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The migration of melt through the mantle of the Earth is governed by a third-order nonlinear partial differential equation for the
voidage or volume fraction of melt. The partial differential equation depends on the permeability of the medium which is assumed
to be a function of the voidage. It is shown that the partial differential equation admits, as well as translations in time and space,
other Lie point symmetries provided the permeability is either a power law or an exponential law of the voidage or is a constant. A
rarefactive solitary wave solution of the partial differential equation is derived in the form of a quadrature for the exponential law
for the permeability.

1. Introduction

The one-dimensional migration of melt upwards through the
mantle of the Earth is governed by the third-order nonlinear
partial differential equation

𝜕𝜙

𝜕𝑡
+

𝜕

𝜕𝑧
[𝐾 (𝜙)(1 −

𝜕
2
𝜙

𝜕𝑡𝜕𝑧
)] = 0, (1)

where 𝜙(𝑡, 𝑧) is the voidage or volume fraction of melt, 𝑡

is time, 𝑧 is the vertical spatial coordinate, and 𝐾 is the
permeability of the medium. The special case in which 𝐾(𝜙)

is a power law,

𝐾(𝜙) = 𝜙
𝑛
, (2)

has been studied extensively, and solitary wave solutions have
been derived [1–12]. In this paper 𝐾(𝜙) will initially not be
specified. For arbitrary forms of 𝐾(𝜙), (1) does not depend
explicitly on 𝑡 and 𝑧, and therefore it admits the Lie point
symmetries

𝑋
1
=

𝜕

𝜕𝑡
, 𝑋

2
=

𝜕

𝜕𝑧
. (3)

We will determine the forms of 𝐾(𝜙) for (1) to admit other
Lie point symmetries besides the Lie point symmetries (3).
This would be a significant property for (1) to posses because
invariant solutions could then be constructed. One of the
forms obtained for 𝐾(𝜙) is an exponential law relating the
permeability to the voidage. We will derive a new rarefactive
solitary wave solution of (1) with the exponential law for the
permeability.

The variables 𝜙, 𝑡, 𝑧, and 𝐾(𝜙) in (1) are dimensionless.
The voidage 𝜙(𝑡, 𝑧) is scaled by the background voidage 𝜙

0
.

The background state is therefore defined by 𝜙 = 1. The
characteristic length in the 𝑧-direction, which is vertically
upwards, is the compaction length 𝛿

𝑐
defined by

𝛿
𝑐
= [

𝐾 (𝜙
0
) (𝜉 + (4/3) 𝜂)

𝜇
]

1/2

, (4)

where 𝜇 is the coefficient of shear viscosity of the melt and
𝜉 and 𝜂 are the bulk and shear viscosity of the solid matrix,
respectively. We will assume that 𝜉 and 𝜂 are constants as did
Barcilon and Richter [3]. Scott and Stevenson [1] assume that
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𝜉 and 𝜂 are power laws of the voidage 𝜙. The characteristic
time is 𝑡

0
defined by

𝑡
0
=

𝜙
0

𝑔Δ𝜌
[
𝜇 (𝜉 + (4/3)) 𝜂

𝐾 (𝜙
0
)

]

1/2

, (5)

where 𝑔 is the acceleration due to gravity and Δ𝜌 is the
difference between the density of the solid matrix and the
density of the melt. The permeability is scaled by 𝐾(𝜙

0
) and

therefore

𝐾 (1) = 1. (6)

When the voidage is zero, the permeability must also be zero
and therefore

𝐾 (0) = 0. (7)

In the derivation of (1), it is assumed that the background
voidage satisfies 𝜙

0
≪ 1. An outline of the derivation of (1)

when 𝐾(𝜙) satisfies the power law (2) is given by Nakayama
and Mason [5]. The derivation is readily extended to the
general case in which 𝐾 = 𝐾(𝜙).

An outline of the paper is as follows. In Section 2 the
Lie point symmetries of (1) are investigated and the forms of
𝐾(𝜙) are determined for (1) to admit, as well as the Lie point
symmetries (3), other Lie point symmetries. In Section 3 a
new rarefactive solitary wave solution of (1) is obtained when
𝐾(𝜙) depends on 𝜙 through an exponential law. Finally, the
conclusions are summarized in Section 4.

2. Lie Point Symmetries

In this section 𝐾(𝜙) will not be specified initially. We will
investigate the Lie point symmetries of (1) and the forms of
𝐾(𝜙) for these symmetries to exist.

