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We propose a new approach for solving fractional partial differential equations based on a nonlinear fractional complex
transformation and the general Riccati equation and apply it to solve the nonlinear time fractional biological population model
and the (4+1)-dimensional space-time fractional Fokas equation. As a result, some new exact solutions for them are obtained.This
approach can be suitable for solving fractional partial differential equations with more general forms than the method proposed by
S. Zhang and H.-Q. Zhang (2011).

1. Introduction

Fractional differential equations are generalizations of classi-
cal differential equations of integer order. In recent decades,
fractional differential equations have been the focus of many
studies due to their frequent appearance in various appli-
cations in physics, biology, engineering, signal processing,
systems identification, control theory, finance, and fractional
dynamics. Many articles have investigated some aspects of
fractional differential equations, such as the existence and
uniqueness of solutions to the Cauchy-type problems, the
methods for explicit and numerical solutions, and the stabil-
ity of solutions [1–8]. Among the investigations for fractional
differential equations, the research for seeking exact solutions
and numerical solutions of fractional differential equations
is an important topic. Many powerful and efficient methods
have been proposed to obtain numerical solutions and
exact solutions of fractional differential equations so far. For
example, thesemethods include the Adomian decomposition
method [9, 10], the variational iterative method [11–13],
the homotopy perturbation method [14, 15], the differential
transformationmethod [16], the finite differencemethod [17],
the finite element method [18], and the fractional Riccati
subequationmethod [19, 20]. Based on thesemethods, a vari-
ety of fractional differential equations have been investigated.

Recently, S. Zhang and H.-Q. Zhang [21] proposed a
new direct algebraic method named fractional subequation

method for solving fractional partial differential equations
based on the homogeneous balance principle, the modified
Riemann-Liouville derivative by Jumarie [22], and the frac-
tional Riccati equation. The main idea of this method lies
in that by a linear transformation 𝜉 = 𝜉(𝑡, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
),

a given fractional partial differential equation expressed in
independent variables 𝑡, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
, in which the highest-

order derivative and nonlinear term are involved, is turned
into another fractional ordinary differential equation, whose
solutions are supposed to have the form 𝑢(𝜉) = ∑

𝑛

𝑖=0
𝑎
𝑖
𝜙𝑖,

where𝜙 = 𝜙(𝜉) satisfies the fractional Riccati equation𝐷𝛼
𝜉
𝜙 =

𝜎 + 𝜙2. Based on this concept, the authors established
successfully some exact solutions for the nonlinear time
fractional biological population model and the (4+1)-
dimensional space-time fractional Fokas equation. We note
that as long as a different nonlinear fractional complex
transformation form is taken for 𝜉, then a certain frac-
tional partial differential equation can be turned into an-
other ordinary differential equation of integer order, which
permits the use of the Riccati equation of integer order
𝜙 = 𝜎 + 𝜙2 instead of the fractional Riccati equation in
the analysis of [21]. Subsequently, new exact solutions for
the two equations can be obtained. Furthermore, we no-
tice that the method in [21] is only suitable for solving
those fractional partial differential equations involving frac-
tional partial derivatives of certain orders, for example,
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𝐷𝛼
𝑡
𝑢, 𝐷𝛼
𝑥
𝑢, 𝐷𝛼
𝑦
𝑢, 𝐷2𝛼
𝑡
𝑢, 𝐷2𝛼
𝑥
𝑢, 𝐷2𝛼
𝑦
𝑢, . . ., which implies that

all of the orders are integer multiples of 𝛼. For some
fractional partial differential equations involving fraction-
al partial derivatives of arbitrarily different orders with
respect to different variables, for example, 𝐷𝛼

𝑡
𝑢, 𝐷𝛽
𝑥
𝑢, 𝐷𝛾
𝑦
𝑢,

𝐷2𝛼
𝑡
𝑢, 𝐷2𝛽
𝑥
𝑢, 𝐷2𝛾
𝑦
𝑢, . . ., or some involving either fractional

partial derivatives or integer order derivatives, for example,
𝐷𝛼
𝑡
𝑢, 𝑢
𝑥
, 𝐷𝛾
𝑦
𝑢, 𝐷2𝛼
𝑡
𝑢, 𝑢
𝑥
, 𝐷2𝛾
𝑦
𝑢, . . ., the method in [21] is

invalid.
The object of this paper is to propose a different way

from [21] based on the Riccati equation of integer order
and a nonlinear fractional complex transformation 𝜉 =
𝜉(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) for solving fractional partial differential

equations.The proposed approach will still be valid in the last
two cases mentioned above.

