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We study the final state problem for the Dirac-Klein-Gordon equations (DKG) in two space dimensions. We prove that if the
nonresonance mass condition is satisfied, then the wave operator for DKG is well defined from a neighborhood at the origin in
lower order weighted Sobolev space to some Sobolev space.

1. Introduction

We study the final state problem for the Dirac-Klein-Gordon
equations (DKG) in two space dimensions:

(𝜕
𝑡
+ 𝛼 ⋅ ∇ + 𝑖𝑀𝛽)𝜓 = 𝜙𝛽𝜓,

(𝜕2
𝑡
− Δ + 𝑚2) 𝜙 = 𝜓∗𝛽𝜓,

(𝑡, 𝑥) ∈ R ×R
2
, (DKG)

where (𝜓, 𝜙) is a C2
× R-valued unknown function of

(𝑡, 𝑥), 𝜓 = (𝜓
1
, 𝜓

2
)
𝑡 stands a spinor field and 𝜙 denotes a

scalar field,𝑀,𝑚 > 0 denote masses of the spinor field and
the scalar field, respectively, and 𝜓

∗ denotes a transposed
conjugate to 𝜓. The operators 𝛼 ⋅ ∇ and Δ are defined by
𝛼 ⋅ ∇ = ∑

2

𝑗=1
𝛼
𝑗
𝜕
𝑥𝑗

and Δ = ∑
2

𝑗=1
𝜕2
𝑥𝑗
, respectively. Here,

𝛼
𝑗
(𝑗 = 1, 2) and 𝛽 are Dirac matrices, that is, 2 × 2 self-

adjoint matrices with constant elements such that

𝛼
2

𝑗
= 𝛽

2
= 𝐼, 𝛼

𝑗
𝛽 + 𝛽𝛼

𝑗
= 𝑂, for 𝑗 = 1, 2,

𝛼
𝑗
𝛼
𝑘
+ 𝛼

𝑘
𝛼
𝑗
= 𝑂, for 𝑗, 𝑘 = 1, 2, 𝑗 ̸= 𝑘.

(1)

Our aim in the present paper is to show existence of the
wave operator for the DKG system (DKG) under the nonres-
onance mass condition𝑚 ̸= 2𝑀 in two space dimensions.

First, we recall some well-posedness results for (DKG).
Many local well-posedness results in low-order Sobolev
spaces have been obtained for these ten years (for recent
information see, e.g., [1, 2] and references therein). Global

well-posedness results in 2d case were also obtained (see, e.g.,
[3]). Moreover, very recently, unconditional uniqueness in 2d
case was discussed in [4, 5]. On the other hand, there are few
results about scattering for (DKG) in 2d case.

In [6, 7], the asymptotic behavior of solutions for DKG
system was studied in 3d case by reducing it to a nonlinear
Klein-Gordon system (KG). DenoteD

±
≡ 𝜕

𝑡
± (𝛼 ⋅ ∇ + 𝑖𝑀𝛽).

In view of the properties (1), we have

D
−
D

+
= 𝜕

2

𝑡
− (𝛼 ⋅ ∇ + 𝑖𝑀𝛽) (𝛼 ⋅ ∇ + 𝑖𝑀𝛽) = 𝜕

2

𝑡
+ ⟨∇⟩

2

𝑀
,

(2)

where ⟨∇⟩
𝑀
≡ √𝑀2 − Δ. Hence, multiplying both sides of

the Dirac part byD
−
, we obtain

(𝜕
2

𝑡
+ ⟨∇⟩

2

𝑀
) 𝜓 = D

−
(𝜙𝛽𝜓)

= (D
−
𝜙) 𝛽𝜓 − 𝑖𝑀𝜙𝐼𝜓 + 𝜙𝛽D

+
𝜓

= ((D
−
𝜙) 𝛽 − 𝑖𝑀𝜙𝐼 + 𝜆𝜙

2
𝐼) 𝜓,

(3)

where we have used the fact that 𝜓 is the solution of the DKG
system. Thus, the solution of the DKG system satisfies the
following KG one:

(𝜕
2

𝑡
+ ⟨∇⟩

2

𝑀
) 𝜓 = ((D

−
𝜙) 𝛽 − 𝑖𝑀𝜙𝐼 + 𝜆𝜙

2
𝐼) 𝜓,

(𝜕
2

𝑡
+ ⟨∇⟩

2

𝑚
) 𝜙 = 𝜓

∗
𝛽𝜓.

(4)
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If we want to obtain a priori estimates to the local solution
for the DKG system, we can use estimates to solutions for
the above KG one. Moreover, in the present two-dimensional
case, the initial value problem for nonlinear KG systems
including (4) was studied in [8] (see also [9]). In [8],
Sunagawa proved existence of a unique global asymptotically
free solution under the nonresonance mass conditions, if the
initial data are sufficiently small, smooth and decay fast at
infinity. However, asymptotic behavior of solutions for DKG
is not clear because (DKG) is not equivalent to (4) in general.
In this paper, we will consider the DKG system itself without
reducing it into (4) such as in [10]. Though the initial value
problem for DKG was treated in [11], the final value problem
which will be discussed in this paper is more delicate because
of the derivative loss difficulties.

In [10], the wave operator for the DKG system has been
obtained in a three-dimensional case. They dealt with the
DKG system itself. Nevertheless, from a point of time decay
property for the free solutions of the DKG system, two
dimensional-case is critical, that is, borderline case between
the long range scattering and the short range one. Therefore,
their argument cannot be applicable to the two-dimensional
case. To overcome the lack of time decay property, we will use
the algebraic normal form transformation developed in paper
[8] and the decomposition of the Klein-Gordon operator, that
is,

𝜕
2

𝑡
+ ⟨∇⟩

2

𝑀
= D

+
D

−
. (5)

By this combination, we will find a suitable second approxi-
mate solution to 𝜓 (given by (42)). We note that the implicit
null structure for (DKG) was discovered in [12], and it was
used to prove local well-posedness in low regular setting in
[2]. On the other hand, in this paper, by explicit null structure,
wave operator for (DKG) will be constructed.

Next, we recall the problem of existence of the wave
operator for (DKG). We define the free-Dirac-and Klein-
Gordon evolution groups as follows:

V
𝐷
(𝑡) ≡ 𝐼 cos (𝑡⟨∇⟩

𝑀
) − (𝛼 ⋅ ∇ + 𝑖𝑀𝛽) ⟨∇⟩

−1

𝑀
sin (𝑡⟨∇⟩

𝑀
) ,

V
𝐾
(𝑡) ≡ (

cos (⟨∇⟩
𝑚
𝑡) sin (⟨∇⟩

𝑚
𝑡)

− sin (⟨∇⟩
𝑚
𝑡) cos (⟨∇⟩

𝑚
𝑡)
) .

(6)

For given final data (𝜓+, (⟨∇⟩
𝑚
𝜙+
1
, 𝜙+

2
)) ∈ (X)4 with some

Banach spaces X defined explicitly later, we put

𝜓
0
(𝑡) ≡V

𝐷
(𝑡) 𝜓

+
,

(
𝜙
0
(𝑡)

⟨∇⟩
−1

𝑚
𝜕
𝑡
𝜙
0
(𝑡)
) ≡V

𝐾
(𝑡) (

𝜙
+

1

⟨∇⟩
−1

𝑚
𝜙+
2

) .
(7)

We will look for a unique time local solution of (DKG)which
satisfies the final state conditions as follows:

lim
𝑡→∞

󵄩󵄩󵄩󵄩𝜓 (𝑡) − 𝜓0 (𝑡)
󵄩󵄩󵄩󵄩X̃ = 0, (8)

lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(

⟨∇⟩
1/2

𝑚
𝜙 (𝑡)

⟨∇⟩
−1/2

𝑚
𝜕
𝑡
𝜙 (𝑡)

) − (
⟨∇⟩

1/2

𝑚
𝜙
0
(𝑡)

⟨∇⟩
−1/2

𝑚
𝜕
𝑡
𝜙
0
(𝑡)
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩X̃
= 0, (9)

where X̃ is also a suitable Banach space. If there exist
𝑇 > 0 and a unique solution (𝜓, ⟨∇⟩

1/2

𝑚
𝜙, ⟨∇⟩

−1/2

𝑚
𝜕
𝑡
𝜙) ∈

(C([𝑇,∞); X̃))4 for (DKG) satisfying (8)-(9), then the wave
operatorW+ for (DKG) is defined by the mapping as follows:

W
+
: (X)2 × (⟨∇⟩−1X × X)

󳨀→ (X̃)
2

× (⟨∇⟩
−1/2X̃ × ⟨∇⟩

1/2X̃) ,

(𝜓 (𝑡) , (𝜙 (𝑡) , 𝜕
𝑡
𝜙 (𝑡))) =W

+
(𝜓

+
, (𝜙

+

1
, 𝜙

+

2
)) ,

for 𝑡 ∈ [𝑇,∞) ,

(10)

where ⟨∇⟩−𝑠X ≡ {𝜙; ‖⟨∇⟩
𝑠
𝜙‖X < ∞}.

2. Several Notations and Main Results

We introduce several notations to state our main results. For
𝑚, 𝑘 ∈ R, and 1 ≤ 𝑝 ≤ ∞, we introduce the weighted Sobolev
space as follows:

𝐻
𝑚,𝑘

𝑝
= {𝜙;

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐻𝑚,𝑘𝑝

≡
󵄩󵄩󵄩󵄩󵄩⟨
𝑥⟩

𝑘
⟨∇⟩

𝑚
𝜙
󵄩󵄩󵄩󵄩󵄩𝐿𝑝

< ∞} , (11)

where ⟨𝑥⟩ = (1 + |𝑥|2)1/2, ⟨∇⟩ = (1 − Δ)1/2. We also write for
simplicity 𝐻𝑚,𝑘 = 𝐻𝑚,𝑘

2
, 𝐻𝑚 = 𝐻𝑚,0

2
, and 𝐻𝑚

𝑝
= 𝐻𝑚,0

𝑝
, and

so we usually omit the index 0 and 𝑝 = 2 if it does not cause
a confusion.

