
Hindawi Publishing Corporation
International Journal of Differential Equations
Volume 2013, Article ID 268309, 4 pages
http://dx.doi.org/10.1155/2013/268309

Research Article
On Uniform Exponential Stability and Exact Admissibility of
Discrete Semigroups

Aftab Khan,1,2 Gul Rahmat,2 and Akbar Zada3

1 Shaheed Benazir Bhutto University Sheringal, Dir Upper 18000, Pakistan
2Government College University, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore 54600, Pakistan
3Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan

Correspondence should be addressed to Akbar Zada; zadababo@yahoo.com

Received 22 April 2013; Revised 19 June 2013; Accepted 20 June 2013

Academic Editor: Sotiris Ntouyas

Copyright © 2013 Aftab Khan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We prove that a discrete semigroup T = {𝑇(𝑛) : 𝑛 ∈ Z
+
} of bounded linear operators acting on a complex Banach space 𝑋 is

uniformly exponentially stable if and only if, for each 𝑥 ∈ 𝐴𝑃
0
(Z
+
, 𝑋), the sequence 𝑛 → ∑

𝑛

𝑘=0
𝑇(𝑛 − 𝑘)𝑥(𝑘) : Z

+
→ 𝑋 belongs to

𝐴𝑃
0
(Z
+
, 𝑋). Similar results for periodic discrete evolution families are also stated.

1. Introduction

The solutions of the autonomous discrete systems 𝑥
𝑛+1
= 𝐴𝑥
𝑛

or 𝑦
𝑛+1

= 𝐴𝑦
𝑛
+ ℎ
𝑛
lead to the idea of discrete semigroups.

There are a lot of spectral criteria which characterize different
types of stability (or other types of asymptotic behavior) of the
solutions of above systems. For further results on asymptotic
behavior of semigroups, we refer to [1].

New difficulties appear in the study of the nonau-
tonomous systems, especially because the part of the solution
generated by the forced term (ℎ

𝑛
), that is, ∑𝑛

𝑘=]𝑈(𝑛, 𝑘)ℎ𝑘, is
not a convolution in the classical sense.These difficulties may
be passed by using the so-called evolution semigroups.

The evolution semigroups were exhaustively studied in
[2]. Having in mind the well-known results stated in the
continuous case, see for example [2, 3], we can say that this
method is a very efficient one. See also [4, 5] for recent devel-
opments concerning the semigroups of evolution acting on
almost periodic function spaces.

Recently, the discrete version of [6] was obtained in [7].
In this note, we study the asymptotic behavior of the dis-

crete semigroups in terms of exact admissibility of the space
of almost periodic sequences.

In this regard, we develop the theory of discrete evolution
semigroups on a special space of bounded sequences. Results
of this type in the continuous casemay be found in [8] and the

references therein. However, by contrast with the continuous
case, we did not find in the existent literature paperswritten in
the spirit of the present one referring to the discrete evolution
semigroups.These results could be new and useful for people
whose area of research is restricted to difference equations.

2. Definitions and Preliminary Results

Let 𝑋 be a complex Banach space and B(𝑋) the Banach
algebra of all linear and bounded operators acting on 𝑋. The
norms in 𝑋 and in B(𝑋) will be denoted by ‖ ⋅ ‖. Let Z

+

be the set of all nonnegative integer numbers. A sequence
𝑥 : Z

+
→ 𝑋 is said to be almost periodic if for any 𝜖 > 0

there exists an integer 𝑙
𝜖
> 0 such that any discrete interval of

length 𝑙
𝜖
contains an integer 𝜏, such that






𝑥
𝑛+𝜏
− 𝑥
𝑛






≤ 𝜖, ∀𝑛 ∈ Z
+
. (1)

The integer number 𝜏 is called 𝜖-translation number of (𝑥
𝑛
).