Equation (1) is as follows:

𝜙
𝑡
+

𝑑𝐾

𝑑𝜙
𝜙
𝑧
−

𝑑𝐾

𝑑𝜙
𝜙
𝑧
𝜙
𝑡𝑧

− 𝐾𝜙
𝑡𝑧𝑧

= 0, (8)

where a subscript denotes partial differentiation. We look for
Lie point symmetries of the form

𝑋 = 𝜉
1
(𝑡, 𝑧, 𝜙)

𝜕

𝜕𝑡
+ 𝜉
2
(𝑡, 𝑧, 𝜙)

𝜕

𝜕𝑧
+ 𝜂 (𝑡, 𝑧, 𝜙)

𝜕

𝜕𝜙
. (9)

The coefficients 𝜉 and 𝜂 in the Lie point symmetry (9) should
not be confused with the bulk and shear viscosities in the
characteristic quantities (4) and (5). The invariance criterion
is

𝑋
[3]

(𝜙
𝑡
+

𝑑𝐾

𝑑𝜙
𝜙
𝑧
−

𝑑𝐾

𝑑𝜙
𝜙
𝑧
𝜙
𝑡𝑧

− 𝐾𝜙
𝑡𝑧𝑧

)

(8)

= 0, (10)

where the third prolongation of 𝑋 is of the form

𝑋
[3]

= 𝜉
1 𝜕

𝜕𝑡
+ 𝜉
2 𝜕

𝜕𝑧
+ 𝜂

𝜕

𝜕𝜙
+ 𝜁
1

𝜕

𝜕𝜙
𝑡

+ 𝜁
2

𝜕

𝜕𝜙
𝑧

+ 𝜁
12

𝜕

𝜕𝜙
𝑡𝑧

+ 𝜁
122

𝜕

𝜕𝜙
𝑡𝑧𝑧

+ ⋅ ⋅ ⋅ .

(11)

The remaining terms in 𝑋
[3] are not required in (10) and

𝜁
𝑖
= 𝐷
𝑖
(𝜂) − 𝜙

𝑠
𝐷
𝑖
(𝜉
𝑠
) , 𝑖 = 1, 2,

𝜁
𝑖𝑗

= 𝐷
𝑗
(𝜁
𝑖
) − 𝜙
𝑖𝑠
𝐷
𝑗
(𝜉
𝑠
) , 𝑖 = 1, 2,

𝜁
𝑖𝑗𝑘

= 𝐷
𝑘
(𝜁
𝑖𝑗
) − 𝜙
𝑖𝑗𝑠

𝐷
𝑘
(𝜉
𝑠
) , 𝑖 = 1, 2,

(12)

with summation over the repeated index, 𝑠, from 1 to 2. The
total derivatives 𝐷

1
and 𝐷

2
are defined by

𝐷
1
= 𝐷
𝑡
=

𝜕

𝜕𝑡
+ 𝜙
𝑡

𝜕

𝜕𝜙
+ 𝜙
𝑡𝑡

𝜕

𝜕𝜙
𝑡

+ 𝜙
𝑧𝑡

𝜕

𝜕𝜙
𝑧

+ ⋅ ⋅ ⋅ ,

𝐷
1
= 𝐷
𝑧
=

𝜕

𝜕𝑧
+ 𝜙
𝑧

𝜕

𝜕𝜙
+ 𝜙
𝑡𝑧

𝜕

𝜕𝜙
𝑡

+ 𝜙
𝑧𝑧

𝜕

𝜕𝜙
𝑧

+ ⋅ ⋅ ⋅ .

(13)

We replace 𝜙
𝑡𝑧𝑧

in the determining equation (10) using
the partial differential equation (8) and then separate the
determining equation according to the following partial
derivatives of 𝜙:

𝜙
𝑡𝑡𝑧

:
𝜕𝜉
1

𝜕𝑧
= 0,

𝜙
𝑧
𝜙
𝑡𝑡𝑧

:
𝜕𝜉
1

𝜕𝜙
= 0,

𝜙
𝑧𝑧𝑧

:
𝜕𝜉
2

𝜕𝑡
= 0,

𝜙
𝑡
𝜙
𝑧𝑧𝑧

:
𝜕𝜉
2

𝜕𝜙
= 0,

𝜙
𝑧𝑧

:
𝜕
2
𝜂

𝜕𝑡𝜕𝜙
= 0,

𝜙
𝑡
𝜙
𝑧𝑧

:
𝜕
2
𝜂

𝜕𝜙2
= 0.