2. The Jumarie Modified Riemann-Liouville
Derivative and Description of the Proposed
Method

The Jumarie modified Riemann-Liouville derivative of order
𝛼 is defined by the following expression [22]:

𝐷
𝛼

𝑥
𝑓 (𝑥) = lim

ℎ→0

Δ
𝛼
𝑓 (𝑥)

ℎ𝛼

= lim
ℎ→0

∑
∞

𝑘=0
(−1)𝑘 ( 𝛼𝑘 ) 𝑓 (𝑥 + (𝛼 − 𝑘) ℎ)

ℎ𝛼
.

(1)

We list some important properties for the modified
Riemann-Liouville derivative as follows [19–21]:

𝐷
𝛼

𝑡
𝑡
𝑟
=

Γ (1 + 𝑟)

Γ (1 + 𝑟 − 𝛼)
𝑡
𝑟−𝛼
, (2)

𝐷
𝛼

𝑡
(𝑓 (𝑡) 𝑔 (𝑡)) = 𝑔 (𝑡)𝐷

𝛼

𝑡
𝑓 (𝑡) + 𝑓 (𝑡)𝐷

𝛼

𝑡
𝑔 (𝑡) , (3)

𝐷
𝛼

𝑡
𝑓 [𝑔 (𝑡)] = 𝑓



𝑔
[𝑔 (𝑡)]𝐷

𝛼

𝑡
𝑔 (𝑡) = 𝐷

𝛼

𝑔
𝑓 [𝑔 (𝑡)] (𝑔


(𝑡))
𝛼

.

(4)

In the following, we give the description of our method.
Suppose that a fractional partial differential equation, say

in the independent variables 𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, is given by

𝑃 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
1

, . . . , 𝑢
𝑥
𝑛

, 𝐷
𝛼

𝑡
𝑢,𝐷
𝛽

𝑥
1

𝑢, . . . , 𝐷
𝛾

𝑥
𝑛

𝑢,

𝐷
2𝛼

𝑡
𝑢,𝐷
2𝛽

𝑥
1

𝑢, . . . , 𝐷
2𝛾

𝑥
𝑛

𝑢,𝐷
𝛼+𝛽

𝑡,𝑥
1

𝑢, . . . ,

𝐷
𝛼+𝛾

𝑡,𝑥
𝑛

𝑢, . . . , 𝐷
𝛽+𝛾

𝑥
1
,𝑥
𝑛

𝑢, . . .) = 0,

(5)

where 𝑢 = 𝑢(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) is an unknown function and

𝑃 is a polynomial in 𝑢 and its various partial derivatives, in
which the highest-order derivative and nonlinear term are
involved.

Step 1. Suppose that

𝑢 (𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑈 (𝜉) , 𝜉 = 𝜉 (𝑡, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) , (6)

such that (5) can be turned into the following ordinary
differential equation of integer order with respect to the
variable 𝜉:

�̃� (𝑈, 𝑈

, 𝑈

, . . .) = 0. (7)

Step 2. Suppose that the solution of (7) can be expressed by a
polynomial in 𝜙 as follows:

𝑈 (𝜉) =
𝑛

∑
𝑖=0

𝑎
𝑖
𝜙
𝑖
, (8)

where 𝜙 = 𝜙(𝜉) satisfies the Riccati equation

𝜙

= 𝜎 + 𝜙

2
, (9)

and 𝑎
𝑖
, 𝑖 = 0, 1, . . . , 𝑛 are all constants to be determined later.

The positive integer 𝑛 can be determined by considering the
homogeneous balance between the highest-order derivative
and nonlinear term appearing in (7).

We list the exact solutions of (9) as follows, which is
known to us as

𝜙 (𝜉) =

{{{{{{{{
{{{{{{{{
{

−√−𝜎 tanh (√−𝜎𝜉) , 𝜎 < 0,
−√−𝜎 coth (√−𝜎𝜉) , 𝜎 < 0,

√𝜎 tan (√𝜎𝜉) , 𝜎 > 0,

−√𝜎cot (√𝜎𝜉) , 𝜎 > 0,

−
1

𝜉 + 𝜔
, 𝜔 is a constant, 𝜎 = 0.

(10)

Step 3. Substituting (8) into (7) and using (9), the left-hand
side of (7) is converted to another polynomial in 𝜙𝑗 after
eliminating the denominator. Equating each coefficient of
this polynomial to zero yields a set of algebraic equations for
𝑎
𝑖
, 𝑖 = 0, 1, . . . , 𝑛.

