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We investigate solutions of the Helmholtz equation involving local fractional derivative operators. We make use of the series
expansion method and the variational iteration method, which are based upon the local fractional derivative operators. The
nondifferentiable solution of the problem is obtained by using these methods.

1. Introduction

TheHelmholtz equation is known to arise in several physical
problems such as electromagnetic radiation, seismology, and
acoustics. It is a partial differential equation, which models
the normal and nonfractal physical phenomena in both time
and space [1]. It is an important differential equation, which is
usually investigated by means of some analytical and numer-
ical methods (see [2–11] and the references therein). For
example, the FEM solution for the Helmholtz equation in
one, two, and three dimensions was investigated in [2, 3].
The variational iteration method was used to solve the Helm-
holtz equation in [4]. The explicit solution for the Helmholtz
equationwas considered in [5] by using the homotopy pertur-
bation method. The domain decomposition method for the
Helmholtz equation was presented in [6]. The boundary ele-
ment method for the Helmholtz equation was considered in
[7, 8]. The modified Fourier-Galerkin method for the Helm-
holtz equations was applied in [9]. The Green’s function
for the two-dimensional Helmholtz equation in periodic
domains was suggested in [10, 11].

Fractional calculus theory [12–26] has been applied
to deal with the differentiable models from the practical
engineering discipline, which are the anomalous and fractal
physical phenomena. The fractional Helmholtz equations
were considered in [27–29]. In this work, there are two
methods to deal with such problems. For example, an analytic
solution for the fractional Helmholtz equation in terms of the
Mittag-Leffler function was investigated in [28]. The homo-
topy perturbation method for multidimensional fractional
Helmholtz equation was considered in [29].

Local fractional calculus theory [30–44] has been used to
process the nondifferentiable problems in natural phenom-
ena. Taking an example, the local fractional Fokker-Planck
equation was proposed in [30]. The mechanics of quasi-
brittle materials with a fractal microstructure with the local
fractional derivative was presented in [31]. The anomalous
diffusion modeling by fractal and fractional derivatives was
considered in [35]. The local fractional wave and heat equa-
tions were discussed in [36, 37]. Newtonian mechanics on
fractals subset of real-line was investigated in [38]. In [39],
the Helmholtz equation on the Cantor sets involving local
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fractional derivative operators was proposed.There are some
other methods to handle the local fractional differential
equations, such as local fractional series expansion method
[40] and variational iteration method [41–44].

The main objective of the present paper is to solve the
Helmholtz equation involving the local fractional derivative
operators by means of the local fractional series expansion
method and the variational iteration method. The structure
of the paper is as follows. In Section 2, we describe the
Helmholtz equation involving the local fractional derivative
operators. In Section 3, we give analysis of the methods used.
In Section 4, we apply the local fractional series expansion
method to deal with theHelmholtz equation. In Section 5, we
apply the local fractional variational iteration method to deal
with theHelmholtz equation. Finally, in Section 6, we present
our conclusions.

2. Helmholtz Equations within Local
Fractional Derivative Operators

The Helmholtz equation involving local fractional derivative
operators was proposed.

Let us denote the local fractional derivative as follows [36,
37, 39–44]:

𝑓(𝛼) (𝑥0) =
𝑑𝛼𝑓 (𝑥)

𝑑𝑥𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥0
= lim
𝑥→𝑥0

Δ𝛼 (𝑓 (𝑥) − 𝑓 (𝑥0))

(𝑥 − 𝑥0)
𝛼 , (1)

where Δ𝛼(𝑓(𝑥) − 𝑓(𝑥0)) ≅ Γ(1 + 𝛼)Δ(𝑓(𝑥) − 𝑓(𝑥0)).
Using separation of variables in nondifferentiable func-

tions, the three-dimensional Helmholtz equation involving
local fractional derivative operators was suggested by the
following expression [39]:

𝜕2𝛼𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑥2𝛼
+

𝜕2𝛼𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑦2𝛼
+

𝜕2𝛼𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑧2𝛼

+ 𝜔2𝛼𝑀(𝑥, 𝑦, 𝑧) = 0,

(2)

where the operator involved is a local fractional derivative
operator.