The set of all almost periodic sequences will be denoted
by 𝐴𝑃(Z

+
, 𝑋). For further details about almost periodic

functions, we refer to the books [9, 10]. The set 𝑙∞(Z
+
, 𝑋)

of all bounded sequences becomes a Banach space when it
is endowed with the “sup” norm denoted by ‖ ⋅ ‖

∞
. Clearly,

𝐴𝑃(Z
+
, 𝑋) is a subset of 𝑙∞(Z

+
, 𝑋). Let 𝑃0

𝑞
(Z
+
, 𝑋) be the

space of all 𝑞-periodic (𝑞 ≥ 2 is an integer number) sequences
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𝑥with 𝑥(0) = 0. Denote byA
0
(Z
+
, 𝑋) the set of all sequences

{𝑥(𝑛)}
𝑛≥0

for which there exists 𝑛
𝑥
∈ Z
+
with 𝑛

𝑥
> 0 and

𝑦
𝑥
∈ 𝑃

0

𝑞
(Z
+
, 𝑋) such that

𝑥 (𝑛) = {

0, ∀0 ≤ 𝑛 < 𝑛
𝑥
,

𝑦
𝑥
(𝑛) , if 𝑛 ≥ 𝑛

𝑥
.

(2)

Let 𝐴𝑃
0
(Z
+
, 𝑋) := 𝑠pan{A

0
(Z
+
, 𝑋)}. Here the closeness is

considered in the space 𝑙∞(Z
+
, 𝑋).

For a bounded linear operator 𝐿, acting on 𝑋, we denote
by 𝜎(𝐿) the spectrum of 𝐿 and by 𝜌(𝐿) its resolvent set. Recall
that a subset T = {𝑇(𝑛)}

𝑛∈Z
+

ofB(𝑋) is called discrete semi-
group if it satisfies the following conditions:

(i) 𝑇(0) = 𝐼, where 𝐼 is the identity operator on𝑋.
(ii) 𝑇(𝑛 + 𝑚) = 𝑇(𝑛)𝑇(𝑚), for all 𝑛,𝑚 ∈ Z

+
.

A discrete semigroup T is said to be uniformly exponentially
stable if there exist𝑁, ] > 0 such that

‖𝑇 (𝑛)‖ ≤ 𝑁𝑒

−]𝑛
∀𝑛 ∈ Z

+
. (3)

The spectral radius of 𝑇(1) denoted by 𝑟(𝑇(1)) is defined as

𝑟 (𝑇 (1)) := sup {|𝜆| : 𝜆 ∈ 𝜎 (𝑇 (1))} . (4)

It is well known that, see for example [11, page 42],

𝑟 (𝑇 (1)) = lim
𝑛→∞






(𝑇 (1))

𝑛




1/𝑛

. (5)

As a consequence of (5), a discrete semigroup {𝑇(𝑛)}
𝑛∈Z
+

is
uniformly exponentially stable if and only if 𝑟(𝑇(1)) < 1.

Having in mind the continuous case, the “infinitesimal
generator” of the discrete semigroup denoted by 𝐺 is defined
by𝐺 := 𝑇(1) − 𝐼. For discrete semigroups, the Taylor formula
of order one is

𝑇 (𝑛) 𝑥 − 𝑥 =

𝑛−1

∑

𝑘=0

𝑇 (𝑘) 𝐺𝑥, ∀𝑛 ∈ Z
+
, 𝑛 ≥ 1, ∀𝑥 ∈ 𝑋. (6)

A discrete semigroup T is said to be 𝐴𝑃
0
(Z
+
, 𝑋) exact

admissible, if for every 𝑥 ∈ 𝐴𝑃
0
(Z
+
, 𝑋) the sequence

(∑

𝑛

𝑘=0
𝑇(𝑛 − 𝑘)ℎ(𝑘))

𝑛∈Z
+

belongs with 𝐴𝑃
0
(Z
+
, 𝑋).

The evolution semigroup S = {𝑆(𝑛), 𝑛 ∈ Z
+
} associated

with T on 𝐴𝑃
0
(Z
+
, 𝑋) is defined by

(𝑆 (𝑟) 𝑥) (𝑛) = {

𝑇 (𝑟) 𝑥 (𝑛 − 𝑟) , ∀𝑛 ≥ 𝑟,

0, 0 ≤ 𝑛 ≤ 𝑟.