We now state ourmain results in this paper.We introduce
the function space as follows:

𝐷
𝑞
≡ 𝐻

4−4/𝑞

𝑞/(𝑞−1)
∩ 𝐻

5/2,1
∩ 𝐻

2

1
. (12)

Theorem 1. Let 𝑚,𝑀 > 0, 𝑚 ̸= 2𝑀, 4 < 𝑞 ≤ ∞

and (𝜓+, (⟨∇⟩𝜙+
1
, 𝜙+

2
)) ∈ (𝐷

𝑞
)
4. If the norm 𝜌 ≡

‖(𝜓+, (⟨∇⟩𝜙+
1
, 𝜙+

2
))‖

𝐻
2
1
is sufficiently small, then there exist a

positive constant 𝑇 > 0 and a unique solution

(𝜓 (𝑡) , (
⟨∇⟩

1/2

𝑚
𝜙 (𝑡)

⟨∇⟩
−1/2

𝑚
𝜕t𝜙 (𝑡)

)) ∈ (𝐶 ([𝑇,∞) ;𝐻
1/2
))

4

, (13)

for the system (DKG). Moreover, there exists a positive constant
𝐶 > 0 such that the following estimate

󵄩󵄩󵄩󵄩𝜓 (𝑡) − 𝜓0 (𝑡)
󵄩󵄩󵄩󵄩𝐻1/2 +

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(

𝜙 (𝑡)

⟨∇⟩
−1

𝑚
𝜕
𝑡
𝜙 (𝑡)

) − (
𝜙
0
(𝑡)

⟨∇⟩
−1

𝑚
𝜕
𝑡
𝜙
0
(𝑡)
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻1

≤ 𝐶𝑡
−𝜇

(14)

is true for all 𝑡 ≥ 𝑇, where 1/2 < 𝜇 < 1 − 2/𝑞 and (𝜓
0
, 𝜙

0
) is

given by (7).

By Theorem 1, we can get existence of the wave operator
for (DKG) as follows.

Corollary 2. Let 𝑚,𝑀 > 0, 𝑚 ̸= 2𝑀, and 4 ≤ 𝑞 < ∞. Then
the wave operatorW+ for (DKG) is well defined from a neigh-
borhood at the origin in the space (𝐷

𝑞
)
2
× (⟨∇⟩

−1
𝐷
𝑞
× 𝐷

𝑞
)

to the space (𝐻1/2)
2

× (𝐻1 × 𝐿2).
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The rest of this paper is organized as follows. In Section 3,
we state some basic estimates for free solutions of the DKG
system and we introduce “null forms” and state their prop-
erties. In Section 4, we decompose two harmful terms by the
algebraic normal form transformation and we find a second
approximation for𝜓 through the decomposition of theKlein-
Gordon operator by the Dirac one. In Section 5, following
paper [10], we will also change the transformed DKG system
into another form in order to apply the Strichartz type
estimates to the Dirac part. In Section 6, we will prove
Theorem 1 by an iteration scheme based on paper [13].

3. Elementary Estimates and Null Forms

Through the paper, wewrite𝐴 ≃ 𝐵 if there exist some positive
constants 𝐶

1
, 𝐶

2
> 0 such that 𝐶

1
𝐵 ≤ 𝐴 ≤ 𝐶

2
𝐵, and we also

write 𝐴 ≲ 𝐵 if there exists a positive constant 𝐶 > 0 such that
𝐴 ≤ 𝐶𝐵.

We introduce the free evolution groups as follows:

U
±,𝑚

(𝑡) ≡ 𝑒
±𝑖𝑡⟨∇⟩𝑚 = F

−1
𝑒
±𝑖𝑡⟨𝜉⟩𝑚F. (15)

Then, we have the following decomposition:

V
𝐷
(𝑡) = ∑

±

U
±,𝑀

(𝑡)A
𝐷

±
, (16)

where

A
𝐷

±
≡
1

2
(𝐼 ± 𝑖⟨∇⟩

−1

𝑀
(𝛼 ⋅ ∇ + 𝑖𝑀𝛽)) (17)

is 0th order matrix operator. We note that for any C2-valued
function 𝜓, the following equivalency is valid:

󵄩󵄩󵄩󵄩󵄩
A

𝐷

±
𝜓
󵄩󵄩󵄩󵄩󵄩𝐻𝑚,𝑘𝑝

≃
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩𝐻𝑚,𝑘𝑝

. (18)

Now, we state 𝐿𝑝 − 𝐿𝑞 time decay estimates through the
free evolution groupsU

±,𝑚
(𝑡) obtained in paper [14].

Lemma 3. Let𝑚 ̸= 0 and 2 ≤ 𝑝 ≤ ∞. Then the estimate

󵄩󵄩󵄩󵄩U±,𝑚
(𝑡) 𝜙

󵄩󵄩󵄩󵄩𝐿𝑝 ≲ 𝑡
2/𝑝−1󵄩󵄩󵄩󵄩𝜙

󵄩󵄩󵄩󵄩𝐻2(1−2/𝑝)𝑞
(19)

is true for any 𝑡 > 0, where 𝑞 is a conjugate exponent of 𝑝:
1/𝑝 + 1/𝑞 = 1.

By the lemma, we can easily get 𝐿𝑝 − 𝐿𝑞 time decay
estimates to free solutions for the DKG system.

Corollary 4. Under the same assumption of Lemma 3 and
𝑀 > 0, the following estimates

󵄩󵄩󵄩󵄩V𝐷
(𝑡) 𝜓

+󵄩󵄩󵄩󵄩𝐿𝑝 ≲ 𝑡
2/𝑝−1󵄩󵄩󵄩󵄩𝜓

+󵄩󵄩󵄩󵄩𝐻2(1−2/𝑝)𝑞
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
V

𝐾
(𝑡) (

𝜙+
1

⟨∇⟩
−1

𝑚
𝜙+
2

)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝

≲ 𝑡
2/𝑝−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(

𝜙+
1

⟨∇⟩
−1

𝑚
𝜙+
2

)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻2(1−2/𝑝)𝑞

(20)

are valid for any 𝑡 > 0, where 𝑞 is a conjugate exponent of 𝑝:
1/𝑝 + 1/𝑞 = 1.

Remark 5. Let 𝜅 ∈ R, 𝑀,𝑚 ̸= 0, and 2 ≤ 𝑝 < ∞. Then the
following estimates

󵄩󵄩󵄩󵄩V𝐷
(𝑡) 𝜓

+󵄩󵄩󵄩󵄩𝐻𝜅𝑝
≲ 𝑡

2/𝑝−1󵄩󵄩󵄩󵄩𝜓
+󵄩󵄩󵄩󵄩𝐻𝜅+2−4/𝑝,1 ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
V

𝐾
(𝑡) (

𝜙+
1

⟨∇⟩
−1

𝑚
𝜙
+

2

)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻𝜅𝑝

≲ 𝑡
2/𝑝−1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(

𝜙+
1

⟨∇⟩
−1

𝑚
𝜙
+

2

)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻𝜅+2−4/𝑝,1

(21)

hold for any 𝑡 > 0.

Next, we introduce the Strichartz estimates, which enable
us to treat the problem in lower order Sobolev spaces. Denote
the space-time norm

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩𝐿𝑟𝑡(𝐼;𝐿

𝑞
𝑥)
≡
󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝜙 (𝑡)

󵄩󵄩󵄩󵄩𝐿𝑞𝑥

󵄩󵄩󵄩󵄩󵄩𝐿𝑟𝑡(𝐼)
, (22)

where 𝐼 is a bounded or unbounded time interval. We define
the integral operator as follows:

G
±,𝑚

[𝑔] (𝑡) ≡ ∫
𝑡

𝑇

U
±,𝑚

(𝑡 − 𝜏) ⟨∇⟩
−1

𝑚
𝑔 (𝜏) 𝑑𝜏 (23)

for any 𝑇 ∈ 𝐼, where 𝑚 > 0. By the duality argument of [15]
along with Lemma 3, we have the following (see also [10, 13]).

Lemma 6. Let 2 ≤ 𝑞 < ∞ and 2/𝑟 = 1 − (2/𝑞). Then for any
time interval 𝐼, the following estimates are true:

󵄩󵄩󵄩󵄩G±,𝑚
[𝑔]

󵄩󵄩󵄩󵄩𝐿𝑟𝑡(𝐼;𝐿
𝑞
𝑥)
≲
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑟󸀠𝑡 (𝐼;𝐻

2𝛾−1

𝑞󸀠
)
,

󵄩󵄩󵄩󵄩G±,𝑚
[𝑔]

󵄩󵄩󵄩󵄩𝐿∞𝑡 (𝐼;𝐿
2
𝑥)
≲
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑟󸀠𝑡 (𝐼;𝐻

𝛾−1

𝑞󸀠
)
,

󵄩󵄩󵄩󵄩G±,𝑚
[𝑔]

󵄩󵄩󵄩󵄩𝐿𝑟𝑡(𝐼;𝐿
𝑞
𝑥)
≲
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿1𝑡(𝐼;𝐻

𝛾−1
)
,

(24)

where 𝑟󸀠 = 𝑟/(𝑟 − 1), 𝑞󸀠 = 𝑞/(𝑞 − 1) and 𝛾 = 1 − (2/𝑞).

Next, we introduce the Leibniz rule for fractional deriva-
tives.