In this case, the two-dimensional Helmholtz equation
involving local fractional derivative operators is expressed as
follows (see [39]):

𝜕2𝛼𝑀(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕2𝛼𝑀(𝑥, 𝑦)

𝜕𝑦2𝛼
+ 𝜔2𝛼𝑀(𝑥, 𝑦) = 0. (3)

The three-dimensional inhomogeneous Helmholtz equation
is given by (see [39])

𝜕2𝛼𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑥2𝛼
+

𝜕2𝛼𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑦2𝛼
+

𝜕2𝛼𝑀(𝑥, 𝑦, 𝑧)

𝜕𝑧2𝛼

+ 𝜔2𝛼𝑀(𝑥, 𝑦, 𝑧) = 𝑓 (𝑥, 𝑦, 𝑧) ,

(4)

where 𝑓(𝑥, 𝑦, 𝑧) is a local fractional continuous function.

The two-dimensional local fractional inhomogeneous
Helmholtz equation is considered as follows (see [39]):

𝜕2𝛼𝑀(𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕2𝛼𝑀(𝑥, 𝑦)

𝜕𝑦2𝛼
+ 𝜔2𝛼𝑀(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) , (5)

where 𝑓(𝑥, 𝑦) is a local fractional continuous function.
The previous local fractional Helmholtz equations with

local fractional derivative operators are applied to describe
the governing equations in fractal electromagnetic radiation,
seismology, and acoustics.

3. Analysis of the Methods Used

3.1. The Local Fractional Series Expansion Method. Let us
consider a given local fractional differential equation

𝑢2𝛼𝑡 = 𝐿𝛼𝑢, (6)

where 𝐿 is a linear local fractional derivative operator of order
2𝛼 with respect to 𝑥.

By the local fractional series expansion method [40], a
multiterm separated function of independent variables 𝑡 and
𝑥 reads as

𝑢 (𝑥, 𝑡) =
∞

∑
𝑖=0

𝑇𝑖 (𝑡) 𝑋𝑖 (𝑥) , (7)

where 𝑇𝑖(𝑡) and 𝑋𝑖(𝑥) are local fractional continuous func-
tions.

In view of (7), we have

𝑇𝑖 (𝑡) =
𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
, (8)

so that

𝑢 (𝑥, 𝑡) =
∞

∑
𝑖=0

𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
𝑋𝑖 (𝑥) . (9)

Making use of (9), we get

𝑢2𝛼𝑡 =
∞

∑
𝑖=0

1

Γ (1 + 𝑖𝛼)
𝑡𝑖𝛼𝑋𝑖+2 (𝑥) ,

𝐿𝛼𝑢 = 𝐿𝛼 [
∞

∑
𝑖=0

𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
𝑋𝑖 (𝑥)] =

∞

∑
𝑖=0

𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
(𝐿𝛼𝑋𝑖) (𝑥) .

(10)

In view of (10), we have
∞

∑
𝑖=0

1

Γ (1 + 𝑖𝛼)
𝑡𝑖𝛼𝑋𝑖+2 (𝑥) =

∞

∑
𝑖=0

𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
(𝐿𝛼𝑋𝑖) (𝑥) . (11)

Hence, from (11), the recursion reads as follows:

𝑋𝑖+2 (𝑥) = (𝐿𝛼𝑋𝑖) (𝑥) . (12)

By using (12), we arrive at the following result:

𝑢 (𝑥, 𝑡) =
∞

∑
𝑖=0

𝑡𝑖𝛼

Γ (1 + 𝑖𝛼)
𝑋𝑖 (𝑥) . (13)
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3.2. The Local Fractional Variational Iteration Method. Let us
consider the following local fractional operator equation:

𝐿𝛼𝑢 + 𝑅𝛼𝑢 = 𝑔 (𝑡) , (14)

where 𝐿𝛼 is linear local fractional derivative operator of order
2𝛼, 𝑅𝛼 is a lower-order local fractional derivative operator,
and 𝑔(𝑡) is the inhomogeneous source term.