Step 4. Solving the equations system in Step 3, and by using
the solutions of (9), we can construct a variety of exact
solutions of (5).

3. Applications of the Proposed Method

In this section, we will apply the described method in
Section 2 to the nonlinear time fractional biological popula-
tion model and the (4+1)-dimensional space-time fractional
Fokas equation.

3.1. Nonlinear Time Fractional Biological Population Model.
We consider the nonlinear time fractional biological popu-
lation model:

𝐷
𝛼

𝑡
𝑢 = (𝑢

2
)
𝑥𝑥
+ (𝑢
2
)
𝑦𝑦
+ ℎ (𝑢

2
− 𝑟) , (11)

where ℎ, 𝑟 are constants.
Suppose that 𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝜉), where 𝜉 = 𝑘𝑥+ 𝑖𝑘𝑦+ (𝑐𝑡𝛼/

Γ(1+𝛼))+𝜉
0
, 𝑘, 𝑐, 𝜉

0
are all constantswith 𝑘, 𝑐 ̸= 0, and 𝑖 is the

unit of imaginary numbers. Then, by the use of (4), equation
(18) can be turned into

𝑐𝑈

= ℎ (𝑈

2
− 𝑟) . (12)
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Suppose that the solution of (12) can be expressed by

𝑈 (𝜉) =
𝑛

∑
𝑖=0

𝑎
𝑖
𝜙
𝑖
, (13)

where 𝜙 = 𝜙(𝜉) satisfies (9). By balancing the order between
the highest-order derivative term and nonlinear term in (12),
we can obtain 𝑛 = 1. So, we have

𝑈 (𝜉) = 𝑎
0
+ 𝑎
1
𝜙. (14)

Substituting (14) into (12) and collecting all the terms
with the same power of 𝜙 together, equating each coefficient
to zero yields a set of algebraic equations. Solving these
equations yields

𝑎
0
= 0, 𝑎

1
=
𝑐

ℎ
, 𝜎 = −ℎ

2
𝑟𝑐
−2
. (15)

Substituting the result above into (14) and combining it
with (10), we can obtain the following exact solutions to (11):

𝑢
1
(𝑥, 𝑦, 𝑡)

= −√𝑟 tanh [ℎ𝑐−1√𝑟(𝑘𝑥 + 𝑖𝑘𝑦 + 𝑐𝑡𝛼

Γ (1 + 𝛼)
+ 𝜉
0
)] ,

𝑟 > 0,

𝑢
2
(𝑥, 𝑦, 𝑡)

= −√𝑟 coth [ℎ𝑐−1√𝑟(𝑘𝑥 + 𝑖𝑘𝑦 + 𝑐𝑡𝛼

Γ (1 + 𝛼)
+ 𝜉
0
)] ,

𝑟 > 0,

𝑢
3
(𝑥, 𝑦, 𝑡)

= √−𝑟 tan [ℎ𝑐−1√−𝑟(𝑘𝑥 + 𝑖𝑘𝑦 + 𝑐𝑡𝛼

Γ (1 + 𝛼)
+ 𝜉
0
)] ,

𝑟 < 0,

𝑢
4
(𝑥, 𝑦, 𝑡)

= −√−𝑟cot [ℎ𝑐−1√−𝑟(𝑘𝑥 + 𝑖𝑘𝑦 + 𝑐𝑡𝛼

Γ (1 + 𝛼)
+ 𝜉
0
)] ,

𝑟 < 0,

𝑢
5
(𝑥, 𝑦, 𝑡)

=
−𝑐

ℎ (𝑘𝑥 + 𝑖𝑘𝑦 + (𝑐𝑡𝛼/Γ (1 + 𝛼)) + 𝜉
0
+ 𝜔)

,

𝑟 = 0,

(16)

where 𝜉
0
𝑘, 𝑐 are all arbitrary constants.

Remark 1. As one can see, the obtained solutions in (16) for
the nonlinear time fractional biological populationmodel are
different from the results in [21] and are new exact solutions
so far to our best knowledge.

3.2. The Space-Time Fractional Fokas Equation. We consider
the space-time fractional Fokas equation

4
𝜕2𝛼𝑞

𝜕𝑡𝛼𝜕𝑥𝛼
1

−
𝜕4𝛼𝑞

𝜕𝑥3𝛼
1
𝜕𝑥𝛼
2

+
𝜕4𝛼𝑞

𝜕𝑥3𝛼
2
𝜕𝑥𝛼
1

+ 12
𝜕𝛼𝑞

𝜕𝑥𝛼
1

𝜕𝛼𝑞

𝜕𝑥𝛼
2

+ 12𝑞
𝜕2𝛼𝑞

𝜕𝑥𝛼
1
𝜕𝑥𝛼
2

− 6
𝜕2𝛼𝑞

𝜕𝑦𝛼
1
𝜕𝑦𝛼
2

= 0, 0 < 𝛼 ≤ 1.