Lemma 7. Let 𝜅 > 0, 1 < 𝑝, 𝑞
1
, 𝑞

2
< ∞, 1 < 𝑟

1
, 𝑟

2
≤ ∞,

and 1/𝑝 = 1/𝑞
1
+ 1/𝑟

1
= 1/𝑞

2
+ 1/𝑟

2
. Then the following

estimate holds:

‖𝑢V‖
𝐻
𝜅
𝑝
≲ ‖𝑢‖

𝐻
𝜅
𝑞1
‖V‖

𝐿
𝑟1 + ‖V‖𝐻𝜅𝑞2

‖𝑢‖
𝐿
𝑟2 . (25)

For the proof of (25) see, for example, [16].
We introduce the operator Z = (Z

1
,Z

2
), where Z

𝑘
≡

𝑥
𝑘
𝜕
𝑡
+ 𝑡𝜕

𝑘
for 𝑘 = 1, 2. Let Z𝛼 = Z

𝛼1

1
Z

𝛼2

2
for a multi-

index 𝛼 = (𝛼
1
, 𝛼

2
) ∈ (N ∪ {0})

2. We can see the commutation
relations (see [6, 17]) as follows:

[D
+
,Z

𝑘
− (

1

2
) 𝛼

𝑘
] = 𝛼

𝑘
D

+
,

[𝜕
2

𝑡
− Δ + 𝑚

2
,Z

𝑘
] = 0,

(26)

for 𝑘 = 1, 2, where [𝐴, 𝐵] ≡ 𝐴𝐵 − 𝐵𝐴.
We introduce the quadratic null forms as follows:

Q
0
(𝑓, 𝑔) ≡ (𝜕

𝑡
𝑓) (𝜕

𝑡
𝑔) − (∇𝑓) ⋅ (∇𝑔) ,

Q
𝑗,𝑘
(𝑓, 𝑔) ≡ (𝜕

𝑗
𝑓) (𝜕

𝑘
𝑔) − (𝜕

𝑘
𝑓) (𝜕

𝑗
𝑔) ,

(27)
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for 0 ≤ 𝑗 < 𝑘 ≤ 2, where 𝜕 ≡ (𝜕
0
, ∇) ≡ (𝑖𝜕

𝑡
, 𝜕

1
, 𝜕

2
).

In particular, Q
𝑗,𝑘

is called a strong null form and has an
additional time decay property through the operator Z

𝑘
,

obtained in [18] (see also [8, 13, 19], etc.).

Lemma 8. Let 𝑗, 𝑘 = 1, 2. Then, for any smooth function 𝑓, 𝑔,
the identities

Q
0,𝑗
(𝑓, 𝑔) = 𝑡

−1
(𝜕

0
𝑓) (Z

𝑗
𝑔) − 𝑡

−1
(Z

𝑗
𝑓) (𝜕

0
𝑔) ,

Q
𝑗,𝑘
(𝑓, 𝑔) = 𝑡

−2
(Z

𝑗
𝑔) (Z

𝑘
𝑓)

− 𝑡
−2
(Z

𝑗
𝑓) (Z

𝑘
𝑔) + 𝑡

−1
(𝜕

𝑗
𝑓) (Z

𝑘
𝑔)

− 𝑡
−1
(𝜕

𝑗
𝑔) (Z

𝑘
𝑓) + 𝑡

−1
(Z

𝑗
𝑓) (𝜕

𝑘
𝑔)

− 𝑡
−1
(Z

𝑗
𝑔) (𝜕

𝑘
𝑓)

(28)

are valid for any 𝑡 ∈ R \ {0}.

4. Decomposition of Critical Terms

We study a structure of some harmful terms of (DKG). By the
difference of (DKG) and the free DKG system, it follows that

D
+
(𝜓 − 𝜓

0
) = (𝜙 − 𝜙

0
) 𝛽𝜓

+ 𝜙
0
𝛽 (𝜓 − 𝜓

0
) + 𝜙

0
𝛽𝜓

0
,

(◻ + 𝑚
2
) (𝜙 − 𝜙

0
) = (𝜓 − 𝜓

0
)
∗

𝛽𝜓

+ 𝜓
∗

0
𝛽 (𝜓 − 𝜓

0
) + 𝜓

∗

0
𝛽𝜓

0
,

(29)

where ◻ = 𝜕2
𝑡
− Δ. The last two terms 𝜙

0
𝛽𝜓

0
and 𝜓∗

0
𝛽𝜓

0
are

critical, both of which have the worst time decay property.
Especially, since

𝜙
0
𝛽𝜓

0
, 𝜓

∗

0
𝛽𝜓

0
= 𝑂 (𝑡

−1
) in 𝐿2 as 𝑡 󳨀→ +∞ (30)

(see Corollary 4), the𝐿2-normof these terms is not integrable
with respect to time 𝑡 over [1,∞). Therefore, it can not be
expected that usual perturbation technique is applicable to
(29). To overcome this lack of time decay property, we will
decompose them into an image of a Klein-Gordon operator
and a remainder term following paper [8], based on papers
[19–21].

Let (V
1
, V

2
) be a solution for the following homogeneous

KG system with masses𝑀
1
,𝑀

2
> 0,

(◻ +𝑀
2

𝑗
) V

𝑗
= 0, (𝑡, 𝑥) ∈ R ×R

2
, for 𝑗 = 1, 2. (31)

By the masses 𝑀
1
, 𝑀

2
, we introduce the symmetric matrix

as follows:

M =M (𝑀
1
,𝑀

2
) = (

𝑀2

1
+𝑀2

2
2𝑀

1
𝑀

2

2𝑀
1
𝑀

2
𝑀2

1
+𝑀2

2

) . (32)

We have the following.

Lemma 9 (see [8]). Let 𝑚̃ > 0 with det (𝑚̃2
𝐼 −M) ̸= 0. Then

the quadratic term V
1
V
2
can be decomposed as

V
1
V
2
=

1

det (𝑚̃2𝐼 −M)
{(◻ + 𝑚̃

2
) 𝑓 − 4R} , (33)

where

𝑓 = 𝑓 (V
1
, V

2
) ≡ (−𝑀

2

1
−𝑀

2

2
+ 𝑚̃

2
) V

1
V
2
− 2Q

0
(V

1
, V

2
) ,

R =R (V
1
, V

2
) ≡

2

∑
𝑚=1

Q
0,𝑚

(𝜕
𝑡
V
1
, 𝜕

𝑚
V
2
)

+

2

∑
𝑚=1

Q
0,𝑚

(𝜕
𝑡
V
2
, 𝜕

𝑚
V
1
) − Q

1,2
(𝜕

1
V
1
, 𝜕

2
V
2
)

− Q
2,1
(𝜕

2
V
1
, 𝜕

1
V
2
) .

(34)

Under the nonresonance mass condition 𝑚,𝑀 > 0, and
𝑚 ̸= 2𝑀, we can apply Lemma 9 to the critical terms 𝜙

0
𝛽𝜓

0

and 𝜓∗
0
𝛽𝜓

0
. Before doing so, we prepare for several notations.

We put

M̃ ≡
1

𝑚2 (2𝑀 + 𝑚) (𝑚 − 2𝑀)
(35)

which is well defined if 𝑚,𝑀 > 0 and 𝑚 ̸= 2𝑀. For a real-
valued function 𝜙 and a C2-valued function 𝜓 = (𝜓

1
, 𝜓

2
)
𝑡,

we define C2-valued functions of bilinear form:

𝑓
𝐷
= 𝑓

𝐷
(𝜙, 𝜓) ≡ (𝑓 (𝜙, 𝜓

1
) , 𝑓 (𝜙, 𝜓

2
))
𝑡

,

R
𝐷
=R

𝐷
(𝜙, 𝜓) ≡ (R (𝜙, 𝜓

1
) ,R (𝜙, 𝜓

2
))
𝑡

,

Q
𝐷

0
= Q

𝐷

0
(𝜙, 𝜓) ≡ (Q

0
(𝜙, 𝜓

1
) ,Q

0
(𝜙, 𝜓

2
))
𝑡

,

(36)

Moreover, for C2-valued functions 𝜑 = (𝜑
1
, 𝜑

2
)
𝑡, 𝜓 =

(𝜓
1
, 𝜓

2
)
𝑡, we put the following bilinear forms:

𝑓
𝐾
= 𝑓

𝐾
(𝜑

𝑡
, 𝜓) ≡

2

∑
𝑗=1

𝑓 (𝜑
𝑗
, 𝜓

𝑗
) ,

R
𝐾
=R

𝐾
(𝜑

𝑡
, 𝜓) ≡

2

∑
𝑗=1

R (𝜑
𝑗
, 𝜓

𝑗
) ,

Q
𝐾

0
= Q

𝐾

0
(𝜑

𝑡
, 𝜓) ≡

2

∑
𝑗=1

Q
0
(𝜑

𝑗
, 𝜓

𝑗
) .

(37)

We have the following.

Corollary 10. Let 𝑚,𝑀 > 0, 𝑚 ̸= 2𝑀, and (𝜓
0
, 𝜙

0
) be a

free solution for the Dirac-Klein-Gordon equations. Then the
quadratic terms 𝜙

0
𝛽𝜓

0
, 𝜓∗

0
𝛽𝜓

0
can be expressed as

𝜙
0
𝛽𝜓

0
= M̃ {(◻ +𝑀

2
) 𝑓

𝐷
(𝜙

0
, 𝛽𝜓

0
) − 4R

𝐷
(𝜙

0
, 𝛽𝜓

0
)} ,

𝜓
∗

0
𝛽𝜓

0
= M̃ {(◻ + 𝑚

2
) 𝑓

𝐾
(𝜓

∗

0
, 𝛽𝜓

0
) − 4R

𝐾
(𝜓

∗

0
, 𝛽𝜓

0
)} .

(38)
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Proof. We consider the Dirac part of (38). Multiplying byD
−

both hand sides ofD
+
𝜓
0
= 0, we get

D
−
D

+
𝜓
0
= (◻ +𝑀

2
) 𝜓

0
= 0, (39)

which implies that 𝜓
0
= (𝜓

0,1
, 𝜓

0,2
)
𝑡 is also a solution of the

free KG equation. Note that by the condition 𝑚,𝑀 > 0 and
𝑚 ̸= 2𝑀, we can apply Lemma 9 with 𝑚̃ = 𝑀, V

1
= 𝜙

0
, and

V
2
= 𝜓

0,𝑘
to get, for 𝑘 = 1, 2,

𝜙
0
𝜓
0,𝑘
= M̃ {(◻ +𝑀

2
) 𝑓 (𝜙

0
, 𝜓

0,𝑘
) − 4R (𝜙

0
, 𝜓

0,𝑘
)} . (40)

Thus, by a simple calculation, we obtain (38). Next, note
that from equality (39), we see that 𝜓

0
satisfies the free KG

equation. Thus in the same manner as the proof of the Dirac
part, we can prove the KG part, which completes the proof of
the corollary.