(7)

3. Results

The following lemma shows that the associated evolution
semigroup {𝑆(𝑛)}

𝑛∈Z
+

acts on 𝐴𝑃
0
(Z
+
, 𝑋).

Lemma 1. Let 𝑥 ∈ 𝐴𝑃
0
(Z
+
, 𝑋) and T = {𝑇(𝑗)}

𝑗∈Z
+

be a dis-
crete semigroup of bounded linear operators on𝑋.The sequence
𝑆(𝑟)𝑥, given by

(𝑆 (𝑟) 𝑥) (𝑛) = {

𝑇 (𝑟) 𝑥 (𝑛 − 𝑟) , ∀𝑛 ≥ 𝑟

0, 0 ≤ 𝑛 ≤ 𝑟,

(8)

belongs to 𝐴𝑃
0
(Z
+
, 𝑋).

Proof. First we show that 𝑆(𝑟)𝑥 ∈ A
0
(Z
+
, 𝑋) for any 𝑥 ∈

A
0
(Z
+
, 𝑋). Since 𝑥 ∈ A

0
(Z
+
, 𝑋) there exist 𝑛

𝑥
∈ Z
+
with

𝑛
𝑥
> 0, and (𝑦

𝑥
(𝑛)) ∈ 𝑃

0

𝑞
(Z
+
, 𝑋), such that

𝑥 (𝑛) = {

0, if 0 ≤ 𝑛 < 𝑛
𝑥

𝑦
𝑥
(𝑛) , if 𝑛 ≥ 𝑛

𝑥
.

(9)

Let 𝑛
𝑆(𝑟)𝑥

:= 𝑟 + 𝑛
𝑥
and set 𝑦

𝑆(𝑟)𝑥
(⋅) = 𝑇(𝑟)𝑦

𝑥
(⋅ − 𝑟). Clearly

𝑦
𝑆(𝑟)𝑥

is 𝑞-periodic sequence. It remains to show that

(𝑆 (𝑟) 𝑥) (𝑛) = {

0, if 0 ≤ 𝑛 < 𝑛
𝑆(𝑟)𝑥

𝑦
𝑆(𝑟)𝑥

(𝑛) , if 𝑛 ≥ 𝑛
𝑆(𝑟)𝑥

.

(10)

If 𝑛 ≤ 𝑛
𝑆(𝑟)𝑥

= 𝑟 + 𝑛
𝑥
, then 𝑛 − 𝑟 < 𝑛

𝑥
and 𝑥(𝑛 − 𝑟) = 0, so

(𝑆 (𝑟) 𝑥) (𝑛) = 𝑇 (𝑟) 𝑥 (𝑛 − 𝑟) = 0. (11)

If 𝑛 ≥ 𝑛
𝑆(𝑟)𝑥

= 𝑟+𝑛
𝑥
, then 𝑛− 𝑟 ≥ 𝑛

𝑥
and 𝑥(𝑛− 𝑟) = 𝑦

𝑥
(𝑛− 𝑟);

hence

(𝑆 (𝑟) 𝑥) (𝑛) = 𝑇 (𝑟) 𝑥 (𝑛 − 𝑟)

= 𝑇 (𝑟) 𝑦
𝑥
(𝑛 − 𝑟)

= 𝑦
𝑆(𝑟)𝑥

(𝑛) .

(12)