(14)

It follows directly from (14) that

𝜉
1
= 𝑓 (𝑡) , 𝜉

2
= 𝑔 (𝑧) , 𝜂 = 𝜙𝐴 (𝑧) + 𝐵 (𝑡, 𝑧) , (15)

where𝑓(𝑡), 𝑔(𝑧),𝐴(𝑧), and𝐵(𝑡, 𝑧) still have to be determined.
Using (15), the invariance criterion separates further into the
following system of equations:

𝜙
𝑧
𝜙
𝑡𝑧

: [𝜙
𝑑
2
𝐾

𝑑𝜙2
−

𝜙

𝐾
(
𝑑𝐾

𝑑𝜙
)

2

+
𝑑𝐾

𝑑𝜙
]𝐴 (𝑧)

+ [
𝑑
2
𝐾

𝑑𝜙2
−

1

𝐾
(
𝑑𝐾

𝑑𝜙
)

2

]𝐵 (𝑡, 𝑧) = 0,

(16)
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𝜙
𝑡𝑧

: [𝜙
𝑑𝐾

𝑑𝜙
+ 2𝐾 (𝜙)]

𝑑𝐴

𝑑𝑧
+

𝑑𝐾

𝑑𝜙

𝜕𝐵

𝜕𝑧

− 𝐾 (𝜙)
𝑑
2
𝑔

𝑑𝑧2
= 0,

(17)

𝜙
𝑡
𝜙
𝑧
:
𝑑𝐾

𝑑𝜙

𝑑𝐴

𝑑𝑧
= 0, (18)

𝜙
𝑧
: [𝜙

𝑑
2
𝐾

𝑑𝜙2
−

𝜙

𝐾
(
𝑑𝐾

𝑑𝜙
)

2

]𝐴 (𝑧)

+ [
𝑑
2
𝐾

𝑑𝜙2
−

1

𝐾
(
𝑑𝐾

𝑑𝜙
)

2

]𝐵 (𝑡, 𝑧)

−
𝑑𝐾

𝑑𝜙

𝜕
2
𝐵

𝜕𝑡𝜕𝑧
+

𝑑𝐾

𝑑𝜙
(
𝑑𝑓

𝑑𝑡
+

𝑑𝑔

𝑑𝑧
) = 0,

(19)

𝜙
𝑡
: 𝐾 (𝜙)

𝑑
2
𝐴

𝑑𝑧2
+

𝜙

𝐾

𝑑𝐾

𝑑𝜙
𝐴 (𝑧) +

1

𝐾

𝑑𝐾

𝑑𝜙
𝐵 (𝑡, 𝑧)

− 2
𝑑𝑔

𝑑𝑧
= 0,

(20)

Remainder : 𝜙𝑑𝐾

𝑑𝜙

𝑑𝐴

𝑑𝑧
− 𝐾 (𝜙)

𝜕
3
𝐵

𝜕𝑡𝜕𝑧2
+

𝑑𝐾

𝑑𝜙

𝜕𝐵

𝜕𝑧

+
𝜕𝐵

𝜕𝑡
= 0.

(21)

For arbitrary forms of 𝐾(𝜙), (16) to (21) are satisfied by

𝐴 (𝑧) = 0, 𝐵 (𝑡, 𝑧) = 0, 𝑓 (𝑡) = 𝑐
1
, 𝑔 (𝑧) = 𝑐

2
,

(22)

where 𝑐
1
and 𝑐
2
are constants and (1) admits the Lie point

symmetries (3).Wewill seek possible forms of𝐾(𝜙) for which
(1) admits, as well as (3), other Lie point symmetries. From
(18) we see that there are two general cases depending on
whether the permeability, 𝐾, depends on 𝜙 or is constant.

2.1. Permeability Depends on Voidage. Consider first the case
in which 𝐾(𝜙) depends on the voidage, 𝜙; that is, the perme-
ability is not constant, so that

𝑑𝐾

𝑑𝜙
̸= 0. (23)

Then, from (18),𝐴(𝑧) = 𝐴
0
, where𝐴

0
is a constant. By differ-

entiating (20) with respect to 𝑡 we find that 𝐵 = 𝐵(𝑧), and
from (21) it follows that 𝐵(𝑧) = 𝐵

0
, where 𝐵

0
is a constant.

Hence, from (15),

𝜂 (𝜙) = 𝐴
0
𝜙 + 𝐵
0
. (24)

From (17),

𝜉
2
= 𝑔 (𝑧) = 𝑐

1
𝑧 + 𝑐
2
, (25)

where 𝑐
1
and 𝑐
2
are constants. Also from (16) and (19),

𝑑𝑓

𝑑𝑡
= 𝐴
0
− 𝑐
1
, (26)

and therefore

𝜉
1
= 𝑓 (𝑡) = (𝐴

0
− 𝑐
1
) 𝑡 + 𝑐

3
, (27)

where 𝑐
3
is a constant. Equations (16) to (21) reduce to

(𝐴
0
𝜙 + 𝐵
0
) (

𝑑
2
𝐾

𝑑𝜙2
−

1

𝐾
(
𝑑𝐾

𝑑𝜙
)

2

) + 𝐴
0

𝑑𝐾

𝑑𝜙
= 0, (28)

(𝐴
0
𝜙 + 𝐵
0
)
𝑑𝐾

𝑑𝜙
− 2𝑐
1
𝐾 = 0. (29)

It is readily verified that if 𝐾(𝜙) satisfies (29), then 𝐾(𝜙)

satisfies (28) identically. Equation (28) therefore does not
need to be considered further.

