ET/𝑘) − 𝑎𝑦/ (𝑏𝑦 + ET)

𝑞
1

𝑞
2
𝑦,

= 𝑃
1
(𝑦) (𝑃

2
𝑦 + 𝑃
3
) ≜ 𝜙 (𝑦) ,

(18)

where 𝑦 ∈ Σ
1

𝑆
or Σ
2

𝑆
,𝑃
1
(𝑦) = 𝑦/𝑞

1
(𝑏𝑦 + ET), 𝑃

2
= −𝛿𝑏𝑞

1
+

𝑟𝑏𝑞
2
(1 − ET/𝑘) − 𝑎𝑞

2
, and 𝑃

3
= −𝛿𝑞

1
ET + 𝛽𝑎𝑞

1
ET + 𝑟𝑞

2
(1 −

ET/𝑘)ET.

4. Null-Isoclines and Equilibria

4.1.The Null-Isoclines of Filippov System (3). Null-isoclines of
both systems 𝑆

1
and 𝑆
2
are related to the existence of equilib-

ria and are useful for analysis of sliding dynamic.
Null-isoclines �̇�(𝑡) = 0 and ̇𝑦(𝑡) = 0 for both systems

𝑆
1
and 𝑆

2
can be determined as follows. For the system 𝑆

1
,

solving the equation of the null-isocline �̇�(𝑡) = 0, yeilds

𝑓
𝑆
1
(𝑥) =

𝑟𝑥 (1 − 𝑥/𝑘)

𝑎 − 𝑏𝑟 (1 − 𝑥/𝑘)
, (19)

and null-isocline ̇𝑦(𝑡) = 0 gives

𝑔
𝑆
1
(𝑥) =

(𝛽𝑎 − 𝛿) 𝑥

𝑏𝛿
. (20)

For the system 𝑆
2
, solving the equation of the null-isocline

�̇�(𝑡) = 0, yields

𝑓
𝑆
2
(𝑥) =

(𝑟𝑥 (1 − 𝑥/𝑘) − 𝑞
1
) 𝑥

𝑎 + 𝑏𝑞
1
− 𝑏𝑟 (1 − 𝑥/𝑘)

, (21)

and null-isocline ̇𝑦(𝑡) = 0 gives

𝑔
𝑆
2
(𝑥) =

(𝛽𝑎 − (𝛿 − 𝑞
2
)) 𝑥

𝑏 (𝛿 − 𝑞
2
)

. (22)

4.2. The Equilibria of Filippov System (3). Because the solu-
tions of Filippov system (3) are composed of connecting
standard solutions in subsystems 𝑆

1
, 𝑆
2
and sliding mode

solutions on Σ1
𝑆
or Σ2
𝑆
.The definitions of all types of equilibria

of Filippov system have been provided in Section 2, which are
important to bifurcation analysis. There may be several types
of equilibria for Filippov system (3) which include regular
equilibrium (denoted by𝐸

𝑅
), virtual equilibrium (denoted by

𝐸
𝑉
), pseudoequilibrium (denoted by 𝐸

𝑃
), boundary equilib-

rium (denoted by𝐸
𝐵
), and one type of special point named as

tangent point (denoted by 𝐸
𝑇
). Detailed definitions of these

equilibria and the tangent point can be found in the literature
[24].

From Lemma 1, we know that the subsystem 𝑆
1
with 𝑥 <

ET has three possible equilibria: (0, 0), (𝑘, 0), and interior
equilibrium,

𝐸
∗

𝑆
1

= (𝑥
∗

𝑆
1

, 𝑦
∗

𝑆
1

)

= (
𝑘 (𝛽𝑏𝑟 + 𝛿 − 𝛽𝑎)

𝛽𝑏𝑟
,
𝑘 (𝛽𝑎 − 𝛿) (𝛽𝑏𝑟 + 𝛿 − 𝛽𝑎)

𝛽𝑏2𝑟𝛿
) .

(23)

If 𝛽𝑎 − 𝛿 > 0 and 𝑟 > (𝛽𝑎 − 𝛿)/𝛽𝑏, then there is a positive
interior equilibrium for the system 𝑆

1
.