(17)

Suppose that 𝑞(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) = 𝑈(𝜉), where 𝜉 = (𝑘

1
𝑥𝛼
1
/

Γ(1 + 𝛼)) + (𝑘
2
𝑥𝛼
2
/Γ(1 + 𝛼)) + (𝑙

1
𝑦𝛼
1
/Γ(1 + 𝛼)) + (𝑙

2
𝑦𝛼
2
/Γ(1 +

𝛼)) + (𝑐𝑡𝛼/Γ(1 + 𝛼)) + 𝜉
0
, 𝑘
1
, 𝑘
2
, 𝑙
1
𝑙
2
, 𝑐, 𝜉
0
are all constants

with 𝑘
1
, 𝑘
2
, 𝑙
1
, 𝑙
2
, 𝑐 ̸= 0. Then, by the use of (4), equation (17)

can be turned into

4𝑐𝑘
1
𝑈

− 𝑘
3

1
𝑘
2
𝑈
(4)
+ 𝑘
3

2
𝑘
1
𝑈
(4)

+ 12𝑘
1
𝑘
2
𝑈
2
+ 12𝑘

1
𝑘
2
𝑈𝑈

− 6𝑙
1
𝑙
2
𝑈

= 0.

(18)

Suppose that the solution of (18) can be expressed by

𝑈 (𝜉) =
𝑛

∑
𝑖=0

𝑎
𝑖
𝜙
𝑖
, (19)

where 𝜙 = 𝜙(𝜉) satisfies (9). By balancing the order between
the highest-order derivative term and nonlinear term in (18),
we can obtain 𝑛 = 2. So, we have

𝑈 (𝜉) = 𝑎
0
+ 𝑎
1
𝜙 + 𝑎
2
𝜙
2
. (20)

Substituting (20) into (18) and collecting all the terms
with the same power of 𝜙 together, equating each coefficient
to zero yields a set of algebraic equations. Solving these
equations yields

𝑎
0
=
4𝑘3
1
𝑘
2
𝜎 − 4𝑘

1
𝑘3
2
𝜎 − 2𝑐𝑘

1
+ 3𝑙
1
𝑙
2

6𝑘
1
𝑘
2

,

𝑎
1
= 0, 𝑎

2
= 𝑘
2

1
− 𝑘
2

2
.

(21)

Substituting the result above into (19) and combining it
with (10), we can obtain the following exact solutions to (17):

𝑞
1
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

=
4𝑘3
1
𝑘
2
𝜎 − 4𝑘

1
𝑘3
2
𝜎 − 2𝑐𝑘

1
+ 3𝑙
1
𝑙
2

6𝑘
1
𝑘
2

− (𝑘
2

1
− 𝑘
2

2
)

× 𝜎 tanh2 [√−𝜎(
𝑘
1
𝑥𝛼
1

Γ (1 + 𝛼)
+

𝑘
2
𝑥𝛼
2

Γ (1 + 𝛼)
+

𝑙
1
𝑦𝛼
1

Γ (1 + 𝛼)

+
𝑙
2
𝑦𝛼
2

Γ (1 + 𝛼)
+

𝑐𝑡𝛼

Γ (1 + 𝛼)
+ 𝜉
0
)] ,

𝜎 < 0,

𝑞
2
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

=
4𝑘3
1
𝑘
2
𝜎 − 4𝑘

1
𝑘3
2
𝜎 − 2𝑐𝑘

1
+ 3𝑙
1
𝑙
2

6𝑘
1
𝑘
2

− (𝑘
2

1
− 𝑘
2

2
)

× 𝜎coth2 [√−𝜎(
𝑘
1
𝑥𝛼
1

Γ (1 + 𝛼)
+

𝑘
2
𝑥𝛼
2

Γ (1 + 𝛼)
+

𝑙
1
𝑦𝛼
1

Γ (1 + 𝛼)
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+
𝑙
2
𝑦𝛼
2

Γ (1 + 𝛼)
+

𝑐𝑡𝛼

Γ (1 + 𝛼)
+ 𝜉
0
)] ,

𝜎 < 0,

𝑞
3
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

=
4𝑘3
1
𝑘
2
𝜎 − 4𝑘

1
𝑘3
2
𝜎 − 2𝑐𝑘

1
+ 3𝑙
1
𝑙
2

6𝑘
1
𝑘
2

+ (𝑘
2

1
− 𝑘
2

2
)