Thus 𝑆(𝑟)𝑥 ∈ A
0
(Z
+
, 𝑋). Now, from linearity it follows

that 𝑆(𝑟)𝑧 belongs to span{A
0
(Z
+
, 𝑋)} whenever 𝑧 ∈

span{A
0
(Z
+
, 𝑋)}. Let now 𝜖 > 0, 𝑥 ∈ 𝐴𝑃

0
(Z
+
, 𝑋), and let

𝑧 ∈ span{A
0
(Z
+
, 𝑋)}, such that ‖𝑥 − 𝑧‖

𝑙
∞
(Z
+
,𝑋)
< 𝜖. Clearly

𝑆(𝑟)𝑧 belongs to span{A
0
(Z
+
, 𝑋)}, and

‖𝑆 (𝑟) 𝑧 − 𝑆 (𝑟) 𝑥‖
𝑙
∞
(Z
+
,𝑋)
= sup
𝑛≥𝑟

‖𝑇 (𝑟) [𝑧 (𝑛 − 𝑟) − 𝑥 (𝑛 − 𝑟)]‖

≤ 𝑀𝑒

]𝑟sup
𝑛≥𝑟

‖𝑧 (𝑛 − 𝑟) − 𝑥 (𝑛 − 𝑟)‖

≤ 𝑀𝑒

]𝑟
𝜖,

(13)

that is, 𝑆(𝑟)𝑥 is in 𝐴𝑃
0
(Z
+
, 𝑋). This completes the proof.

Lemma 2. Let T = {𝑇(𝑛)}
𝑛∈Z
+

be a discrete semigroup of
bounded linear operators on 𝑋, and let S = {𝑆(𝑛), 𝑛 ∈ Z

+
}

be the evolution semigroup associated with T on 𝐴𝑃
0
(Z
+
, 𝑋),

having 𝐺S as generator. Let 𝑥, 𝑧 ∈ 𝐴𝑃
0
(Z
+
, 𝑋). The following

two statements are equivalent:

(i) 𝐺S𝑥 = −𝑧,

(ii) 𝑥(𝑛) = ∑𝑛
𝑘=0
𝑇(𝑛 − 𝑘)𝑧(𝑘), for all 𝑛 ∈ Z

+
.

Proof. (i) ⇒ (ii): Using the Taylor formula (6), one has

𝑆 (𝑛) 𝑥 − 𝑥 =

𝑛−1

∑

𝑚=0

𝑆 (𝑚)𝐺S𝑥 = −

𝑛−1

∑

𝑚=0

𝑆 (𝑚) 𝑧. (14)
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Then, for every 𝑛 ∈ Z
+
, one has

𝑥 (𝑛) = (𝑆 (𝑛) 𝑥) (𝑛) +

𝑛−1

∑

𝑚=0

(𝑆 (𝑚) 𝑧) (𝑛)

= 𝑇 (𝑛) 𝑥 (0) +

𝑛−1

∑

𝑚=0

𝑇 (𝑚) 𝑧 (𝑛 − 𝑚)

=

𝑛

∑

𝑘=0

𝑇 (𝑛 − 𝑘) 𝑧 (𝑘) .

(15)

(ii) ⇒ (i): For each 𝑛 ∈ Z
+
, one has

(𝐺S𝑥) (𝑛) = (𝑆 (1) − 𝐼) 𝑥 (𝑛)

= 𝑇 (1) 𝑥 (𝑛 − 1) − 𝑥 (𝑛)

= 𝑇 (1)

𝑛−1

∑

𝑘=0

𝑇 (𝑛 − 1 − 𝑘) 𝑧 (𝑘) − 𝑥 (𝑛)

=

𝑛−1

∑

𝑘=0

𝑇 (𝑛 − 𝑘) 𝑧 (𝑘) −

𝑛

∑

𝑘=0

𝑇 (𝑛 − 𝑘) 𝑧 (𝑘)

= −𝑧 (𝑛) .

(16)

This completes the proof.

See also [12], for a variant of this lemma in other space.
The next result is the main ingredient in the proof of

Theorem 5 that follows.

Theorem 3 (see [7]). Let T = {𝑇(𝑛) : 𝑛 ∈ Z
+
} be a discrete

semigroup on𝑋, and let 𝜇 be a real number. If

sup
𝑛≥0












𝑛

∑

𝑘=0

𝑒

𝑖𝜇𝑘

𝑇 (𝑛 − 𝑘) 𝑓 (𝑘)












< ∞, (17)

for every 𝑓 ∈ 𝑃

𝑞

0
(Z
+
, 𝑋), then 𝑇(1) is power bounded (i.e.,

sup
𝑛∈Z
+

‖𝐴

𝑛
‖ < ∞) and 𝑒𝑖𝜇 ∈ 𝜌(𝑇(1)).