Equilibria for the subsystem 𝑆
2
with 𝑥 > ET satisfy

𝑟𝑥 (1 −
𝑥

𝑘
) −

𝑎𝑥𝑦

𝑏𝑦 + 𝑥
− 𝑞
1
𝑥 = 0,

−𝛿𝑦 +
𝛽𝑎𝑥𝑦

𝑏𝑦 + 𝑥
+ 𝑞
2
𝑦 = 0.

(24)

Solving the above equations with respect to 𝑥 and 𝑦 yields
three possible equilibria, that is, (0, 0), (𝑘(𝑟 − 𝑞

1
)/𝑟, 0), and

interior equilibrium,

𝐸
∗

𝑆
2

= (𝑥
∗

𝑆
2

, 𝑦
∗

𝑆
2

)

= (
𝑘 (𝛽𝑏 (𝑟 − 𝑞

1
) + 𝛿 − 𝑞

2
− 𝛽𝑎)

𝛽𝑏𝑟
,

𝑘 (𝛽𝑎 − 𝛿 + 𝑞
2
) (𝛽𝑏 (𝑟 − 𝑞

1
) + 𝛿 − 𝑞

2
− 𝛽𝑎)

𝛽𝑏2𝑟 (𝛿 − 𝑞
2
)

) ,

(25)
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which indicates that, if 𝑟 > (𝛽𝑎 − 𝛿 + 𝑞
2
)/𝛽𝑏 + 𝑞

1
and 𝑞

2
<

𝛿 < 𝛽𝑎 + 𝑞
2
, then there is a positive interior equilibrium for

the system 𝑆
2
.

4.2.1. Regular Equilibria. For the subsystem 𝑆
1
with 𝑥 < ET,

(0, 0) is a regular equilibrium, while (𝑘, 0) is a virtual equilib-
rium. In addition, according to the coordinate of equilibrium
𝐸
∗

𝑆
1

, we have the following results. If 𝑟 > (𝛽𝑎 − 𝛿)/𝛽𝑏 > 0 and

𝑘 (𝛽𝑏𝑟 + 𝛿 − 𝛽𝑎)

𝛽𝑏𝑟
< ET, (26)

then it is a regular equilibrium for the system 𝑆
1
, denoted by

𝐸
1

𝑅
. If 𝑟 > (𝛽𝑎 − 𝛿)/𝛽𝑏 > 0 and

𝑘 (𝛽𝑏𝑟 + 𝛿 − 𝛽𝑎)

𝛽𝑏𝑟
> ET, (27)

then the equilibrium 𝐸
∗

𝑆
1

becomes a virtual equilibrium,
denoted by 𝐸1

𝑉
.

About regular equilibria for the subsystem 𝑆
2
with 𝑥 >

ET, (0, 0) is a virtual equilibrium, while (𝑘(𝑟 − 𝑝
1
)/𝑟, 0) may

be a regular or virtual equilibrium which depends on the
parameter space. Moreover, according to the coordinate of
equilibrium 𝐸

∗

𝑆
2

, we have the following conclusions. If 𝑟 >

(𝛽𝑎 − 𝛿 + 𝑞
2
)/𝛽𝑏 + 𝑞

1
, 𝑞
2
< 𝛿 < 𝛽𝑎 + 𝑞

2
and

𝑘 (𝛽𝑏 (𝑟 − 𝑞
1
) + 𝛿 − 𝑞

2
− 𝛽𝑎)

𝛽𝑏𝑟
> ET, (28)

then it is a regular equilibrium for the system 𝑆
2
, denoted by

𝐸
2

𝑅
. Note that if 𝑟 > (𝛽𝑎 − 𝛿 + 𝑞

2
)/𝛽𝑏 + 𝑞

1
, 𝑞
2
< 𝛿 < 𝛽𝑎 + 𝑞

2

and
𝑘 (𝛽𝑏 (𝑟 − 𝑞

1
) + 𝛿 − 𝑞

2
− 𝛽𝑎)

𝛽𝑏𝑟
< ET, (29)

then the equilibrium 𝐸
∗

𝑆
2

becomes a virtual equilibrium,
denoted by 𝐸2

𝑉
. Based on the above analysis, if

𝑘 (𝛽𝑎 − 𝛿)

𝛽𝑏 (𝑘 − ET)
< 𝑟 <

𝑘 (𝛽𝑎 − 𝛿 + 𝑞
2
+ 𝛽𝑏𝑞

1
)

𝛽𝑏 (𝑘 − ET)
, (30)

then the two virtual equilibria 𝐸1
𝑉
and 𝐸2

𝑉
can coexist.