When (23) is satisfied Lie point symmetries of (1) exist
provided that 𝐾(𝜙) satisfies (29) and are given by (24), (25),
and (27). This case separates into two subcases depending on
whether 𝐴

0
̸= 0 or 𝐴

0
= 0.

2.1.1. The Case 𝐴
0

̸= 0. Consider first 𝐴
0

̸= 0. The general
solution of the ordinary differential equation (29) for 𝐾(𝜙)

is

𝐾(𝜙) = 𝐾
0
(𝐴
0
𝜙 + 𝐵
0
)
2𝑐
1
/𝐴
0

, (30)

where 𝐾
0
is a constant. But since 𝐾(0) = 0, it follows that

𝐵
0
= 0, and since 𝐾(1) = 1 we obtain

𝐾(𝜙) = 𝜙
𝑛
, 𝑛 =

2𝑐
1

𝐴
0

. (31)

Since𝐾 is not a constant, 𝑛 ̸= 0. Equations (27), (25), and (24)
become

𝜉
1
(𝑡) =

𝑐
1

𝑛
(2 − 𝑛) 𝑡 + 𝑐

3
,

𝜉
2
(𝑧) = 𝑐

1
𝑧 + 𝑐
2
,

𝜂 (𝜙) =
2𝑐
1

𝑛
𝜙.

(32)

The three Lie point symmetries of (1) with the power law (30)
for𝐾(𝜙) are presented in Table 1.The results agree with those
derived by Maluleke and Mason [7, 9] for the generalized
magma equation with 𝑚 = 0, where 𝑚 is the exponent in the
power law relating the bulk and shear viscosities of the solid
matrix to the voidage.

2.1.2. The Case 𝐴
0
=0, 𝐵
0

̸= 0. When 𝐴
0

= 0 but 𝐵
0

̸= 0, the
general solution of (29) is

𝐾(𝜙) = 𝐾
0
exp (𝑛𝜙) , 𝑛 =

2𝑐
1

𝐵
0

, (33)

where 𝐾
0
is a constant. Since 𝐾(𝜙) is not constant, 𝑛 ̸= 0, and

because the permeability increases as the voidage increases,
𝑛 > 0. Also, 𝐾(1) = 1 and therefore

𝐾(𝜙) = exp (𝑛 (𝜙 − 1)) , 𝑛 > 0. (34)
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Table 1: The permeability 𝐾(𝜙) and the corresponding Lie point
symmetries of (1).

Permeability Lie point symmetry

𝑋
1
= (2 − 𝑛)𝑡

𝜕

𝜕𝑡
+ 𝑛𝑧

𝜕

𝜕𝑧
+ 2𝜙

𝜕

𝜕𝜙

𝐾(𝜙) = 𝜙
𝑛

𝑋
2
=

𝜕

𝜕𝑧

𝑋
3
=

𝜕

𝜕𝑡

𝑋
1
= −𝑛𝑡

𝜕

𝜕𝑡
+ 𝑛𝑧

𝜕

𝜕𝑧
+ 2

𝜕

𝜕𝜙

𝐾(𝜙) = exp[𝑛(𝜙 − 1)] 𝑋
2
=

𝜕

𝜕𝑧

𝑋
3
=

𝜕

𝜕𝑡

𝑋
1
= 𝑓(𝑡)

𝜕

𝜕𝑡

𝑋
2
= 𝜙

𝜕

𝜕𝜙

𝑋
3
=

𝜕

𝜕𝑧

𝐾(𝜙) = 1 𝑋
4
= cosh(2𝑧) 𝜕

𝜕𝑧
+ 𝜙 sinh(2𝑧) 𝜕

𝜕𝜙

𝑋
5
= sinh(2𝑧) 𝜕

𝜕𝑧
+ 𝜙 cosh(2𝑧) 𝜕

𝜕𝜙

𝑋
6
= 𝐵(𝑡, 𝑧)

𝜕

𝜕𝜙
, where 𝐵(𝑡, 𝑧) satisfies

𝜕𝐵

𝜕𝑡
−

𝜕
3
𝐵

𝜕𝑡𝜕𝑧2
= 0

When 𝜙 = 0, then

𝐾(𝜙) = exp (−𝑛) ̸= 0. (35)