Next, we will change the DKG equations into another
form without critical nonlinearities. We introduce a new
unknown function (Ψ,Φ) as follows:

Ψ ≡ 𝜓 − 𝜓
0
− 𝑓

𝐷
≡ 𝜓̃ − 𝑓

𝐷
,

Φ ≡ 𝜙 − 𝜙
0
− 𝑓

𝐾
≡ 𝜙 − 𝑓

𝐾
,

(41)

where (𝜓
0
, 𝜙

0
) is defined by (7) and

𝑓
𝐷
= 𝑓

𝐷
(𝜙

0
, 𝜓

0
) ≡ M̃D

−
𝑓
𝐷
(𝜙

0
, 𝛽𝜓

0
)

= M̃ (𝑓
𝐷
(D

−
𝜙
0
, 𝛽𝜓

0
) − 𝑖𝑀𝑓

𝐷
(𝜙

0
, 𝜓

0
)) ,

(42)

𝑓
𝐾
= 𝑓

𝐾
(𝜓

0
) ≡ M̃𝑓

𝐾
(𝜓

∗

0
, 𝛽𝜓

0
) (43)

are the second approximate solution to (𝜓, 𝜙), where we have
used the identities 𝛼

𝑗
𝛽 + 𝛽𝛼

𝑗
= 𝑂, 𝛽2 = 𝐼 and D

+
𝜓
0
= 0 to

obtain the third equality in (42).
Here, we remember that by the anticommutation rela-

tions (1) of the Dirac matrices, we can decompose the KG
operator as follows:

◻ +𝑀
2
= D

+
D

−
. (44)

By combining Corollary 10 and this decomposition, we can
rewrite (DKG) as follows.

Lemma 11. Let 𝑚,𝑀 > 0 and 𝑚 ̸= 2𝑀. Then (𝜓, 𝜙) satisfies
(DKG) if and only if the new variable (Ψ,Φ) defined by (41) is
a solution of

D
+
Ψ = 𝐹,

(◻ + 𝑚2)Φ = 𝐺,
(𝑡, 𝑥) ∈ R ×R

2
, (45)

where
𝐹 = 𝐹 (𝜙, 𝜓̃)

≡ 𝜙𝛽𝜓̃ + 𝜙𝛽𝜓
0
+ 𝜙

0
𝛽𝜓̃ − 4M̃R

𝐷
(𝜙

0
, 𝛽𝜓

0
) ,

𝐺 = 𝐺 (𝜓̃)

≡ 𝜓̃
∗
𝛽𝜓̃ + 𝜓̃

∗
𝛽𝜓

0
+ 𝜓

∗

0
𝛽𝜓̃ − 4M̃R

𝐾
(𝜓

∗

0
, 𝛽𝜓

0
) ,

(46)

and M̃, R
𝐷

and R
𝐾

are defined by (35), (36), and (37),
respectively.

This lemma enables us to treat the Dirac-Klein-Gordon
equations (DKG) as well as the reduced KG system (4) in two
space dimensions.

Proof. From (29), we see that (𝜓, 𝜙) is a solution of (DKG) if
and only if the new variable (𝜓̃, 𝜙) satisfies the followingDKG
equations:

D
+
𝜓̃ = 𝜙𝛽𝜓̃ + 𝜙𝛽𝜓

0
+ 𝜙

0
𝛽𝜓̃ + 𝜙

0
𝛽𝜓

0
,

(◻ + 𝑚
2
) 𝜙 = 𝜓̃

∗
𝛽𝜓̃ + 𝜓̃

∗
𝛽𝜓

0
+ 𝜓

∗

0
𝛽𝜓̃ + 𝜓

∗

0
𝛽𝜓

0
.

(47)

We consider the Dirac part of (47) only, since it is easier to
handle the KG part. Note that by the assumption 𝑚,𝑀 > 0

and 𝑚 ̸= 2𝑀, we can apply Corollary 10 to 𝜙
0
𝛽𝜓

0
. Thus, we

have

𝜙
0
𝛽𝜓

0
= M̃ {(◻ +𝑀

2
) 𝑓

𝐷
(𝜙

0
, 𝛽𝜓

0
) − 4R

𝐷
(𝜙

0
, 𝛽𝜓

0
)} .

(48)

Moreover, by the decomposition (44), we can transform the
first term of the right hand side of (48) as follows:

𝜆M̃ (◻ +𝑀
2
) 𝑓

𝐷
(𝜙

0
, 𝛽𝜓

0
)

= M̃D
+
D

−
𝑓
𝐷
(𝜙

0
, 𝛽𝜓

0
) = D

+
𝑓
𝐷
,

(49)

where we have used the definition of 𝑓
𝐷

given by (42).
Inserting (48) and (49) into the Dirac part of (47), we obtain
the Dirac part of (45), which completes the proof of the
lemma.

Remark 12. The null structure of (DKG)was characterized in
[12] by using Fourier space. On the other hand, we note that
in the above argument, Fourier space does not appear at all.

5. Reduction to Some First Order System

To construct a solution for the final value problemof theDKG
system, we will use the Strichartz type estimates (Lemma 6).
However, it seems difficult to apply these estimates to the
Dirac part for (45) due to a derivative loss difficulty. To gain
first order differentiability properties of nonlinear term, we
use the matrix operators

B
𝐷

±
≡
1

2
𝐼 (1 ∓ 𝑖⟨∇⟩

−1

𝑀
𝜕
𝑡
) = ∓

𝑖

2
⟨∇⟩

−1

𝑀
L

𝐷

∓
,

L
𝐷

±
≡ (𝜕

𝑡
∓ 𝑖⟨∇⟩

𝑚
) 𝐼,

(50)

though we do not necessarily need the operatorB in dealing
with the initial value problem for the DKG system (see [11]).
We will construct the desired solution (𝜓, 𝜙) for the DKG
system by the iteration scheme. Let {(𝜓𝑙, 𝜙𝑙)}

𝑙≥0
be a sequence

such that

D
+
𝜓𝑙+1 = 𝜙𝑙𝛽𝜓𝑙,

(◻ + 𝑚2) 𝜙𝑙+1 = (𝜓𝑙)
∗

𝛽𝜓𝑙,
𝑙 ≥ 0,

(𝜓
0
, 𝜙

0
) = (𝜓

0
, 𝜙

0
) ,

(51)



6 Abstract and Applied Analysis

under the final conditions

lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩
𝜓
𝑙
(𝑡) − 𝜓

0
(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻1/2

= 0, (52)

lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(

𝜙𝑙 (𝑡)

⟨∇⟩
−1

𝑚
𝜕
𝑡
𝜙𝑙 (𝑡)

) − (
𝜙
0
(𝑡)

⟨∇⟩
−1

𝑚
𝜕
𝑡
𝜙
0
(𝑡)
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐻1
= 0, (53)

for 𝑙 ≥ 0, where (𝜓
0
, 𝜙

0
) is given by (7). It suffices to prove

that the sequence {𝜓𝑙, (⟨∇⟩1/2
𝑚
𝜙𝑙, ⟨∇⟩

−1/2

𝑚
𝜕
𝑡
𝜙𝑙)}

𝑙≥0
is a Cauchy

one in the Banach space (𝐶([𝑇,∞);𝐻1/2))
4

for some 𝑇 > 0.
As the previous section, we introduce the new sequence

{(Ψ
𝑙, Φ𝑙)} as follows:

Ψ
𝑙
≡ 𝜓

𝑙
− 𝜓

0
− 𝑓

𝐷
≡ 𝜓̃

𝑙
− 𝑓

𝐷
,

Φ
𝑙
≡ 𝜙

𝑙
− 𝜙

0
− 𝑓

𝐾
≡ 𝜙

𝑙
− 𝑓

𝐾
.

(54)

By Lemma 11, the sequence {(𝜓𝑙, 𝜙𝑙)} is a solution of (51) if and
only if the new one {(Ψ𝑙, Φ𝑙)} satisfies the transformed DKG
equations as follows:

D
+
Ψ𝑙+1 = 𝐹𝑙,

(◻ + 𝑚2)Φ𝑙+1 = 𝐺𝑙,
𝑙 ≥ 1, (55)

(Ψ
0
, Φ

0
) = − (𝑓

𝐷
, 𝑓

𝐾
) , (56)

where

𝐹
𝑙
≡ 𝐹 (𝜙

𝑙
, 𝜓̃

𝑙
) , 𝐺

𝑙
≡ 𝐺 (𝜓̃

𝑙
) , (57)

for 𝑙 ≥ 0 (𝑓
𝐷
, 𝑓

𝐾
, and 𝐹 and 𝐺 are defined by (42)-(43) and

(46), resp.).
By the decomposition of the Klein-Gordon operator by

the Dirac operator, we have

L
𝐷

±
B

𝐷

±
= ∓

𝑖

2
⟨∇⟩

−1

𝑀
𝐼 (𝜕

2

𝑡
+ ⟨∇⟩

2

𝑀
) = ∓

𝑖

2
⟨∇⟩

−1

𝑀
D

−
D

+
. (58)

Thus, from the Dirac part for (55), we can deduce the
following:

L
𝐷

±
B

𝐷

±
Ψ
𝑙+1

= ∓
𝑖

2
⟨∇⟩

−1

𝑀
D

−
D

+
Ψ
𝑙+1

= ⟨∇⟩
−1

𝑀
𝐹
𝑙

±
, (59)

for 𝑙 ≥ 0, where 𝐹𝑙
±
≡ ∓(𝑖/2)D

−
𝐹𝑙. Therefore, from Dirac part

of (55), we have

L
𝐷

±
B

𝐷

±
Ψ
𝑙+1

= ⟨∇⟩
−1

𝑀
𝐹
𝑙

±
, 𝑙 ≥ 0,

B
𝐷

±
Ψ
0
= −B

𝐷

±
𝑓
𝐷
.