By using the local fractional variational iteration method
[41–44], we can construct a correctional local fractional
functional as follows:

𝑢𝑛+1 (𝑥) = 𝑢𝑛 (𝑥) + 0𝐼
(𝛼)

𝑥

× {𝜂 (𝑠) [𝐿𝛼𝑢𝑛 (𝑠) + 𝑅𝛼𝑢̃𝑛 (𝑠) − 𝑔 (𝑠)]} ,
(15)

where the local fractional operator is defined as follows [36,
37, 41–44]:

𝑎
𝐼(𝛼)
𝑏

𝑓 (𝑥) =
1

Γ (1 + 𝛼)
∫
𝑏

𝑎

𝑓 (𝑡) (𝑑𝑡)
𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑
𝑗=0

𝑓 (𝑡𝑗) (Δ𝑡𝑗)
𝛼

(16)

and a partition of the interval [𝑎, 𝑏] is Δ𝑡𝑗 = 𝑡𝑗+1 − 𝑡𝑗, Δ𝑡 =
max{Δ𝑡1, Δ𝑡2, Δ𝑡𝑗, . . .}, and 𝑗 = 0, . . . , 𝑁 − 1, 𝑡0 = 𝑎, 𝑡𝑁 = 𝑏.

Following (15), we have

𝛿𝛼𝑢𝑛+1 (𝑥) = 𝛿𝛼𝑢𝑛 (𝑥) + 0𝐼
(𝛼)

𝑥
𝛿𝛼

× {𝜂 (𝑠) [𝐿𝛼𝑢𝑛 (𝑠) + 𝑅𝛼𝑢̃𝑛 (𝑠) − 𝑔 (𝑠)]} .
(17)

The extremum condition of 𝑢𝑛+1 is given by [37, 41, 42]

𝛿𝛼𝑢𝑛+1 = 0. (18)

In view of (18), we have the following stationary conditions:

1 − 𝜂(𝑠)
(𝛼)󵄨󵄨󵄨󵄨󵄨𝑠=𝑥 = 0, 𝜂 (𝑠)

󵄨󵄨󵄨󵄨𝑠=𝑥 = 0,

𝜂(𝑠)
(2𝛼)󵄨󵄨󵄨󵄨󵄨𝑠=𝑥 = 0.

(19)

So, from (19), we get

𝜂 (𝑠) =
(𝑠 − 𝑥)𝛼

Γ (1 + 𝛼)
. (20)

The initial value 𝑢0(𝑥) is given by

𝑢0 (𝑥) = 𝑢 (0) +
𝑥𝛼

Γ (1 + 𝛼)
𝑢(𝛼) (0) . (21)

In view of (20), we have

𝑢𝑛+1 (𝑥) = 𝑢𝑛 (𝑥) + 0𝐼
(𝛼)

𝑥

(𝑠 − 𝑥)𝛼

Γ (1 + 𝛼)

× {𝐿𝛼𝑢𝑛 (𝑠) + 𝑅𝛼𝑢̃𝑛 (𝑠) − 𝑔 (𝑠)} .

(22)

Finally, from (22), we obtain the solution of (14) as follows:

𝑢 = lim
𝑛→∞

𝑢𝑛. (23)

4. Local Fractional Series Expansion Method
for the Helmholtz Equation

Let us consider the following Helmholtz equation involving
local fractional derivative operators:

𝜕2𝛼𝑢 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕2𝛼𝑢 (𝑥, 𝑦)

𝜕𝑦2𝛼
= 𝑢 (𝑥, 𝑦) . (24)

We now present the initial value conditions as follows:

𝑢 (0, 𝑦) = 0,

𝜕

𝜕𝑥𝛼
𝑢 (0, 𝑦) = 𝐸𝛼 (𝑦

𝛼) .
(25)

Using relation (12), we have

𝑢𝑖+2 (𝑦) = (𝐿𝛼𝑢𝑖) (𝑦) ,

𝑢0 (𝑦) = 𝑢 (0, 𝑦) = 0,

𝑢1 (𝑦) =
𝜕

𝜕𝑥𝛼
𝑢 (0, 𝑦) = 𝐸𝛼 (𝑦

𝛼) ,

(26)

where

𝐿𝛼𝑢𝑖 = 𝑢𝑖 −
𝜕2𝛼𝑢𝑖
𝜕𝑦2𝛼

. (27)

Hence, we get the following iterative relations:

𝑢𝑖+2 (𝑦) = (𝑢𝑖 −
𝜕2𝛼𝑢𝑖
𝜕𝑦2𝛼

) (𝑦) ,

𝑢0 (𝑦) = 𝑢 (0, 𝑦) = 0,

(28)

𝑢𝑖+2 (𝑦) = (𝑢𝑖 −
𝜕2𝛼𝑢𝑖
𝜕𝑦2𝛼

) (𝑦) ,

𝑢1 (𝑦) = 𝐸𝛼 (𝑦
𝛼) .