As a corollary of this theorem, we state the following.

Corollary 4 (see [7]). Let T = {𝑇(𝑛) : 𝑛 ∈ Z
+
} be a discrete

semigroup on 𝑋. If the condition (17) holds for every 𝜇 ∈ R

and every 𝑓 in 𝑃𝑞
0
(Z
+
, 𝑋), then the semigroup T is uniformly

exponentially stable.

The result of this paper reads as follows.

Theorem 5. Let T = {𝑇(𝑛)}
𝑛∈Z
+

be a discrete semigroup on𝑋.
The following four statements are equivalent:

(i) T is uniformly exponentially stable.
(ii) The evolution semigroup S associated with T on
𝐴𝑃
0
(Z
+
, 𝑋) is uniformly exponentially stable.

(iii) The semigroup T is 𝐴𝑃
0
(Z
+
, 𝑋) exact admissible.

(iv) sup
𝑛∈Z
+

‖∑

𝑛

𝑘=0
𝑇(𝑛 − 𝑘)𝑧(𝑘)‖ = 𝑀

𝑧
< ∞, for all 𝑧 ∈

𝐴𝑃
0
(Z
+
, 𝑋).

Proof. (i) ⇒ (ii): Let T be uniformly exponentially stable, and
let𝑁 and ] be positive constants such that

‖𝑇 (𝑛)‖ ≤ 𝑁𝑒

−]𝑛
∀𝑛 ∈ Z

+
. (18)

Then for every 𝑓 in 𝐴𝑃
0
(Z
+
, 𝑋), one has






𝑆 (𝑗) 𝑓




∞
= sup
𝑛≥𝑗






𝑇 (𝑗) 𝑓 (𝑛 − 𝑗)






≤ 𝑁𝑒

−]𝑗




𝑓




∞
. (19)

(ii) ⇒ (iii): Since S is uniformly exponentially stable,
1 ∈ 𝜌(𝑆(1)), that is, 𝑆(1) − 𝐼 is invertible. Then for each 𝑧
in 𝐴𝑃

0
(Z
+
, 𝑋), there exists 𝑢 ∈ 𝐴𝑃

0
(Z
+
, 𝑋) such that (𝑆(1) −

𝐼)𝑢 = −𝑧.
On the other hand, by Lemma 2,𝑢(𝑛) = ∑𝑛

𝑘=0
𝑇(𝑘)𝑧(𝑛−𝑘),

for every 𝑛 ∈ Z
+
; hence T is 𝐴𝑃

0
(Z
+
, 𝑋) exact admissible.

(iii) ⇒ (iv) It is obvious.
(iv) ⇒ (i) Obviously, if 𝑧 ∈ 𝑃0

𝑞
(Z
+
, 𝑋) and 𝜇 is a real

number, then (𝑒𝑖𝜇𝑛𝑧(𝑛))
𝑛∈Z
+

belongs to 𝐴𝑃
0
(Z
+
, 𝑋). Now, we

can apply Corollary 4 to finish the proof.

The following example is a concrete application of
Theorem 5.

Example 6. Let 𝑋 be a complex Banach space, and let 𝐴 be a
bounded linear operator acting on𝑋. Consider the following
two discrete Cauchy problems:

𝑥
𝑗+1
= 𝐴𝑥
𝑗
, 𝑗 ∈ Z

+
,

𝑥
0
= 𝑏,

(20)

𝑦
𝑗+1
= 𝐴𝑦
𝑗
+ 𝑓
𝑗+1
, 𝑗 ∈ Z

+
,

𝑦
0
= 0.

(21)

The solutions of (20) and (21) are (resp.) given by 𝑥
𝑗
= 𝑇(𝑗)𝑏

and 𝑦
𝑗
= ∑

𝑗

𝑘=0
𝑇(𝑗 − 𝑘)𝑥(𝑘). Here 𝑇(𝑘) := 𝐴𝑘.

FromTheorem 5, the following two statements are equiv-
alent.