If 𝑛 is large, 𝐾(0) is small. However, the exponential law
(34) for 𝐾(𝜙) does not satisfy the condition 𝐾(0) = 0. It
is not a suitable model for physical phenomena with small
values of the voidage. For instance, it would not be suitable
to describe compressive solitary waves which contain 𝜙 =

0 [8, 10–12]. It is suitable for describing rarefactive solitary
waves which satisfy 𝜙 ≥ 1 and this will be considered in
Section 3. Equations (27), (25), and (24) become

𝜉
1
(𝑡) = −𝑐

1
𝑡 + 𝑐
3
,

𝜉
2
(𝑧) = 𝑐

1
𝑧 + 𝑐
2
,

𝜂 (𝜙) =
2𝑐
1

𝑛
.

(36)

The three Lie point symmetries of (1) with the exponential
law (34) for 𝐾(𝜙) are presented in Table 1.

2.2. Constant Permeability. Finally, consider constant perme-
ability, 𝐾(𝜙) = 𝐾

0
. Since 𝐾(1) = 1, it follows that 𝐾

0
= 1.

The model does not satisfy 𝐾(0) = 0 and it cannot be used
to describe physical phenomena in which the permeability
depends on voidage.

When 𝐾(𝜙) = 1, (16) to (21) are reduced to

2
𝑑𝐴

𝑑𝑧
−

𝑑
2
𝑔

𝑑𝑧2
= 0, (37)

𝑑
2
𝐴

𝑑𝑧2
− 2

𝑑𝑔

𝑑𝑧
= 0, (38)

𝜕𝐵

𝜕𝑡
−

𝜕
3
𝐵

𝜕𝑡𝜕𝑧2
= 0. (39)

Integrating (37) and (38) once with respect to 𝑧 gives

2𝐴 (𝑧) −
𝑑𝑔

𝑑𝑧
= 𝑐
1
, (40)

𝑑𝐴

𝑑𝑧
− 2𝑔 (𝑧) = 𝑐

2
, (41)

where 𝑐
1
and 𝑐
2
are constants. By eliminating𝐴(𝑧), we obtain

𝑑
2
𝑔

𝑑𝑧2
− 4𝑔 = 2𝑐

2
(42)

and therefore

𝑔 (𝑧) = 𝑐
3
cosh (2𝑧) + 𝑐

4
sinh (2𝑧) −

𝑐
2

2
, (43)

where 𝑐
3
and 𝑐
4
are constants. From (40),

𝐴 (𝑧) = 𝑐
3
sinh (2𝑧) + 𝑐

4
cosh (2𝑧) +

𝑐
1

2
. (44)

Thus, from (15)

𝜉
1
(𝑡) = 𝑓 (𝑡) ,

𝜉
2
(𝑧) = 𝑐

3
cosh (2𝑧) + 𝑐

4
sinh (2𝑧) −

𝑐
2

2
,

𝜂 (𝑡, 𝑧, 𝜙) = 𝜙 (𝑐
3
sinh (2𝑧) + 𝑐

4
cosh (2𝑧) +

𝑐
1

2
) + 𝐵 (𝑡, 𝑧) ,

(45)

where 𝑓(𝑡) is arbitrary and 𝐵(𝑡, 𝑧) satisfies (39) which is the
partial differential equation (1) with 𝐾(𝜙) = 1. The Lie point
symmetries of (1) with constant permeability are presented in
Table 1. The results agree with those derived by Maluleke and
Mason [7, 9] for 𝑛 = 0 and 𝑚 = 0.

There are therefore three forms of 𝐾(𝜙) for which (1) has
Lie point symmetries in addition to (3), namely, the power law
(31), the exponential law (34), and constant permeability.The
Lie point symmetries of (1) with the three forms of 𝐾(𝜙) are
presented in Table 1. Equation (1) with the power law has been
studied in detail. In Section 3wewill consider the exponential
law and investigate rarefactive solitary wave solutions of (1)
with 𝐾(𝜙) given by (34).

3. Rarefactive Solitary Wave

When the permeability satisfies the exponential law (34), the
partial differential equation (1) becomes

𝜕𝜙

𝜕𝑡
+

𝜕

𝜕𝑧
[exp [𝑛 (𝜙 − 1)] (1 −

𝜕
2
𝜙

𝜕𝑡𝜕𝑧
)] = 0. (46)
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We now derive a rarefactive solitary wave solution, with
𝜙 ≥ 1, of the partial differential equation (46).