4.2.2. Pseudoequilibrium. For the existence of pseudoequilib-
rium𝐸

𝑃
= (ET, 𝑦

𝑃
), 𝑦
𝑃
component of the pseudoequilibrium

of sliding flow satisfies the following equation:

𝑃
1
(𝑦) (𝑃

2
𝑦 + 𝑃
3
) = 0, (31)

where 𝑦 ∈ Σ
1

𝑆
or Σ
2

𝑆
. Solving the above equation with

respect to 𝑦 yields two possible roots denoted by 𝑦
𝑃
1

= 0 and

𝑦
𝑃
2

=
(𝛿𝑞
1
− 𝛽𝑎𝑞

1
− 𝑟𝑞
2
(1 − ET/𝑘))ET

−𝛿𝑏𝑞
1
+ 𝑟𝑏𝑞
2
(1 − ET/𝑘) − 𝑎𝑞

2

. (32)

Further, if

𝑘𝑞
1
(𝛿 − 𝛽𝑎)

𝑞
2
(𝑘 − ET)

< 𝑟 <
𝑘 (𝑎𝑞
2
+ 𝛿𝑏𝑞

1
)

𝑏𝑞
2
(𝑘 − ET)

(33)

holds true, then 𝑦
𝑃
2

is a positive root. Note that if 𝐸
𝑃
1

=

(ET, 𝑦
𝑃
1

) or 𝐸
𝑃
2

= (ET, 𝑦
𝑃
2

) lies in the sliding region Σ
1

𝑆
or

Σ
2

𝑆
, then the model has pseudoequilibrium. To do this, we

consider the following two cases.

Case 1 (sliding segment defined by Σ1
𝑆
). If the inequality 𝑟 <

𝑞
1
𝑘/(𝑘−ET)holds true, then𝐸

𝑃
1

= (ET, 𝑦
𝑃
1

) ∈ Σ
1

𝑆
is a pseudo-

equilibrium of the Filippov system (3). Note that −𝛿𝑏𝑞
1
+

𝑟𝑏𝑞
2
(1−ET/𝑘)−𝑎𝑞

2
< 0 (i.e., 𝑟 < 𝑘(𝑎𝑞

2
+𝛿𝑏𝑞
1
)/𝑏𝑞
2
(𝑘−ET))

is well defined in this case. Therefore if the inequalities

max{
𝑘𝑞
1
(𝛿 − 𝛽𝑎)

𝑞
2
(𝑘 − ET)

,
𝑘 (𝛽𝑎 − 𝛿)

𝛽𝑏 (𝑘 − ET)
} < 𝑟

< min{
𝑘 (𝛽𝑎 − 𝛿 + 𝑞

2
+ 𝛽𝑏𝑞

1
)

𝛽𝑏 (𝑘 − ET)
,
𝑘 (𝑎𝑞
2
+ 𝛿𝑏𝑞

1
)

𝑏𝑞
2
(𝑘 − ET)

}

(34)

hold true, then 𝐸
𝑃
2

= (ET, 𝑦
𝑃
2

) ∈ Σ
1

𝑆
is a positive pseudoequi-

librium of the Filippov system (3).

Case 2 (sliding segment defined by Σ2
𝑆
). In this case, 𝐸

𝑃
1

=

(ET, 𝑦
𝑃
1

) ∈ Σ
2

𝑆
is a pseudoequilibrium of the Filippov system

(3). If the inequalities

max{
𝑘 (𝛽𝑎 − 𝛿 + 𝑞

2
+ 𝛽𝑏𝑞

1
)

𝛽𝑏 (𝑘 − ET)
,
𝑘𝑞
1
(𝛿 − 𝛽𝑎)

𝑞
2
(𝑘 − ET)

} ≤ 𝑟

<
𝑘 (𝑎𝑞
2
+ 𝛿𝑏𝑞

1
)

𝑏𝑞
2
(𝑘 − ET)

(35)

hold true, 𝐸
𝑃
2

= (ET, 𝑦
𝑃
2

) ∈ Σ
2

𝑆
is a positive pseudoequilib-

rium of the Filippov system (3).