(60)

Remark 13. By properties (1) of the Dirac matrices, we can
transform 𝐹𝑙

±
into another form without any derivatives of

𝜓̃ or the free solution 𝜓
0
(see (78)-(79), precisely). This fact

enables us to use the Strichartz estimates for (60).

Next we will also transform the KG part of (55) as in
[10, 13]. We also use the operator (1-component version of the
Dirac part) as follows:

B
𝐾

±
≡
1

2
(1 ∓ 𝑖⟨∇⟩

−1

𝑚
𝜕
𝑡
) , L

𝐾

±
≡ 𝜕

𝑡
∓ 𝑖⟨∇⟩

𝑚
. (61)

We can see that the sequence {Φ𝑙} is a solution of the KG part
for (55) if and only if the sequence {B𝐾

±
Φ𝑙} satisfies

L
𝐾

±
B

𝐾

±
Φ
𝑙+1

= ⟨∇⟩
−1

𝑚
𝐺
𝑙

±
, for 𝑙 ≥ 0,

B
𝐾

±
Φ
0
= −B

𝐾

±
𝑓
𝐾
,

(62)

where 𝐺𝑙

±
≡ 𝐺𝑙

±
(𝜓̃𝑙) ≡ ∓(𝑖/2)𝐺𝑙.

Therefore, by (60) and (62), we get

L𝐷

±
B𝐷

±
Ψ𝑙+1 = ⟨∇⟩

−1

𝑀
𝐹𝑙
±
,

L𝐾

±
B𝐾

±
Φ𝑙+1 = ⟨∇⟩

−1

𝑚
𝐺𝑙

±
,

for 𝑙 ≥ 0, (63)

(B
𝐷

±
Ψ
0
,B

𝐾

±
Φ
0
) = − (B

𝐷

±
𝑓
𝐷
,B

𝐾

±
𝑓
𝐾
) . (64)

Remark 14. The identity ∑
±
B∗

±
= 𝐼 holds, which enables us

to reconstruct a solution (Ψ,Φ) for (45) from (B𝐷

±
Ψ,B𝐾

±
Φ).

Inserting the identities

𝜓̃
𝑙
= ∑

±

B
𝐷

±
Ψ
𝑙
+ 𝑓

𝐷
, 𝜙

𝑙
= ∑

±

B
𝐾

±
Φ
𝑙
+ 𝑓

𝐾
, (65)

into the nonlinearities𝐹𝑙
±
, 𝐺𝑙

±
, we can express (63) by the new

variable (B𝐷

±
Ψ𝑙,B𝐾

±
Φ𝑙) only without (𝜙𝑙, 𝜓̃𝑙).

At the end of this section, we will lead the integral
equations associated with (63).We introduce a new unknown
function sequence {V𝑙} whose components are defined by

V𝑙 ≡ (B𝐷

+
Ψ
𝑙
,B

𝐷

−
Ψ
𝑙
, ⟨∇⟩

1/2

𝑚
B

𝐾

+
Φ
𝑙
, ⟨∇⟩

1/2

𝑚
B

𝐾

−
Φ
𝑙
)
𝑡

, (66)

a nonlinear term

N =N (V𝑙) ≡ (⟨∇⟩−1
𝑀
𝐹
𝑙

+
, ⟨∇⟩

−1

𝑀
𝐹
𝑙

−
, ⟨∇⟩

−1/2

𝑚
𝐺
𝑙

+
, ⟨∇⟩

−1/2

𝑚
𝐺
𝑙

−
)
𝑡

(67)

for 𝑙 ≥ 0, and a matrix-operator L ≡ diag (L𝐷

+
,

L𝐷

−
,L𝐾

+
,L𝐾

−
). Then by using these notations, (63) can be

simplified as

LV𝑙+1 =N (V𝑙) for 𝑙 ≥ 0. (68)

To lead the integral equations for (68), we need to study the
asymptotic behavior of the new variable V𝑙. We can obtain the
following.

Lemma 15. Let (𝜓+, (⟨∇⟩𝜙+
1
, 𝜙+

2
)) ∈ (𝐻5/2,1)

4

. The function
(𝜓𝑙, 𝜙𝑙) defined by (51) satisfies (52)-(53) for any 𝑙 ≥ 0 if and
only if the new function V𝑙 satisfies (68) and

lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩
V𝑙
󵄩󵄩󵄩󵄩󵄩𝐻1/2

= 0, for 𝑙 ≥ 0. (69)

The proof of the lemma will be given in Appendix.
We introduce a matrix evolution operator as follows:

U (𝑡) ≡ diag (U
+,𝑀

(𝑡) ,U
−,𝑀

(𝑡) ,U
+,𝑚

(𝑡) ,U
−,𝑚

(𝑡)) . (70)

From Lemma 15, we can lead the integral equations associ-
ated with (68) as follows:

V𝑙+1 (𝑡) = −∫
∞

𝑡

U (𝑡 − 𝑠)N (V𝑙) 𝑑𝑠. (71)
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6. Proof of Theorem 1

In this section, we give a proof of Theorem 1. Note that the
identities

𝜕
𝑡
Ψ
𝑙
= 𝑖⟨∇⟩

𝑀
(V𝑙

1
− V𝑙

2
) ,

𝜕
𝑡
Φ
𝑙
= 𝑖⟨∇⟩

1/2

𝑚
(V𝑙

3
− V𝑙

4
)

(72)

hold; the nonlinearityN(V𝑙) can be expressed in terms of the
space derivatives of V𝑙 (so excluding the time derivatives).

For 𝑇 > 1, where 𝑇 is sufficiently large, we introduce the
following function space:

X
𝑇
= {V ∈ (𝐶 ([𝑇,∞) ;𝐻

1/2
))

6

; ‖V‖X𝑇 < ∞} , (73)

with the norm

‖V‖X𝑇 ≡ sup
𝑡∈[𝑇,∞)

𝑡
𝜇
(‖V‖

𝐿
4
𝑡(𝐼;𝐿
4
)
+ ‖V‖

𝐿
∞
𝑡 (𝐼;𝐻

1/2
)
) , (74)

where 1/2 < 𝜇 < 1 − 2/𝑞, 4 < 𝑞 ≤ ∞, and 𝐼 = [𝑡,∞). We
define

𝐴 ≡ 𝐶
󵄩󵄩󵄩󵄩(𝜓

+
, (⟨∇⟩ 𝜙

+

1
, 𝜙

+

2
))
󵄩󵄩󵄩󵄩𝐻4−4/𝑞
𝑞/(𝑞−1)

∩𝐻
5/2,1 . (75)

In order to obtain the theorem,wewill show that the sequence
{V𝑙} is a Cauchy one in a closed ballX

𝑇,𝐴
for appropriate𝑇 and

𝜌, where X
𝑇,𝐴

≡ {V ∈ X
𝑇
; ‖V‖X𝑇 ≤ 𝐴}.

Hereafter, we will use the notation 𝐿𝑟
𝑡
𝑋 = 𝐿𝑟

𝑡
(𝐼; 𝑋), D =

D
−
and

BΨ =B
𝐷

±
Ψ, BΦ =B

𝐾

±
Φ, (76)

for simplicity if it does not cause a confusion.

Proof. Wewill prove that V𝑙 ∈ X
𝑇,𝐴

for any 𝑙 ≥ 0 by induction.
In the case of 𝑙 = 0, it is easy to see that V0 ∈ X

𝑇,𝐴
for some 𝑇

and𝜌.We omit the details. For 𝑙 ≥ 1, we assume that V𝑘 ∈ X
𝑇,𝐴

for 0 ≤ 𝑘 ≤ 𝑙. We will show that V𝑙+1 ∈ X
𝑇,𝐴

for some 𝑇 and 𝜌.
First, by the identitiesD

+
𝜓
0
= 0 andD

+
𝜓𝑙 = 𝜆𝜙𝑙−1𝛽𝜓𝑙−1

for 𝑙 ≥ 1, we get, for 𝑙 ≥ 1,

D
−
(𝜙

𝑙
𝛽𝜓̃

𝑙
) = (D

−
𝜙
𝑙
) 𝛽𝜓̃

𝑙

− 𝑖𝑀𝜙
𝑙
𝐼𝜓̃

𝑙
+ 𝜆𝜙

𝑙
𝜙
𝑙−1
𝐼𝜓̃

𝑙−1

+ 𝜆𝜙
𝑙
𝜙
𝑙−1
𝐼𝜓

0
+ 𝜆𝜙

𝑙
𝜙
0
𝐼𝜓̃

𝑙−1

+ 𝜆𝜙
𝑙
𝜙
0
𝐼𝜓

0
,

D
−
R

𝐷
(𝜙

0
, 𝛽𝜓

0
) =R

𝐷
(D

−
𝜙
0
, 𝛽𝜓

0
) − 𝑖𝑀R

𝐷
(𝜙

0
, 𝛽𝜓

0
) .

(77)

From these identities, we can express 𝐹𝑙
±
as follows:

𝐹
𝑙

±
= ∓

𝑖

2

3

∑
𝑗=1

𝐹
𝑙

𝑗
+ “remainder” for 𝑙 ≥ 1, (78)

where

𝐹
𝑙

1
≡ (D

−
𝜙
𝑙
) 𝛽𝜓̃

𝑙
, 𝐹

𝑙

2
≡ (D

−
𝜙
0
) 𝛽𝜓̃

𝑙
+ (D

−
𝜙
𝑙
) 𝛽𝜓

0
,

(79)

𝐹
𝑙

3
≡ 4𝑖M̃R

𝐷
(D

−
𝜙
0
, 𝛽𝜓

0
) . (80)

Here, we note that “remainder” (given by (78)) can be handled
in the same manner as 𝐹𝑙

𝑗
(𝑗 = 1, 2, or 3). Thus, we will

omit the estimate of them. We also decompose 𝐺𝑙

±
as 𝐺𝑙

±
=

∓(𝑖/2)∑
3

𝑗=1
𝐺
𝑙

𝑗
, where

𝐺
𝑙

1
= (𝜓̃

𝑙
)
∗

𝛽𝜓̃
𝑙
, 𝐺

𝑙

2
= (𝜓̃

𝑙
)
∗

𝛽𝜓
0
+ 𝜓

∗

0
𝛽𝜓̃

𝑙
,

𝐺
𝑙

3
= 4𝑖M̃R

𝐾
(𝜓

∗

0
, 𝛽𝜓

0
) .