The solution 𝜙 = Φ(𝑡, 𝑧) is an invariant solution of (46)
provided that

𝑋(𝜙 − Φ (𝑡, 𝑧))
𝜙=Φ = 0, (47)

where 𝑋 is a linear combination of the Lie point symmetries
of (46). The Lie point symmetries of (46) are given in
Table 1. Consider the invariant solution generated by the
linear combination

𝑋 = 𝑐
1

𝜕

𝜕𝑡
+ 𝑐
2

𝜕

𝜕𝑧
, (48)

(47) becomes

𝑐
1

𝜕Φ

𝜕𝑡
+ 𝑐
2

𝜕Φ

𝜕𝑧
= 0, (49)

where 𝑐
1
and 𝑐
2
are constants. The general solution of (49) is

readily derived, and since 𝜙 = Φ(𝑡, 𝑧) we obtain

𝜙 = 𝜓 (𝜁) , 𝜁 = 𝑧 − 𝑐𝑡, (50)

where 𝑐 = 𝑐
2
/𝑐
1
. The group invariant solution (50) is a trav-

elling wave solution and the constant 𝑐 is the dimensionless
speed of the wave.

Substitute (50) into (46). This gives the third-order
ordinary differential equation

𝑐
𝑑𝜓

𝑑𝜁
−

𝑑

𝑑𝜁
[exp [𝑛 (𝜓 − 1)] (1 + 𝑐

𝑑
2
𝜓

𝑑𝜁2
)] = 0, (51)

and integrating (51) once with respect to 𝜉 we obtain

𝑐
𝑑
2
𝜓

𝑑𝜁2
=

𝐴

exp [𝑛 (𝜓 − 1)]
+

𝑐𝜓

exp [𝑛 (𝜓 − 1)]
− 1, (52)

where𝐴 is a constant of integration. Since the right hand side
of (52) depends only on 𝜓, we integrate (52) with respect to
𝜓. Now

𝑑
2
𝜓

𝑑𝜁2
=

1

2

𝑑

𝑑𝜓
((

𝑑𝜓

𝑑𝜁
)

2

) (53)

and (52) becomes

𝑐

2

𝑑

𝑑𝜓
((

𝑑𝜓

𝑑𝜁
)

2

) =
𝐴

exp [𝑛 (𝜓 − 1)]
+

𝑐𝜓

exp [𝑛 (𝜓 − 1)]
− 1,

(54)

but

∫

𝜓 𝑑𝜓

exp [𝑛 (𝜓 − 1)]
= −

1

𝑛 exp [𝑛 (𝜓 − 1)]
,

∫

𝜓 𝑑𝜓

exp [𝑛 (𝜓 − 1)]
= −

(1 + 𝑛𝜓)

𝑛2 exp [𝑛 (𝜓 − 1)]
,

(55)

and integrating (54) once with respect to 𝜓, we obtain

𝑐

2
(
𝑑𝜓

𝑑𝜁
)

2

= −
𝐴

𝑛 exp [𝑛 (𝜓 − 1)]

−
𝑐 (1 + 𝑛𝜓)

𝑛2 exp [𝑛 (𝜓 − 1)]
− 𝜓 + 𝐵,

(56)

where 𝐵 is a constant.
In order to obtain the three arbitrary constants, 𝐴, 𝐵,

and 𝑐, we impose three boundary conditions suitable for a
rarefactive solitary wave. The background state is 𝜓 = 1.
Three boundary conditions for a rarefactive solitary wave are

𝜓 = 1 :
𝑑𝜓

𝑑𝜁
= 0,

𝑑
2
𝜓

𝑑𝜁2
= 0,

𝜓 = Ψ :
𝑑𝜓

𝑑𝜁
= 0.

(57)

The amplitude of the solitary wave is Ψ − 1 and 𝜓(𝜁) has
a local maximumwhen 𝜓 = Ψ. Using (52) and (56), the three
boundary conditions give

𝐴

𝑛
+

(1 + 𝑛) 𝑐

𝑛2
+ 1 − 𝐵 = 0,

𝐴 + 𝑐 − 1 = 0,

𝐴

𝑛 exp [𝑛 (Ψ − 1)]
+

𝑐 (1 + 𝑛Ψ)

𝑛2 exp [𝑛 (Ψ − 1)]
+ Ψ − 𝐵 = 0.

(58)

Hence,

𝑐 = 𝑛 [
(𝑛 (Ψ − 1) − 1) exp [𝑛 (Ψ − 1)] + 1

exp [𝑛 (Ψ − 1)] − 𝑛 (Ψ − 1) − 1
] (59)

and, expressed in terms of 𝑐,

𝐴 = 1 − 𝑐, 𝐵 =
1

𝑛2
(𝑐 + 𝑛 + 𝑛

2
) . (60)

Equation (56) becomes

(
𝑑𝜓

𝑑𝜁
)

2

= 𝑓 (𝜓) , (61)

where

𝑓 (𝜓) =
2

𝑐𝑛2
[𝑛 + 𝑐 − 𝑛

2
(𝜓 − 1)

− (𝑛 + 𝑐 + 𝑛𝑐 (𝜓 − 1)) exp [−𝑛 (𝜓 − 1)] ] .