4.2.3. Boundary Equilibrium. The boundary equilibria of Fil-
ippov system (3) satisfy

𝑟𝑥 (1 −
𝑥

𝑘
) −

𝑎𝑥𝑦

𝑏𝑦 + 𝑥
− 𝜀𝑞
1
𝑥 = 0,

−𝛿𝑦 +
𝛽𝑎𝑥𝑦

𝑏𝑦 + 𝑥
+ 𝜀𝑞
2
𝑦 = 0,

𝑥 = ET,

(36)

with 𝜀 = 0 or 1, which indicate that, if

𝑘 (𝛽𝑏𝑟 + 𝛿 − 𝛽𝑎)

𝛽𝑏𝑟
= ET

or
𝑘 (𝛽𝑏 (𝑟 − 𝑞

1
) + 𝛿 − 𝑞

2
− 𝛽𝑎)

𝛽𝑏𝑟
= ET,

(37)

then we have the boundary equilibria

𝐸
1

𝐵
= (ET,

(𝛽𝑎 − 𝛿)ET
𝑏𝛿

) ,

𝐸
2

𝐵
= (ET,

(𝛽𝑎 − 𝛿 + 𝑞
2
)ET

𝑏 (𝛿 − 𝑞
2
)

) .

(38)
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4.2.4. Tangent Point. According to the definition of tangent
point, we can see that the tangent point 𝐸

𝑇
= (ET, 𝑦

𝑇
) on

sliding segment Σ
𝑆
satisfies

𝑟𝑥 (1 −
𝑥

𝑘
) −

𝑎𝑥𝑦

𝑏𝑦 + 𝑥
− 𝜀𝑞
1
𝑥 = 0,

𝑥 = ET.
(39)

Solving the above equations with respect to 𝑥 and 𝑦 yields
two tangent points, including

𝐸
1

𝑇
= (ET, 𝑟ET (1 − ET/𝑘)

𝑎 − 𝑏𝑟 (1 − ET/𝑘)
) ,

𝐸
2

𝑇
= (

ET (𝑟 (1 − ET/𝑘) − 𝑞
1
)

𝑎 + 𝑞
1
𝑏 − 𝑏𝑟 (1 − ET/𝑘)

) .

(40)

If we fix all parameters, then the relations among null-
isoclines, regular/virtual equilibria, pseudoequilibrium, and
sliding segment are provided in Figure 1. Note that virtual
equilibria of both systems 𝑆

1
and 𝑆

2
imply the existence of

pseudoequilibrium, andwewill prove this general result later.

4.3. The Stability of Pseudoequilibrium. In the process of
pest control, we should apply all kinds of control strategies
so as to prevent multiple pest outbreaks or make sure that
the total density of the pest stabilizes at a desired level of
ET. If the unique positive equilibrium of system 𝑆

1
and

system 𝑆
2
is virtual simultaneously, then the sliding flow

has a unique pseudoequilibrium. In order to realize this
goal, we can choose a set of parameters such that all the
equilibria of subsystems 𝑆

1
and 𝑆
2
are virtual equilibria, and

the pseudoequilibria are globally stable, which have been
widely used in pest control [26–28]. For example, if we
fixed all parameter values as those in Figure 2, then both
virtual equilibria coexist. Therefore, we address the stability
of pseudoequilibrium𝐸

𝑃
2

in the followingwhich is important
to control pest.

Theorem 6. Either the inequalities (34) or (35) hold true or
the two virtual equilibria 𝐸1

𝑉
and 𝐸2

𝑉
can coexist; then Filippov

system (3) contains a positive pseudoequilibrium 𝐸
𝑃
2

. Regard-
less of which cases would occur, the pseudoequilibrium 𝐸

𝑃
2

is
locally stable with respect to sliding mode domain.