(1) For each 𝑏 ∈ 𝑋 the solution of (20) decays expo-
nentially, or, equivalently, there exist two positive con-
stants𝐾 and ] such that






𝑇 (𝑗) 𝑥






≤ 𝐾𝑒

−]𝑗
‖𝑥‖ ∀𝑥 ∈ 𝑋. (22)

(2) For each 𝑓 ∈ 𝐴𝑃
0
(Z
+
, 𝑋) the solution of (21) belongs

to 𝐴𝑃
0
(Z
+
, 𝑋).

In fact, we can state a more general result concerning 𝑞-
periodic discrete evolution families. To establish this result,
we recall that a familyU = {𝑈(𝑛,𝑚) : 𝑛 ≥ 𝑚 ∈ Z

+
} ⊂ B(𝑋)

is said to be 𝑞-periodic discrete evolution family if it satisfies
the following properties.

(i) 𝑈(𝑛, 𝑛) = 𝐼 and 𝑈(𝑛,𝑚)𝑈(𝑚, 𝑟) = 𝑈(𝑛, 𝑟), for all
𝑛,𝑚, 𝑟 ∈ Z

+
with 𝑛 ≥ 𝑚 ≥ 𝑟 ∈ Z

+
, where 𝐼 is the

identity operator on𝑋.
(ii) 𝑈(𝑛 + 𝑞,𝑚 + 𝑞) = 𝑈(𝑛,𝑚), for all 𝑛 ≥ 𝑚 ∈ Z

+
.
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It is said to be uniformly exponentially stable if there exist
the positive constants𝐾 and ] such that

‖𝑈 (𝑛,𝑚)‖ ≤ 𝐾𝑒

−](𝑛−𝑚)
∀𝑚 ≥ 𝑛 ∈ Z

+
. (23)

Also, the familyU is said to be 𝐴𝑃
0
(Z
+
, 𝑋) exact admissible,

if for every 𝑧 ∈ 𝐴𝑃
0
(Z
+
, 𝑋) the sequence (∑𝑛

𝑘=0
𝑈(𝑛,

𝑘)𝑧(𝑘))
𝑛∈Z
+

belongs to 𝐴𝑃
0
(Z
+
, 𝑋).

The discrete evolution semigroup T = {T(𝑛), 𝑛 ∈ Z
+
}

associated with the evolution family U on 𝐴𝑃
0
(Z
+
, 𝑋) is

defined by

(T (𝑛) 𝑧) (𝑟) = {
𝑈 (𝑟, 𝑟 − 𝑛) 𝑧 (𝑟 − 𝑛) , ∀𝑟 ≥ 𝑛,

0, otherwise.
(24)

As in Lemma 1 it can be proved that it acts on 𝐴𝑃
0
(Z
+
, 𝑋).

Theorem 7. Let U = {𝑈(𝑛,𝑚) : 𝑛 ≥ 𝑚 ∈ Z
+
} be a 𝑞-peri-

odic evolution family of bounded linear operators on 𝑋. The
following statements are equivalent:

(1) U is uniformly exponentially stable.
(2)The evolution semigroup T associated with U is uni-

formly exponentially stable.
(3) U is 𝐴𝑃

0
(Z
+
, 𝑋) exact admissible.

(4) sup
𝑛∈Z
+

‖∑

𝑛

𝑘=0
𝑈(𝑛, 𝑘)ℎ(𝑘)‖ < ∞, for all ℎ ∈ 𝐴𝑃

0
(Z
+
,

𝑋).

The proofs of (1) ⇒ (2) ⇒ (3) ⇒ (4) are similar to those
in the semigroup case. For the proof of (4) ⇒ (1) we use the
following result from [13].

If for every 𝜇 ∈ R and every 𝑧 ∈ 𝑃0
𝑞
(Z
+
, 𝑋), one has

sup
𝑛∈Z
+












𝑛

∑

𝑘=0

𝑒

𝑖𝜇𝑘

𝑈 (𝑛, 𝑘) 𝑧 (𝑘)












:= 𝑀 (𝜇, 𝑧) < ∞, (25)

then the familyU is uniformly exponentially stable.
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