(62)

Now from (53) and the boundary conditions (57),

𝑓 (1) = 0,
𝑑𝑓

𝑑𝜓
(1) = 0, 𝑓 (Ψ) = 0, (63)

and since the left hand side of (61) is nonnegative, for a
solitary wave to exist it is necessary that 𝑓(𝜓) > 0 for
1 < 𝜓 < Ψ.
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Before proceeding further with the solution, we first
investigate the properties of 𝑓(𝜓). In order to do that we
define

𝐹 (𝜓) = 𝑛 [
(𝑛 (𝜓 − 1) − 1) exp [𝑛 (𝜓 − 1)] + 1

exp [𝑛 (𝜓 − 1)] − 𝑛 (𝜓 − 1) − 1
] . (64)

From (59), it follows that

𝐹 (Ψ) = 𝑐. (65)

Equation (62) can be written in terms of 𝐹(𝜓) as follows

𝑓 (𝜓) =
2

𝑛2
[1 − (1 + 𝑛 (𝜓 − 1)) exp [−𝑛 (𝜓 − 1)]]

× [
𝐹 (Ψ) − 𝐹 (𝜓)

𝐹 (Ψ)
] .

(66)

Now,

𝑑𝐹

𝑑𝜓
=

4𝑛
2 exp [𝑛 (𝜓 − 1)]

[exp [𝑛 (𝜓 − 1)] − 𝑛 (𝜓 − 1) − 1]
2

× [sinh2 (
𝑛 (𝜓 − 1)

2
) − (

𝑛 (𝜓 − 1)

2
)

2

]

(67)

and since sinh2𝑥 > 𝑥
2 for 𝑥 ̸= 0, it follows that for 𝑛 ̸= 0 and

𝜓 ̸= 1,

𝑑𝐹

𝑑𝜓
> 0. (68)

Hence, 𝐹(𝜓) is an increasing function of 𝜓. Also,

𝐹 (1) = 𝑛. (69)

Consider first 𝑛 > 0. Since 𝐹(𝜓) is an increasing function of
𝜓, it follows that 𝐹(𝜓) > 𝑛 > 0 and 𝐹(Ψ) − 𝐹(𝜓) > 0 for
1 < 𝜓 < Ψ. Also, it can be verified that

1 −
(1 + 𝑛 (𝜓 − 1))

exp [𝑛 (𝜓 − 1)]
> 0, (70)

for 𝜓 > 1. Hence from (66), 𝑓(𝜓) > 0 for 1 < 𝜓 < Ψ and a
rarefactive solitary wave solution exists. Consider next 𝑛 < 0.
Then from (64), 𝐹(𝜓) → 0 as 𝜓 → ∞, and since 𝐹(1) =

𝑛 < 0 and 𝐹(𝜓) is an increasing function of 𝜓, it follows that
𝐹(Ψ) < 0. We still have 𝐹(Ψ) − 𝐹(𝜓) > 0 by (68) and (70)
is still satisfied for 𝑛 < 0. Hence from (66), 𝑓(𝜓) < 0 for
1 < 𝜓 < Ψ and a rarefactive solitary wave solution does not
exist.

The difference between 𝐹(𝜓) for 𝑛 > 0 and 𝑛 < 0 is
illustrated in Figure 1 for 𝑛 = −0.1, 0.5, 1, and 2. For 𝑛 < 0

the permeability decreases as the voidage, 𝜙, increases, which
is generally not observed physically. When the permeability
satisfies the power law (30), a rarefactive solitary wave
solution exists for 𝑛 > 1 and does not exist for 0 ≤ 𝑛 ≤ 1

[5].

1 3 5

0.5

1

1.5

2

𝑓

𝑛 = −0.1

𝑛 = 1
𝑛 = 2

𝜓

𝑛 =
1

2

Figure 1: The function 𝑓(𝜓) defined by (62) plotted against 𝜓 for
𝑛 = −0.1, 0.5, 1, and 2 for Ψ = 5.
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𝜁

Figure 2: Rarefactive solitary wave for 𝑛 = 1, 2, and 3 with Ψ = 5.
The length 𝜁 is scaled with the characteristic length 𝛿

𝑐
for 𝑛 = 1.