× 𝜎 tan2 [√𝜎(
𝑘
1
𝑥𝛼
1

Γ (1 + 𝛼)
+

𝑘
2
𝑥𝛼
2

Γ (1 + 𝛼)
+

𝑙
1
𝑦𝛼
1

Γ (1 + 𝛼)

+
𝑙
2
𝑦𝛼
2

Γ (1 + 𝛼)
+

𝑐𝑡𝛼

Γ (1 + 𝛼)
+ 𝜉
0
)] ,

𝜎 > 0,

𝑞
4
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

=
4𝑘3
1
𝑘
2
𝜎 − 4𝑘

1
𝑘3
2
𝜎 − 2𝑐𝑘

1
+ 3𝑙
1
𝑙
2

6𝑘
1
𝑘
2

− (𝑘
2

1
− 𝑘
2

2
)

× 𝜎 cot2 [√𝜎(
𝑘
1
𝑥𝛼
1

Γ (1 + 𝛼)
+

𝑘
2
𝑥𝛼
2

Γ (1 + 𝛼)
+

𝑙
1
𝑦𝛼
1

Γ (1 + 𝛼)

+
𝑙
2
𝑦𝛼
2

Γ (1 + 𝛼)
+

𝑐𝑡𝛼

Γ (1 + 𝛼)
+ 𝜉
0
)] ,

𝜎 > 0,

𝑞
5
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

=
4𝑘3
1
𝑘
2
𝜎 − 4𝑘

1
𝑘3
2
𝜎 − 2𝑐𝑘

1
+ 3𝑙
1
𝑙
2

6𝑘
1
𝑘
2

+
(𝑘2
1
− 𝑘2
2
) Γ (1 + 𝛼)

𝑘
1
𝑥𝛼
1
+ 𝑘
2
𝑥𝛼
2
+ 𝑙
1
𝑦𝛼
1
+ 𝑙
2
𝑦𝛼
2
+ 𝑐𝑡𝛼 + Γ (1 + 𝛼) (𝜉

0
+ 𝜔)

,

𝜎 = 0,

(22)

where 𝜉
0
, 𝑘
1
, 𝑘
2
, 𝑙
1
, 𝑙
2
, 𝑐, 𝜔 are all arbitrary constants.

Remark 2. The established solutions in (22) for the (4+1)-
dimensional space-time fractional Fokas equation are differ-
ent from the results in [21] and also have not been reported
by other authors in the literature.

Remark 3. It is worth to notice that if (17) is replaced by the
following equation:

4
𝜕𝛼+𝛽𝑞

𝜕𝑡𝛼𝜕𝑥
𝛽

1

−
𝜕3𝛽+𝛼𝑞

𝜕𝑥
3𝛽

1
𝜕𝑥𝛼
2

+
𝜕3𝛼+𝛽𝑞

𝜕𝑥3𝛼
2
𝜕𝑥
𝛽

1

+ 12
𝜕𝛽𝑞

𝜕𝑥
𝛽

1

𝜕𝛼𝑞

𝜕𝑥𝛼
2

+ 12𝑞
𝜕𝛽+𝛼𝑞

𝜕𝑥
𝛽

1
𝜕𝑥𝛼
2

− 6
𝜕1+𝛾𝑞

𝜕𝑦
1
𝜕𝑦
𝛾

2

= 0, 0 < 𝛼, 𝛽, 𝛾 ≤ 1,

(23)

then one can see that the fractional subequation method in
[1] is invalid here, while we can still reduce (23) to (18) if we
take the transformation 𝜉 = (𝑘

1
𝑥
𝛽

1
/Γ(1 + 𝛽)) + (𝑘

2
𝑥𝛼
2
/Γ(1 +

𝛼))+𝑙
1
𝑦
1
+(𝑙
2
𝑦
𝛾

2
/Γ(1+𝛾))+(𝑐𝑡𝛼/Γ(1+𝛼))+𝜉

0
. So, themethod

proposed here can be suitable for more general cases.

4. Conclusions

We have proposed a new subequation method for fractional
partial differential equations based on the Riccati equation
of integer order and a nonlinear fractional complex transfor-
mation and applied it to the nonlinear time fractional bio-
logical population model and the (4+1)-dimensional space-
time fractional Fokas equation. As a result, some new exact
solutions for them are established. As one can see, this
method has more general applications than the fractional
subequation method and can be applied to other fractional
partial differential equations.
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