Proof. According to the conditions of Theorem 6 we see
that the inequalities (30) hold true, which implies that the
inequalities (34) are true. Based on the discussions about
the existence of pseudoequilibrium in Section 4.2, we have
concluded that if inequalities (34) or (35) hold true, then
the system (3) contains a positive pseudoequilibrium 𝐸

𝑃
2

. It
follows from (18) that we have

𝑑𝜙 (𝑦)

𝑑𝑦

𝑦=𝑦𝑃2

=
(−𝛿𝑏
2
𝑘𝑞
1
+ 𝑟𝑏
2
𝑞
2
(𝑘 − ET) − 𝑎𝑏𝑘𝑞

2
) 𝑦
2

𝑃2

𝑘𝑞
1
(𝑏𝑦
𝑃2
+ ET)

2
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Figure 1: Notations for null-isoclines, regular/virtual equilibria,
pseudoequilibrium, and sliding segment. The parameter values are
fixed as follows: 𝑎 = 0.7, 𝑏 = 0.6, 𝑟 = 1.2, 𝑘 = 12, 𝛽 = 0.5, 𝛿 = 0.25,
𝑞
1
= 0.25, 𝑞

2
= 0.1, and ET = 5.
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Figure 2: Regular/virtual equilibrium. The parameter values are
fixed as follows: 𝑎 = 0.7, 𝑏 = 0.6, 𝑘 = 12, 𝛽 = 0.5, 𝛿 = 0.25, 𝑞

1
= 0.25,

and 𝑞
2
= 0.1.

+
(−2𝛿𝑏𝑘𝑞

1
ET − 2𝑎𝑘𝑞

2
ET + 2𝑟𝑏𝑞

2
ET (𝑘 − ET)) 𝑦

𝑃2

𝑘𝑞
1
(𝑏𝑦
𝑃2
+ ET)

2

+
−𝛿𝑘𝑞
1
ET2 + 𝑎𝛽𝑘𝑞

1
ET2 + 𝑟𝑘𝑞

2
ET2 − 𝑟𝑞

2
ET3

𝑘𝑞
1
(𝑏𝑦
𝑃2
+ ET)

2

=
(𝑘𝑞
1
(𝛿 − 𝛽𝑎) − 𝑟𝑞

2
(𝑘 − ET)) (𝛿𝑏𝑘𝑞

1
− 𝑟𝑏𝑞

2
(𝑘 − ET) + 𝑎𝑘𝑞

2
)

𝑎𝑞
1
𝑘2 (𝑏𝛽𝑞

1
+ 𝑞
2
)

.

(41)

Therefore, if the inequalities (33) hold true, then 𝑑𝜙(𝑦)/
𝑑𝑦 < 0 and 𝑦

𝑃
2

is a positive root of (31). Note that the
inequalities (34) and (35) indicate the inequalities (33). Thus,
the positive pseudoequilibrium 𝐸

𝑃
2

is locally stale if it exists.
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It is difficult to directly prove the global stability of
pseudoequilibrium 𝐸

𝑃
2

in this case. Because we cannot
employ the classical Bendixson-Dulac theorem due to the
discontinuity of vector fields. However, if there is not crossing
cycle surrounding sliding segment, then pseudoequilibrium
is globally stable [29]. From the analysis of global bifurcation
for the system (3) in the following section, the system just has
touching bifurcation and there is nonexistence of a sliding
cycle which surrounds the 𝐸

𝑃
2

. By using the similar methods,
we have that pseudoequilibrium 𝐸

𝑃
2

is globally stable. That
is to say, the local stability of pseudoequilibrium 𝐸

𝑃
2

with
respect to sliding mode domain indicates its global stability
in the first quadrant (shown in Figures 3(a), 3(b), 4(b), and
4(c)). In practice, in order to control pest outbreak, we should
choose the desirable ET at first, so that all equilibria of each
system such as system 𝑆

1
and system 𝑆

2
become virtual; then

pseudoequilibrium not only exists but also is globally stable.
In other words, the density of pest can be stable at the ET.
When the density of pest reaches or exceeds the ET, we should
carry out control strategies (e.g., releasing natural enemy,
etc.), until it falls below the ET. In this way, our control goal
can be realized fully.