Now from (61) and (62), the rarefactive solitary wave
solution is given by the following:

𝜁 = ± 𝑛(
𝑐

2
)

2

× ∫

Ψ

𝜓

( (𝑑𝜓) × ( [𝑛 + 𝑐 − 𝑛
2
(𝜓 − 1)

− (𝑛 + 𝑐 + 𝑛𝑐 (𝜓 − 1))

×exp (−𝑛 (𝜓 − 1)) ]
1/2

)

−1

) ,

(71)

where the wave speed 𝑐 is given by (59). In Figure 2, the
solitary wave solution (71) is plotted against 𝜁 for a range of
values of 𝑛. In order to compare the solutions for different
values of 𝑛, the length 𝜁 is scaled in all cases with the same
characteristic length, namely, 𝛿

𝑐
calculated for 𝑛 = 1. We see

that the width of the solitary wave increases as 𝑛 increases.
The increase in the permeability has the effect of spreading
the solitary wave.
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Figure 3: Velocity, 𝑐, of a rarefactive solitary wave for 𝑛 = 1 and
2 plotted against amplitude Ψ − 1. Both velocities are scaled by the
characteristic velocity, 𝛿

𝑐
/𝑡
0
, for 𝑛 = 1.

Consider now the dependence of the wave velocity, 𝑐, on
the amplitude of the solitary wave, Ψ − 1. Since 𝐹(Ψ) = 𝑐, it
follows from (68) that

𝑑𝑐

𝑑Ψ
> 0. (72)

The velocity increases as the amplitude of the solitary wave
increases, and therefore larger amplitude waves travel faster.
This property also holds for the solitary waves described by
the power law (31) for 𝑛 > 1 [5]. Equation (72) is a special case
of the general result that 𝐹(𝜓) is an increasing function of 𝜓
for 1 ≤ 𝜓 ≤ Ψ which was central to the proof of the existence
of solitary wave solutions for 𝑛 > 0. There is therefore a
close connection between the property that larger amplitude
solitary waves travel faster and the existence of solitary wave
solutions. We also determine from (69) the limiting value

Ψ − 1 = 0 : 𝑐 = 𝑛. (73)

This limiting value also holds for the dimensionless velocity
of rarefactive solitary waves for the power law (31) with 𝑛 > 1.

In Figure 3, the dimensionless wave velocity, 𝑐, of the
solitary wave, given by (59), is plotted against the amplitude
Ψ − 1 for 𝑛 = 1 and 2. In order to compare 𝑐 for different
values of 𝑛, the wave velocity is scaled for each value of 𝑛

by the same characteristic velocity V
0

= 𝛿
𝑐
/𝑡
0
calculated for

𝑛 = 1. We see that 𝑐 increases steadily with Ψ − 1 for both
cases in agreement with (72). We also see that as 𝑛 increases
the velocity 𝑐 increases. The increase in the permeability as
𝑛 increases allows the melt to propagate at a greater speed
through the solid matrix.

4. Conclusions

One of the functional forms which the permeability 𝐾(𝜙)

must satisfy for the partial differential equation (1) to possess
Lie point symmetries besides translation in time and space
is the power law. This relation between the permeability
and the voidage has been studied extensively to model the
migration of melt through the mantle of the Earth. Mainly,

travelling wave solutions have been considered, but more
general group invariant solutions which include the third
Lie point symmetry have been investigated by Harris and
Clarkson [8].

Unlike the power law, the exponential law relating the
permeability to the voidage is not valid at 𝜙 = 0 because,
when the voidage vanishes, the permeability should also
vanish. It can be used when themigration ofmelt through the
Earth’s mantle is modelled as a rarefactive solitary wave with
𝜙 ≥ 1. For both the power law and exponential law, larger
amplitude waves travel faster. There is a close connection
between this property and the existence of solitary wave
solutions.

The conservation laws for the partial differential equation
(1) with the power law for 𝐾(𝜙) have been investigated by
several authors [3, 6, 9]. The number of conservation laws
is finite, except possibly for 𝑛 = −1 which is not physical.
This indicates that the solitary waves are not solitons. The
conservation laws for the partial differential equation (46)
with the exponential law for𝐾(𝜙) still need to be investigated.
If it is found that the number of conservation laws is finite
it would indicate that the rarefactive solitary waves with the
exponential law are also not solitons.

We have assumed that the bulk viscosity, 𝜉, and shear
viscosity, 𝜂, of the solidmatrix are constant. A large amount of
research has been performed onmodels in which 𝜉+(4/3)𝜂 is
related to the voidage by a power law with exponent 𝑚 [1, 4–
12]. The Lie group analysis for the permeability considered
here could be extended to include the viscosity of the solid
matrix.
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