(81)

Taking 𝐿4
𝑡
𝐿4
𝑥
-norm and 𝐿∞

𝑡
𝐻1/2-norm of (71) and applying

Lemma 6 with (𝑞, 𝑟, 𝛾) = (4, 4, 1/2) and (2,∞, 0), we have
󵄩󵄩󵄩󵄩󵄩
V𝑙+1

󵄩󵄩󵄩󵄩󵄩𝐿4𝑡𝐿
4
𝑥

+
󵄩󵄩󵄩󵄩󵄩
V𝑙+1

󵄩󵄩󵄩󵄩󵄩𝐿∞𝑡 𝐻
1/2

≲
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑙

1

󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡 𝐿
4/3
𝑥

+
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑙

1

󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡 𝐻
1/2

4/3

+ ∑
𝑗=2,3

(
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑙

𝑗

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐻
−1/2

+
󵄩󵄩󵄩󵄩󵄩
𝐺
𝑙

𝑗

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐿
2
𝑥

) .

(82)

Moreover, we remember that (𝜙𝑙, 𝜓̃𝑙) is expressed as (65).
Now, we will estimate 𝐹𝑙

1
. By the Hölder inequality, we

have
󵄩󵄩󵄩󵄩󵄩
(DBΦ

𝑙
)BΨ

𝑙󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡 𝐿
4/3
𝑥

≲
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
BΦ

𝑙
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐻1

󵄩󵄩󵄩󵄩󵄩
BΨ

𝑙
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐿4𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡

≲ 𝐴
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑠
−𝜇󵄩󵄩󵄩󵄩󵄩

BΨ
𝑙
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐿4𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡

≤ 𝐴
󵄩󵄩󵄩󵄩󵄩
BΨ

𝑙󵄩󵄩󵄩󵄩󵄩𝐿4𝑡𝐿
4
𝑥

󵄩󵄩󵄩󵄩𝑠
−𝜇󵄩󵄩󵄩󵄩𝐿2𝑡(𝐼)

≲ 𝐴
2
𝑡
1/2−2𝜇

,

(83)

for any 𝑡 ≥ 𝑇 since V𝑘 ∈ X
𝑇,𝐴

for 0 ≤ 𝑘 ≤ 𝑙. By the Hölder
inequality and Remark 5 with 𝑝 = 8, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑓
𝐷
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐿4

≲
󵄩󵄩󵄩󵄩𝜙0 (𝑠)

󵄩󵄩󵄩󵄩𝐻28
󵄩󵄩󵄩󵄩𝜓0 (𝑠)

󵄩󵄩󵄩󵄩𝐻18
≲ 𝐴

2
𝑠
−3/2

, (84)

for any 𝑠 ≥ 𝑡. In the same manner as the proof of the estimate
(83), we also obtain

󵄩󵄩󵄩󵄩󵄩
(DBΦ

𝑙
) 𝑓

𝐷

󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡 𝐿
4/3
𝑥

≲ 𝐴
3
𝑡
−3/4−𝜇

, (85)

for all 𝑡 ≥ 𝑇, due to V𝑘 ∈ X
𝑇,𝐴

for 0 ≤ 𝑘 ≤ 𝑙 and (84). By the
Hölder inequality and Remark 5 with 𝑝 = 8/3, 8, we obtain

󵄩󵄩󵄩󵄩󵄩
D𝑓

𝐾
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐿2

≲
󵄩󵄩󵄩󵄩𝜓0 (𝑠)

󵄩󵄩󵄩󵄩𝐻2
8/3

󵄩󵄩󵄩󵄩𝜓0 (𝑠)
󵄩󵄩󵄩󵄩𝐻18

≲ 𝑠
−1󵄩󵄩󵄩󵄩𝜓

+󵄩󵄩󵄩󵄩𝐻5/2
8/5

󵄩󵄩󵄩󵄩𝜓
+󵄩󵄩󵄩󵄩𝐻5/2
8/7

≲ 𝐴
2
𝑠
−1

(86)
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for any 𝑠 ≥ 𝑡, where we have used properties (1) of 𝛼, 𝛽, and
D

+
𝜓
0
= 0. Thus, in the same manner as the proof of the

estimate (83), we obtain
󵄩󵄩󵄩󵄩󵄩
(D𝑓

𝐾
)BΨ

𝑙󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡 𝐿
4/3
𝑥

≲ 𝐴
3
𝑡
−1/2−𝜇

, (87)

for all 𝑡 ≥ 𝑇 due to V𝑙 ∈ X
𝑇,𝐴

and (86). By the Hölder
inequality and estimates (84) and (86), we get

󵄩󵄩󵄩󵄩󵄩
(D𝑓

𝐾
) 𝑓

𝐷

󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡 𝐿
4/3
𝑥

≲
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
D𝑓

𝐾
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐿2𝑥

󵄩󵄩󵄩󵄩󵄩
𝑓
𝐷
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐿4𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡 (𝐼)
≲ 𝐴

4
𝑡
−7/4

,

(88)

for all 𝑡 ≥ 𝑇. Thus by combining (83), (85), and (87)-(88), we
obtain

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑙

1

󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡 𝐿
4/3
𝑥

≲ 𝐴
2
𝑡
1/2−2𝜇

, (89)

for 𝑡 ≥ 𝑇 ≥ 1 since 𝜇 < 1. Next, we consider 𝐹𝑙
2
. We have

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑙

2

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐻
−1/2 ≤

󵄩󵄩󵄩󵄩󵄩
(D𝜙

𝑙
) 𝜓

0

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐿
2
𝑥

+
󵄩󵄩󵄩󵄩󵄩
(D𝜙

0
) 𝜓̃

𝑙󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐿
2
𝑥

. (90)

By Corollary 4 with 𝑝 = ∞, we have
󵄩󵄩󵄩󵄩󵄩
(DBΦ

𝑙
) 𝜓

0

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐿
2
𝑥

≲
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
BΦ

𝑙
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐻1

󵄩󵄩󵄩󵄩𝜓0 (𝑠)
󵄩󵄩󵄩󵄩𝐿∞𝑥

󵄩󵄩󵄩󵄩󵄩󵄩𝐿1𝑡
≲ 𝜌𝐴𝑡

−𝜇
,

(91)

for all 𝑡 ≥ 𝑇 since V𝑘 ∈ X
𝑇,𝐴

for 0 ≤ 𝑘 ≤ 𝑙. In the samemanner
as the estimate (91), we get

󵄩󵄩󵄩󵄩󵄩
(D𝑓

𝐾
) 𝜓

0

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐿
2
𝑥

≲
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
D𝑓

𝐾
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐿2𝑥

󵄩󵄩󵄩󵄩𝜓0 (𝑠)
󵄩󵄩󵄩󵄩𝐿∞𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿1𝑡

≤ 𝜌𝐴
2
𝑡
−1
,

(92)

for any 𝑡 ≥ 𝑇, where we have used the estimate (86).
Moreover, we also have

󵄩󵄩󵄩󵄩󵄩
(D𝜙

0
)BΨ

𝑙󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐿
2
𝑥

≲
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜙0 (𝑠)
󵄩󵄩󵄩󵄩𝐻1∞

󵄩󵄩󵄩󵄩󵄩
BΨ

𝑙
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐿2𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿1𝑡

≤ 𝐴𝜌𝑡
−𝜇
,

(93)

for all 𝑡 ≥ 𝑇 since V𝑙 ∈ X
𝑇,𝐴

. In the same proof as the estimate
(84), by the Hölder inequality and Remark 5 with 𝑝 = 4, we
get

󵄩󵄩󵄩󵄩󵄩
𝑓
𝐷
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐿2

≲
󵄩󵄩󵄩󵄩𝜙0 (𝑠)

󵄩󵄩󵄩󵄩𝐻24
󵄩󵄩󵄩󵄩𝜓0 (𝑠)

󵄩󵄩󵄩󵄩𝐻14
≲ 𝐴

2
𝑠
−1
, (94)

for any 𝑠 ≥ 𝑡. By estimate (94) and Corollary 4 with 𝑝 = ∞,
we have
󵄩󵄩󵄩󵄩󵄩
(D𝜙

0
) 𝑓

𝐷

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐿
2
𝑥

≲
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜙0 (𝑠)
󵄩󵄩󵄩󵄩𝐻1∞

󵄩󵄩󵄩󵄩󵄩
𝑓
𝐷
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐿2𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿1𝑡
≲ 𝜌𝐴

2
𝑡
−1
, (95)

for all 𝑡 ≥ 𝑇.Therefore, by combining estimates (90)–(93) and
(95), we obtain

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑙

2

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐻
−1/2 ≲ 𝜌𝐴𝑡

−𝜇
, (96)

for any 𝑡 ≥ 𝑇 ≥ 1 since 𝜇 < 1. Next, we consider 𝐹𝑙
3
. By the

definition ofR
𝐷
, we have

󵄩󵄩󵄩󵄩R𝐷
(D𝜙

0
, 𝜓

0
)
󵄩󵄩󵄩󵄩𝐿1𝑡𝐻

−1/2 ≲ ∑
𝑗=1,2

󵄩󵄩󵄩󵄩󵄩
R (D𝜙

0
, 𝜓

0,𝑗
)
󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐿
2
𝑥

, (97)

where we put 𝜓
0
= (𝜓

0,1
, 𝜓

0,2
)
𝑡. By Lemma 8, we can express

R as

R (D𝜙
0
, 𝜓

0,𝑗
) ≡ 𝑠

−1
𝑍
1
+ 𝑠

−2
𝑍
2
, (98)

for 𝑠 ∈ R \ {0}, where

𝑍
1
≡ (𝜕

0
𝜕
𝑡
D𝜙

0
) (Z

1
𝜕
1
𝜓
0,𝑗
)

− (Z
1
𝜕
𝑡
D𝜙

0
) (𝜕

0
𝜕
1
𝜓
0,𝑗
) + similar,

𝑍
2
≡ − (Z

1
𝜕
2
𝜓
0,𝑗
) (Z

2
𝜕
1
D𝜙

0
)

+ (Z
1
𝜕
1
D𝜙

0
) (Z

2
𝜕
2
𝜓
0,𝑗
) + similar.