(29)

From (28), we have

𝑢0 (𝑦) = 𝑢2 (𝑦) = 𝑢4 (𝑦) = ⋅ ⋅ ⋅ = 0. (30)

From (29), we get the following terms:

𝑢1 (𝑦) = 𝐸𝛼 (𝑦
𝛼) ,

𝑢3 (𝑦) = (𝑢1 −
𝜕2𝛼𝑢1
𝜕𝑦2𝛼

) (𝑦)

= [𝐸𝛼 (𝑦
𝛼) − 𝐸𝛼 (𝑦

𝛼)] = 0,
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𝑢5 (𝑦) = 0,

𝑢7 (𝑦) = ⋅ ⋅ ⋅ = 0.

(31)

Hence, we obtain

𝑢 (𝑥, 𝑦) =
𝑥𝛼

Γ (1 + 𝛼)
𝐸𝛼 (𝑦
𝛼) . (32)

5. Local Fractional Variational Iteration
Method for the Helmholtz Equation

We now consider (24) with the initial and boundary condi-
tions in (25) by using the local fractional variational iteration
method.

Applying the iterative relation equation (22), we get

𝑢𝑛+1 (𝑥, 𝑦) = 𝑢𝑛 (𝑥, 𝑦) +
0
𝐼(𝛼)𝑦

(𝑠 − 𝑦)
𝛼

Γ (1 + 𝛼)

× {
𝜕2𝛼𝑢𝑛 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕2𝛼𝑢𝑛 (𝑥, 𝑦)

𝜕𝑦2𝛼
− 𝑢𝑛 (𝑥, 𝑦)} ,

(33)

where the initial value is given by

𝑢0 (𝑥, 𝑦) =
𝑥𝛼

Γ (1 + 𝛼)
𝐸𝛼 (𝑦
𝛼) . (34)

Therefore, from (34) we have

𝑢1 (𝑥, 𝑦) = 𝑢0 (𝑥, 𝑦) +
0
𝐼(𝛼)𝑦

(𝑠 − 𝑦)
𝛼

Γ (1 + 𝛼)

× {
𝜕2𝛼𝑢0 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕2𝛼𝑢0 (𝑥, 𝑦)

𝜕𝑦2𝛼
− 𝑢0 (𝑥, 𝑦)}

=
𝑥𝛼

Γ (1 + 𝛼)
𝐸𝛼 (𝑦
𝛼) .

(35)

The second approximate term reads as follows:

𝑢2 (𝑥, 𝑦) = 𝑢1 (𝑥, 𝑦) +
0
𝐼(𝛼)𝑦

(𝑠 − 𝑦)
𝛼

Γ (1 + 𝛼)

× {
𝜕2𝛼𝑢1 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕2𝛼𝑢1 (𝑥, 𝑦)

𝜕𝑦2𝛼
− 𝑢1 (𝑥, 𝑦)}

=
𝑥𝛼

Γ (1 + 𝛼)
𝐸𝛼 (𝑦
𝛼) .

(36)

The third approximate term reads as follows:

𝑢3 (𝑥, 𝑦) = 𝑢2 (𝑥, 𝑦) +
0
𝐼(𝛼)𝑦

(𝑠 − 𝑦)
𝛼

Γ (1 + 𝛼)

× {
𝜕2𝛼𝑢2 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕2𝛼𝑢2 (𝑥, 𝑦)

𝜕𝑦2𝛼
− 𝑢2 (𝑥, 𝑦)}

=
𝑥𝛼

Γ (1 + 𝛼)
𝐸𝛼 (𝑦
𝛼) .