5. Equilibria and Sliding Bifurcation Set

5.1. Regular/Virtual Equilibrium Bifurcation. According to
the above discussions, it is obvious that 𝑟 and ET are primary
factors in determining the existence of the above different
types of equilibria of the system (3). So we define four curves
about parameters 𝑟 and ET as follows:

𝐿
1
= {(𝑟,ET) | 𝑟 =

𝛽𝑎 − 𝛿

𝛽𝑏
} ,

𝐿
2
= {(𝑟,ET) | 𝑟 =

𝛽𝑎 − 𝛿 + 𝑞
2

𝛽𝑏
+ 𝑞
1
} ,

𝐿
3
= {(𝑟,ET) | ET =

𝑘 (𝛽𝑏𝑟 + 𝛿 − 𝛽𝑎)

𝛽𝑏𝑟
} ,

𝐿
4
= {(𝑟,ET) | ET =

𝑘 (𝛽𝑏 (𝑟 − 𝑞
1
) + 𝛿 − 𝑞

2
− 𝛽𝑎)

𝛽𝑏𝑟
} .

(42)

The four curves (i.e., 𝐿
1
, 𝐿
2
, 𝐿
3
, and 𝐿

4
) divide the 𝑟

and ET parameter space into six regions, and the existence
or coexistence of regular or virtual equilibria is indicated in
each region. The boundary equilibria 𝐸1

𝐵
and 𝐸2

𝐵
can appear

on the lines 𝐿
3
and 𝐿

4
accordingly. In particular, it follows

from Figure 2 that the two virtual equilibria 𝐸1
𝑉
and 𝐸2

𝑉
can

coexist, which is very important to pest control. However, the
two regular equilibria 𝐸1

𝑅
and 𝐸2

𝑅
cannot coexist.

5.2. Boundary Node Bifurcations. This type of bifurcation
may occur for Filippov system (3) once equilibria 𝐸

𝑃
, 𝐸
𝑇
, and

𝐸
𝑅
or 𝐸
𝑇
and 𝐸

𝑅
collide together simultaneously when ET

passes through a critical value. In this part, we choose ET
as bifurcation parameter, and all other parameters are fixed
as those in Figure 3. Note that once the parameter ET passes

through the first critical value ET
𝑐
1

= 9.3333, the regular equi-
librium 𝐸

1

𝑅
, tangent point 𝐸

𝑇
, and pseudoequilibrium 𝐸

𝑃
col-

lide together (see Figure 3(b)), where ET
𝑐
1

is determined by

ET
𝑐
1

=
𝑘 (𝛽𝑏𝑟 + 𝛿 − 𝛽𝑎)

𝛽𝑏𝑟
. (43)

A virtual equilibrium 𝐸
1

𝑉
, an invisible tangent point 𝐸1

𝑇

and a pseudoequilibrium 𝐸
𝑃
coexist, as shown in Figure 3(a),

when ET < ET
𝑐
1

. They collide at ET = ET
𝑐
1

and are substitut-
ed by a visible tangent point𝐸1

𝑇
, as shown in Figure 3(c), when

ET > ET
𝑐
1

.
Similarly, another boundary node bifurcation of Filippov

system (3) occurs at ET
𝑐
2

= 4.6667 (see Figure 4(b)), where
ET
𝑐
2

is determined by

ET
𝑐
2

=
𝑘 (𝛽𝑏 (𝑟 − 𝑞

1
) + 𝛿 − 𝑞

2
− 𝛽𝑎)

𝛽𝑏𝑟
. (44)

A stable regular equilibrium 𝐸
2

𝑅
and a visible tangent

point 𝐸2
𝑇
coexist as shown in Figure 4(a) when ET < ET

𝑐
2

.
They collide with a pseudoequilibrium 𝐸

𝑃
at ET = ET

𝑐
2

and
are substituted by an invisible tangent point 𝐸2

𝑇
as shown in

Figure 4(c) when ET > ET
𝑐
2

.