(99)

By applying the Hölder inequality, we have

󵄩󵄩󵄩󵄩󵄩
𝑠
−1
𝑍
1

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐿
2
𝑥

≲ ∫
∞

𝑡

𝑠
−1
(
󵄩󵄩󵄩󵄩𝜙0

󵄩󵄩󵄩󵄩𝐻3𝑞
󵄩󵄩󵄩󵄩Z𝜓

0

󵄩󵄩󵄩󵄩𝐻1
2𝑞/(𝑞−2)

+
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩𝐻2𝑞
󵄩󵄩󵄩󵄩Z𝜙

0

󵄩󵄩󵄩󵄩𝐻2
2𝑞/(𝑞−2)

)𝑑𝑠.

(100)

By Corollary 4 with 𝑝 = 𝑞, we get
󵄩󵄩󵄩󵄩𝜙0 (𝑠)

󵄩󵄩󵄩󵄩𝐻3𝑞
≲ 𝑠

−1+2/𝑞󵄩󵄩󵄩󵄩(⟨∇⟩ 𝜙
+

1
, 𝜙

+

2
)
󵄩󵄩󵄩󵄩𝐻4−4/𝑞
𝑞/(𝑞−1)

≲ 𝐴𝑠
−1+2/𝑞

,

󵄩󵄩󵄩󵄩𝜓0 (𝑠)
󵄩󵄩󵄩󵄩𝐻2𝑞

≲ 𝑠
−1+2/𝑞󵄩󵄩󵄩󵄩𝜓

+󵄩󵄩󵄩󵄩𝐻4−4/𝑞
𝑞/(𝑞−1)

≲ 𝐴𝑠
−1+2/𝑞

,

(101)

for any 𝑠 ≥ 𝑡. On the other hand, note that the commutation
relations (26) hold. By applying the Sobolev inequality and
the charge and energy conservation laws, we obtain
󵄩󵄩󵄩󵄩Z𝜓

0

󵄩󵄩󵄩󵄩𝐻1
2𝑞/(𝑞−2)

≲
󵄩󵄩󵄩󵄩Z𝜓

0

󵄩󵄩󵄩󵄩𝐻1+2/𝑞

≲
󵄩󵄩󵄩󵄩Z𝜓

0

󵄩󵄩󵄩󵄩𝐻3/2 ≲
󵄩󵄩󵄩󵄩(Z𝜓

0
) (0)

󵄩󵄩󵄩󵄩𝐻3/2 ≲ 𝐴,

󵄩󵄩󵄩󵄩Z𝜙
0

󵄩󵄩󵄩󵄩𝐻2
2𝑞/(𝑞−2)

≲
󵄩󵄩󵄩󵄩Z𝜙

0

󵄩󵄩󵄩󵄩𝐻2+2/𝑞

≲
󵄩󵄩󵄩󵄩Z𝜙

0

󵄩󵄩󵄩󵄩𝐻5/2 ≲
󵄩󵄩󵄩󵄩(Z𝜙

0
) (0)

󵄩󵄩󵄩󵄩𝐻5/2 ≲ 𝐴,

(102)

since 𝑞 > 4. Thus, by combining (100)–(102), we get
󵄩󵄩󵄩󵄩󵄩
𝑠
−1
𝑍
1

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐿
2
𝑥

≲ 𝐴
2
𝑡
−1+2/𝑞

, (103)

for any 𝑡 ≥ 𝑇. By the Hölder inequality, we have

󵄩󵄩󵄩󵄩󵄩
𝑠
−2
𝑍
2

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐿
2
𝑥

≲ ∫
∞

𝑡

𝑠
−2󵄩󵄩󵄩󵄩Z𝜓

0
(𝑠)
󵄩󵄩󵄩󵄩𝐻14

󵄩󵄩󵄩󵄩Z𝜙
0
(𝑠)
󵄩󵄩󵄩󵄩𝐻24

𝑑𝑠

≲ 𝐴
2
𝑡
−1
,

(104)

since in the same manner as the proof of estimates (102), we
obtain

󵄩󵄩󵄩󵄩Z𝜓
0
(𝑠)
󵄩󵄩󵄩󵄩𝐻14

+
󵄩󵄩󵄩󵄩Z𝜙

0
(𝑠)
󵄩󵄩󵄩󵄩𝐻24

≲ 𝐴, (105)



Abstract and Applied Analysis 9

for any 𝑠 ≥ 𝑡.Therefore, combining (97)-(98), (103), and (104),
we have

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑙

3

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐻
−1/2 ≲ 𝐴

2
𝑡
−1+2/𝑞

, (106)

for all 𝑡 ≥ 𝑇 ≥ 1 since 𝑞 > 4.
Next, we will estimate 𝐺l

1
. By the Leibniz formula (25)

with 𝜅 = 1/2, 𝑝 = 4/3, 𝑞
1
= 𝑞

2
= 2, and 𝑟

1
= 𝑟

2
= 4 and

the Hölder inequality, we obtain
󵄩󵄩󵄩󵄩󵄩󵄩
(BΨ

𝑙
)
∗

BΨ
𝑙
󵄩󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡 𝐻

1/2

4/3

≲
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
BΨ

𝑙
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐻1/2

󵄩󵄩󵄩󵄩󵄩
BΨ

𝑙
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐿4𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡

≲ 𝐴
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑠
−𝜇󵄩󵄩󵄩󵄩󵄩

BΨ
𝑙
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐿4𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡

≲ 𝐴
󵄩󵄩󵄩󵄩𝑠
−𝜇󵄩󵄩󵄩󵄩𝐿2𝑡(𝐼)

󵄩󵄩󵄩󵄩󵄩
BΨ

𝑙󵄩󵄩󵄩󵄩󵄩𝐿4𝑡𝐿
4
𝑥

≲ 𝐴
2
𝑡
1/2−2𝜇

,

(107)

for any 𝑡 ≥ 𝑇 since V𝑙 ∈ X
𝑇,𝐴

. By the fractional Leibniz rule
(25) again and Remark 5 with 𝑝 = 4, we have

󵄩󵄩󵄩󵄩󵄩
𝑓
𝐷
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐻1/2

≲
󵄩󵄩󵄩󵄩𝜙0 (𝑠)

󵄩󵄩󵄩󵄩𝐻5/24
󵄩󵄩󵄩󵄩𝜓0 (𝑠)

󵄩󵄩󵄩󵄩𝐻3/24
≲ 𝐴

2
𝑠
−3/2

, (108)

for any 𝑠 ≥ 𝑡. In the same manner as the proof of the estimate
(107), we obtain
󵄩󵄩󵄩󵄩󵄩󵄩
(BΨ

𝑙
)
∗

𝑓
𝐷

󵄩󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡 𝐻
1/2

4/3

≲
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
BΨ

𝑙
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐻1/2

󵄩󵄩󵄩󵄩󵄩
𝑓
𝐷
(𝑠)
󵄩󵄩󵄩󵄩󵄩𝐻1/2

󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡

≲ 𝐴
3
𝑡
−3/4−𝜇

,

(109)

for any 𝑡 ≥ 𝑇 due to V𝑙 ∈ X
𝑇,𝐴

and (108). In the same manner
as the proof of the estimate (109), we get

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑓

𝐷
)
∗

𝑓
𝐷

󵄩󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡 𝐻
1/2

4/3

≲ 𝐴
4
𝑡
−7/4

, (110)

for all 𝑡 ≥ 𝑇. Thus, by combining the estimates (107) and
(109)-(110), we obtain

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑙

1

󵄩󵄩󵄩󵄩󵄩𝐿4/3𝑡 𝐻
1/2

4/3

≲ 𝐴
2
𝑡
1/2−2𝜇

, (111)

for 𝑡 ≥ 𝑇 ≥ 1 since 𝜇 < 1. In the same manner as the proof of
the estimates (96) and (106), we obtain

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑙

2

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐿
2
𝑥

≲ 𝜌𝐴𝑡
−𝜇
,

󵄩󵄩󵄩󵄩󵄩
𝐺
𝑙

3

󵄩󵄩󵄩󵄩󵄩𝐿1𝑡𝐿
2
𝑥

≲ 𝐴
2
𝑡
−1+2/𝑞

, (112)

for any 𝑡 ≥ 𝑇. Finally, by combining (82), (89), (96), (106),
and (111)-(112), we obtain

󵄩󵄩󵄩󵄩󵄩
V𝑙+1

󵄩󵄩󵄩󵄩󵄩X𝑇
≲ 𝐴 (𝐴𝑇

1/2−𝜇
+ 𝜌 + 𝐴𝑇

−1+𝜇+2/𝑞
) , (113)

for 𝑇 ≥ 1. By the estimate (113) and 1/2 < 𝜇 < 1 − 2/𝑞, there
exist a large 𝑇 > 0 and a small 𝜌 > 0 such that V𝑙+1 ∈ X

𝑇,𝐴
.

In the same manner as the proof of (113), we can prove the
estimate

󵄩󵄩󵄩󵄩󵄩
V𝑙+1 − V𝑙

󵄩󵄩󵄩󵄩󵄩X𝑇
≤
1

2

󵄩󵄩󵄩󵄩󵄩
V𝑙 − V𝑙−1

󵄩󵄩󵄩󵄩󵄩X𝑇
, (114)

for 𝑙 ≥ 1 if 𝑇 > 1 is sufficiently large and 𝜌 > 0 is sufficiently
small, which implies that {V𝑙}

𝑙≥0
is a Cauchy sequence in

X
𝑇,𝐴

. Theorem 1 is proved.