(37)

Other approximate terms are presented as follows:

𝑢4 (𝑥, 𝑦) = 𝑢3 (𝑥, 𝑦) +
0
𝐼(𝛼)𝑦

(𝑠 − 𝑦)
𝛼

Γ (1 + 𝛼)

× {
𝜕2𝛼𝑢3 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕2𝛼𝑢3 (𝑥, 𝑦)

𝜕𝑦2𝛼
− 𝑢3 (𝑥, 𝑦)}

=
𝑥𝛼

Γ (1 + 𝛼)
𝐸𝛼 (𝑦
𝛼) ,

𝑢5 (𝑥, 𝑦) = 𝑢4 (𝑥, 𝑦) +
0
𝐼(𝛼)𝑦

(𝑠 − 𝑦)
𝛼

Γ (1 + 𝛼)

× {
𝜕2𝛼𝑢4 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕2𝛼𝑢4 (𝑥, 𝑦)

𝜕𝑦2𝛼
− 𝑢4 (𝑥, 𝑦)}

=
𝑥𝛼

Γ (1 + 𝛼)
𝐸𝛼 (𝑦
𝛼)

...

𝑢𝑛 (𝑥, 𝑦) = 𝑢𝑛−1 (𝑥, 𝑦) +
0
𝐼(𝛼)𝑦

(𝑠 − 𝑦)
𝛼

Γ (1 + 𝛼)

× {
𝜕2𝛼𝑢𝑛−1 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕2𝛼𝑢𝑛−1 (𝑥, 𝑦)

𝜕𝑦2𝛼

− 𝑢𝑛−1 (𝑥, 𝑦) }

=
𝑥𝛼

Γ (1 + 𝛼)
𝐸𝛼 (𝑦
𝛼)

(38)

and so on.
So, we get

𝑢 (𝑥, 𝑦) = lim
𝑛→∞

𝑢𝑛 (𝑥, 𝑦) =
𝑥𝛼

Γ (1 + 𝛼)
𝐸𝛼 (𝑦
𝛼) . (39)

The result is the same as the one which is obtained by
the local fractional series expansion method. The nondiffer-
entiable solution is shown in Figure 1.

6. Conclusions

In this work, the nondifferentiable solution for theHelmholtz
equation involving local fractional derivative operators is
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Figure 1: Graph of 𝑢(𝑥, 𝑦) for 𝛼 = ln 2/ ln 3.

investigated by using the local fractional series expansion
method and the variational iteration method. By using
these two markedly different methods, the same solution is
obtained. These two approaches are remarkably efficient to
process other linear local fractional differential equations as
well.
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sion modeling by fractal and fractional derivatives,” Computers
& Mathematics with Applications, vol. 59, no. 5, pp. 1754–1758,
2010.

[36] X.-J. Yang, Local Fractional Functional Analysis and Its Applica-
tions, Asian Academic Publisher, Hong Kong, 2011.

[37] X.-J. Yang, Advanced Local Fractional Calculus and Its Applica-
tions, World Science Publisher, New York, NY, USA, 2012.

[38] A. K. Golmankhaneh, V. Fazlollahi, and D. Baleanu, “Newto-
nianmechanics on fractals subset of real-line,”Romania Reports
in Physics, vol. 65, pp. 84–93, 2013.

[39] Y.-J. Hao, H.M. Srivastava, H. Jafari, and X.-J. Yang, “Helmholtz
and diffusion equations associated with local fractional deriva-
tive operators involving the Cantorian and Cantor-type cylin-
drical coordinates,”Advances inMathematical Physics, vol. 2013,
Article ID 754248, 5 pages, 2013.

[40] A.-M. Yang, X.-J. Yang, and Z.-B. Li, “Local fractional series
expansion method for solving wave and diffusion equations on
Cantor sets,”Abstract and Applied Analysis, vol. 2013, Article ID
351057, 5 pages, 2013.

[41] X.-J. Yang and D. Baleanu, “Fractal heat conduction problem
solved by local fractional variation iteration method,” Thermal
Science, vol. 17, no. 2, pp. 625–628, 2013.

[42] W.-H. Su, D. Baleanu, X.-J. Yang, and H. Jafari, “Damped wave
equation and dissipative wave equation in fractal strings within
the local fractional variational iteration method,” Fixed Point
Theory and Applications, vol. 2013, no. 1, article 89, pp. 1–11, 2013.

[43] Y.-J. Yang, D. Baleanu, and X.-J. Yang, “A local fractional vari-
ational iteration method for Laplace equation within local
fractional operators,” Abstract and Applied Analysis, vol. 2013,
Article ID 202650, 6 pages, 2013.

[44] J.-H. He, “Local fractional variational iterationmethod for frac-
tal heat transfer in silk cocoon hierarchy,” Nonlinear Science
Letters A, vol. 4, no. 1, pp. 15–20, 2013.