5.3. Global Sliding Bifurcation. Global sliding bifurcations
involve nonvanishing cycles, which include sliding discon-
nection, touching (or grazing) bifurcation, buckling bifurca-
tion, crossing bifurcation, bifurcation of a sliding homoclinic
orbit, and heteroclinic orbit [22]. Touching (or grazing) bifur-
cation implies that a positive period solution can collide with
the sliding segments. From the work of Kuang and Beretta
andHsu et al. [2, 7], they concluded that when the value of the
parameter 𝑎 passed slightly through the bifurcation value, a
stable limit cycle bifurcates from the unstable positive interior
equilibrium for the system (1). According to numerical
simulations, the system (3) just has touching bifurcation. For
example, if we choose ET as bifurcation parameter and fix
all other parameters as shown in Figure 5, when the value
of parameter ET varies, touching bifurcation occurs at the
critical value ET

𝑐
3

= 2.59 for the system (3). Note that
extensive numerical simulations indicate that, nomatter what
the value of ET is in touching bifurcation, the whole periodic
solution lies in the region 𝑆

1
(shown in Figure 5).This implies

that the density of pest can be successfully maintained below
ET by designing suitable threshold policy strategies. So our
control objective can be fully realized, which is a desired
situation in crop, livestock sectors and forestry.

6. Discussion

Recently, the threshold policy and IPM strategies have
attracted great attention in agriculture, forestry, animal hus-
bandry, and so on [10–12]. In the process of pest control,
IPM strategies would be used only when the density of
pest reaches or exceeds the ET. In addition, Filippov system
provides a natural and rational framework for those real
world problems, so it has been widely used in different fields
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Figure 3: Boundary node bifurcation for Filippov system (3). The parameter values are fixed as follows: 𝑎 = 0.7, 𝑏 = 0.6, 𝑟 = 1.5, 𝑘 = 12,
𝛽 = 0.5, 𝛿 = 0.25, 𝑞

1
= 0.25, and 𝑞

2
= 0.1.
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Figure 4: Boundary node bifurcation for Filippov system (3). The parameter values are fixed as follows: 𝑎 = 0.7, 𝑏 = 0.6, 𝑟 = 1.5, 𝑘 = 12,
𝛽 = 0.5, 𝛿 = 0.25, 𝑞
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2
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such as in science and engineering [19–21, 23]. In this paper,
we employ the sliding analysis of Filippov system to describe
and investigate the long term dynamical behavior of the
ratio-dependent-type prey-predator model with Michaelis-
Menten-type functional response, so that we can use the
Filippov system to model intervention of pest control policy.
Firstly, we investigate the sliding mode domain, sliding mode
dynamics. Secondly, the null-isoclines and the existence of

four types of equilibria for Filippov system, including regular,
virtual, boundary, and pseudoequilibrium and the tangent
points are discussed in detail. Moreover, the stability of
pseudoequilibrium is also studied. Thirdly, we have investi-
gated the local sliding bifurcations including regular/virtual
equilibrium bifurcation, and boundary node bifurcations.
Further, global touching bifurcation is also studied by numer-
ical techniques.
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Figure 5: Globally touching bifurcation for Filippov system (3). The parameter values are fixed as follows: 𝑎 = 0.51, 𝑏 = 0.4, 𝑟 = 1.2, 𝑘 = 6,
𝛽 = 0.6863, 𝛿 = 0.05, 𝑞
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In the process of pest control, we should apply all kinds
of control strategies so as to prevent multiple pest outbreaks
or make sure that the density of pest stabilizes at a desired
level of ET. In order to realize these goals, on the one hand,
we can determine a set of parameters such that not only all the
equilibria of subsystems 𝑆

1
and 𝑆
2
are virtual equilibria, which

ensures that the pseudoequilibria exist, but also the pseudoe-
quilibrium is globally stable. From Theorem 6, we provided
the conditions of the existence of pseudoequilibrium 𝐸

𝑃
2

for
the system (3) and showed that it is locally stable if it exists.
Further, we showed that the local stability of pseudoequilib-
rium 𝐸

𝑃
2

implies global stability by numerical simulation. On
the other hand, globally touching bifurcation indicates that
the density of pest can be successfully maintained below the
ET by designing suitable threshold policy strategies (shown
in Figure 5). Therefore our control objective can be achieved
fully in the above two cases, which can be used to pest control
in crop, livestock sectors and forestry.