Appendix

In this section, we give a proof of Lemma 15. First, we prepare
the following.

Lemma 16 (see [10]). Let 𝜅 ∈ R and let 𝜓+ = 𝜓+(𝑥) be a C2-
valued given function. Then, for any C2-valued function 𝜓 =

𝜓(𝑡, 𝑥), the equivalency

󵄩󵄩󵄩󵄩𝜓 (𝑡) −V
𝐷
(𝑡) 𝜓

+󵄩󵄩󵄩󵄩𝐻𝜅 ≃ ∑
±

󵄩󵄩󵄩󵄩󵄩
A

𝐷

±
𝜓 (𝑡) −U

±,𝑀
(𝑡)A

𝐷

±
𝜓
+󵄩󵄩󵄩󵄩󵄩𝐻𝜅

(A.1)

holds for all 𝑡 ∈ R.

For the proof of the lemma, see [10].
By the lemma and a decay property of 𝑓

𝐷
given by (42),

we also have the following.

Corollary 17. Let (𝜓+, (⟨∇⟩𝜙+
1
, 𝜙+

2
)) ∈ (𝐻5/2,1)

4

. The final
state condition (8) with X = 𝐻1/2 holds if and only if the
identity

lim
𝑡→∞

∑
±

󵄩󵄩󵄩󵄩󵄩
A

𝐷

±
Ψ (𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻𝜅
= 0 (A.2)

is valid, where Ψ is defined by (41).

Before proving the corollary, we remember some proper-
ties of the operatorsA𝐷

±
given by (17) (see [10] in detail). We

note that the identity

(𝛼 ⋅ ∇ + 𝑖𝑀𝛽)
2

= −⟨∇⟩
2

𝑀
𝐼 (A.3)

holds due to properties (1) of Dirac matrices. Hence, by a
direct calculation, we get the following identities:

A
𝐷

±
A

𝐷

∓
= 𝑂, ∑

±

A
𝐷

±
= 𝐼, (A

𝐷

±
)
2

= A
𝐷

±
. (A.4)

We put 𝐵 = ‖(𝜓+, (⟨∇⟩𝜙+
1
, 𝜙+

2
))‖

𝐻
5/2,1 .

Proof. By Lemma 16, we see that (8) with X = 𝐻1/2 is
equivalent to

lim
𝑡→∞

∑
±

󵄩󵄩󵄩󵄩󵄩
A

𝐷

±
𝜓 (𝑡) −U

±,𝑀
(𝑡)A

𝐷

±
𝜓
+󵄩󵄩󵄩󵄩󵄩𝐻1/2

= 0. (A.5)

By decomposition (16) and identities (A.4), we have

󵄩󵄩󵄩󵄩󵄩
A

𝐷

±
Ψ (𝑡)

󵄩󵄩󵄩󵄩󵄩𝐻1/2
=
󵄩󵄩󵄩󵄩󵄩
A

𝐷

±
𝜓 (𝑡) −U

±,𝑀
(𝑡)A

𝐷

±
𝜓
+
−A

𝐷

±
𝑓
𝐷

󵄩󵄩󵄩󵄩󵄩𝐻1/2
.

(A.6)

By estimate (18), the fractional Leibniz rule (25) with 𝑝 = 2

and 𝑞
𝑖
= 𝑟

𝑖
= 4 (𝑖 = 1, 2), and Remark 5 with 𝑝 = 4, we get

󵄩󵄩󵄩󵄩󵄩
A

𝐷

±
𝑓
𝐷

󵄩󵄩󵄩󵄩󵄩𝐻1/2
≲
󵄩󵄩󵄩󵄩𝜙0

󵄩󵄩󵄩󵄩𝐻5/24
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩𝐻3/24
≲ 𝑡

−1
𝐵
2
, (A.7)

for all 𝑡 > 0, which completes the proof of the corollary.
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Next we will prove Lemma 15.

Proof of Lemma 15. First we prove the Dirac part. By
Corollary 17, we see that (52) is equivalent to

lim
𝑡→∞

∑
±

󵄩󵄩󵄩󵄩󵄩
A

𝐷

±
Ψ
𝑙
(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻1/2

= 0 for 𝑙 ≥ 0. (A.8)

Note that the identity

A
𝐷

±
−B

𝐷

±
= ±

𝑖

2
⟨∇⟩

−1

𝑀
D

+
(A.9)

holds. From the Dirac part of (55), we have

B
𝐷

±
Ψ
𝑙+1

= A
𝐷

±
Ψ
𝑙+1
− ⟨∇⟩

−1

𝑀
𝐹
𝑙 for 𝑙 ≥ 0. (A.10)

Thus, it is sufficient to show that

lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑙󵄩󵄩󵄩󵄩󵄩𝐻−1/2

= 0 for 𝑙 ≥ 0. (A.11)

By the Sobolev inequality and the Hölder inequality, we have,
for 𝑙 ≥ 1,

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑙󵄩󵄩󵄩󵄩󵄩𝐻−1/2

≲
󵄩󵄩󵄩󵄩󵄩
𝜙
𝑙󵄩󵄩󵄩󵄩󵄩𝐻1/2

󵄩󵄩󵄩󵄩󵄩
𝜓̃
𝑙󵄩󵄩󵄩󵄩󵄩𝐻1/2

+
󵄩󵄩󵄩󵄩󵄩
𝜙
𝑙󵄩󵄩󵄩󵄩󵄩𝐻1/2

󵄩󵄩󵄩󵄩𝜓
+󵄩󵄩󵄩󵄩𝐻1/2

+ (
󵄩󵄩󵄩󵄩𝜙

+

1

󵄩󵄩󵄩󵄩𝐻1/2 +
󵄩󵄩󵄩󵄩𝜙

+

2

󵄩󵄩󵄩󵄩𝐻−1/2)
󵄩󵄩󵄩󵄩󵄩
𝜓̃
𝑙󵄩󵄩󵄩󵄩󵄩𝐻1/2

+
󵄩󵄩󵄩󵄩𝜙0

󵄩󵄩󵄩󵄩𝐻28
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩𝐻2
8/3

.

(A.12)

By Remark 5 with 𝑝 = 8, 8/3, we get

󵄩󵄩󵄩󵄩𝜙0
󵄩󵄩󵄩󵄩𝐻28

≲ 𝑡
−3/4

𝐵,
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩𝐻2
8/3

≲ 𝑡
−1/2

𝐵. (A.13)

Thus, by assumptions and estimates (A.12)-(A.13), we obtain
(A.11) for 𝑙 ≥ 1. In the case of 𝑙 = 0, it is easy to see (69). We
omit the details. Conversely, assume (69) and will prove (52).
By the decomposition 𝐼 = ∑

±
B𝐷

±
, we have only to show that

lim
𝑡→∞

∑
±

󵄩󵄩󵄩󵄩󵄩
B

𝐷

±
𝑓
𝐷

󵄩󵄩󵄩󵄩󵄩𝐻1/2
= 0. (A.14)

We have
󵄩󵄩󵄩󵄩󵄩
B𝑓

𝐷

󵄩󵄩󵄩󵄩󵄩𝐻1/2
≲
󵄩󵄩󵄩󵄩󵄩
BQ

𝐷

0
(D𝜙

0
, 𝜓

0
)
󵄩󵄩󵄩󵄩󵄩𝐻1/2

+ remainder, (A.15)
󵄩󵄩󵄩󵄩󵄩
BQ

𝐷

0
(D𝜙

0
, 𝜓

0
)
󵄩󵄩󵄩󵄩󵄩𝐻1/2

≲
󵄩󵄩󵄩󵄩󵄩
Q
𝐷

0

󵄩󵄩󵄩󵄩󵄩𝐻1/2
+
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑡
Q
𝐷

0

󵄩󵄩󵄩󵄩󵄩𝐻1/2
. (A.16)

By the Hölder inequality and Remark 5 with 𝑝 = 8, 8/3, we
obtain

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑡
Q
0
(D𝜙

0
, 𝜓

0,𝑗
)
󵄩󵄩󵄩󵄩󵄩𝐻−1/2

≲
󵄩󵄩󵄩󵄩𝜙0

󵄩󵄩󵄩󵄩𝐻3
8/3

󵄩󵄩󵄩󵄩𝜓0
󵄩󵄩󵄩󵄩𝐻18

+
󵄩󵄩󵄩󵄩𝜙0

󵄩󵄩󵄩󵄩𝐻28
󵄩󵄩󵄩󵄩𝜓0

󵄩󵄩󵄩󵄩𝐻2
8/3

≲ 𝑡
−1
𝐵
2
.

(A.17)

Since the remainder terms in (A.15) can be estimated in the
same manner as the proof of (A.17), we obtain

󵄩󵄩󵄩󵄩󵄩
B𝑓

𝐷

󵄩󵄩󵄩󵄩󵄩𝐻1/2
≲ 𝑡

−1
𝐵
2
, (A.18)

from which (A.14) follows.

Next, we consider the KG part. By the identity

󵄩󵄩󵄩󵄩𝑓 + 𝑔
󵄩󵄩󵄩󵄩
2

𝐻
𝜅 +

󵄩󵄩󵄩󵄩𝑓 − 𝑔
󵄩󵄩󵄩󵄩
2

𝐻
𝜅 = 2 (

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝐻
𝜅 +

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩
2

𝐻
𝜅) , (A.19)

we can see that (53) is equivalent to

∑
±

󵄩󵄩󵄩󵄩󵄩
B

𝐾

±
(𝜙

𝑙
(𝑡) − 𝜙

0
(𝑡))

󵄩󵄩󵄩󵄩󵄩𝐻1
. (A.20)

In the same manner as the proof of estimate (A.18), we can
obtain

󵄩󵄩󵄩󵄩󵄩
B𝑓

𝐾

󵄩󵄩󵄩󵄩󵄩𝐻1
≲ 𝑡

−1
𝐵
2
, (A.21)

which completes the proof of the lemma.
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