Although impulsive prey-predator models with the ratio-
dependent- or Michaelis-Menten-type response function
have been studied in [13–16], the Filippov systems have many
advantages in describing interventions including spraying
pesticides and releasing natural enemies compared with
impulsive models. In this work, the number of natural enemy
to be released is proportional to its number. It is interesting
that releasing number of natural enemy can be described by
constant, independently of the existing numbers of pest and
natural enemy. Moreover, in practice, considering environ-
mental energy resource finiteness, we should choose the total
number of both populations as a guide to switch the system,
which is called the weighted escapement policy (WEP) [19,
30–32]. Therefore, in the future work, we will focus on the
above two cases, which could result in richer dynamics.

Appendix

Methods for Analysis of the Sliding Solution

Filippov Convex Method. The Filippov method associates
the following convex combination 𝐹

𝑆
(𝑍) of the two vectors

𝐹
𝑆
1

(𝑍) and 𝐹
𝑆
2

(𝑍) with each nonsingular sliding point 𝑍 ∈

Σ
2
; that is,

𝐹
𝑆
(𝑍) = (1 − 𝜆 (𝑍)) 𝐹

𝑆
1
(𝑍) + 𝜆 (𝑍) 𝐹

𝑆
2
(𝑍) , (A.1)

where

𝜆 (𝑍) =
⟨𝐻
𝑍
, 𝐹
𝑆
1

⟩

⟨𝐻
𝑍
, 𝐹
𝑆
1

− F
𝑆
2

⟩
, (A.2)

𝐹
𝑆
(𝑍) is tangent to Σ

2
and 0 ≤ 𝜆(𝑍) ≤ 1.

Thus, the sliding mode dynamics can be determined by

�̇� = 𝐹
𝑆
(𝑍) , 𝑍 ∈ Σ

2
, (A.3)

which is smooth on a one-dimensional sliding interval of Σ
2
.

The solution of the above equation is the sliding solution.
The equation 𝜆(𝑍) = 0 (or 𝜆(𝑍) = 1) indicates that the

flow is determined by 𝐹
𝑆
1

(or 𝐹
𝑆
2

) alone.Therefore the sliding
mode domain can be defined as

Σ
𝑆
= {𝑍 = (𝑥, 𝑦) ∈ Σ | 0 ≤ 𝜆 (𝑍) ≤ 1} , (A.4)

which is equivalent to Σ
𝑆
= {𝑍 ∈ Σ | 𝜎(𝑍) ≤ 0}. Denote

Σ
+

𝑆
= {𝑍 ∈ Σ | 𝜆 (𝑍) = 1} , Σ

−

𝑆
= {𝑍 ∈ Σ | 𝜆 (𝑍) = 0} ,

(A.5)



10 Abstract and Applied Analysis

by the boundary of the sliding mode domain, so the vector
fields are tangent to boundary Σ+

𝑆
or Σ−
𝑆
.

Utkin Equivalent Control Method. It follows from Utkin’s
works [18] on sliding mode dynamics along the manifold
Σ; we note that Filippov system (3) can be also rewritten as
follows:

�̇� = 𝐹 (𝑍,𝑈
𝐻
) , (A.6)

where the control 𝑈
𝐻
is defined as

𝑈
𝐻
= {

0, 𝐻 (𝑍) < 0,

𝑈
1
(𝑍, 𝑡) , 𝐻 (𝑍) > 0,

(A.7)

where 𝑈
1
is a continuous function. In the controlled system

(i.e., system 𝑆
2
), the control 𝑈

𝐻
= 𝑈
1
is applied, and in the

free system (i.e., system 𝑆
1
) 𝑈
𝐻
= 0 is applied. Assume that

a sliding mode exists on manifold Σ; that is, Σ
2
is nonempty.

Solving the following algebraic equation:

�̇� =
𝜕𝐻

𝜕𝑍
𝐹 (𝑍,U

𝐻
) = 0 (A.8)

with respect to 𝑈
𝐻

on this manifold, gives the solution
denoted by 𝑈

∗
(𝑍, 𝑡), which is referred to as equivalent

control. Substituting for 𝑈
𝐻
in system (A.6) yields

�̇� = 𝑓 (𝑍,𝑈
∗
(𝑍, 𝑡)) , 𝑍 ∈ Σ

2
(A.9)

which determines the sliding mode dynamics of the Filippov
system (3).
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