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Event-driven control scheduling strategies for multiagent systems play a key role in future use of embedded microprocessors of
limited resources that gather information and actuate the agent control updates. In this paper, a distributed event-driven consensus
problem is considered for a multi-agent system with second-order dynamics. Firstly, two kinds of event-driven control laws are,
respectively, designed for both leaderless and leader-follower systems. Then, the input-to-state stability of the closed-loop multi-
agent system with the proposed event-driven consensus control is analyzed and the bound of the inter-event times is ensured.
Finally, some numerical examples are presented to validate the proposed event-driven consensus control.

1. Introduction

Recently, synthesis and analysis of multi-agent systems have
drawn great attention inmany disciplines, such asmathemat-
ics, physics, computer science, systems biology, engineering,
and social science. Roughly speaking,multi-agent systems are
a class of networked dynamic systems consisting of a group
of autonomous agents, which interact with each other locally
and achieve an emergence behavior over a communication
network. The controlled multi-agent systems have a broad
range of applications including flocking and swarming in
animal groups, vehicle formation, satellite reconfiguration,
and unmanned aerial vehicles for rescue and surveillance.

Consensus problems have a long history originated from
management science and statistics in 1960s [1]. In the context
of multi-agent systems, consensus generally means to reach
an agreement regarding a certain quantity of interest that
depends on the state of all agents [2]. In the literature of
consensus control of multi-agent systems, many works have
been focused on an important issue, that is, to investigate the
coordination behavior of agents governed by different order
dynamics. Especially, first-order multi-agent systems are
extensively considered as a representative multi-agent con-
sensus model in, for example, [3–8] and references therein.
More recently, the consensus problems of multi-agent sys-
tems with second-order dynamics (e.g., [9–14]) and high

order dynamics (e.g., [15–19]) have been paidmuch attention,
which ismainly because inmany real applicationsmass-point
models are invalid for agents and more complex dynamics
should be considered. Generally, the dynamics of a second-
order multi-agent system is described by a second-order
differential equation or difference equation, which contains
both the position and the velocity information.

One potential application of multi-agent control is to
equip each autonomous agent with a small embedded micro-
processor to collect information from neighboring agents
for actuating the controller updates. However, micro-proces-
sors are generally resource- and energy-limited [20], which
requires a time- or an event-triggered scheduling strategy
to update the control. A time-triggered update scheduling
involves sampling at predefined time instances while an
event-triggered one executes the control task whenever a
certain error becomes large compared with the state norm.
Time-triggered consensus problems were studied in [14,
21, 22] via data-sampled method. However, event-triggered
strategies seem more favorable in applications. A distributed
event-triggered control was considered for a first-order
multi-agent system in [23–25]. Up to date, there are few con-
tributions devoted to designing an event-triggered consensus
control for multi-agent systems with second-order dynamics.

In this paper, we consider an event-driven consensus
problem of a second-order leaderless and leader-follower
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multi-agent system with a fixed directed communication
network. Firstly, the event-driven consensus problem is
formulated. Secondly, an event-driven consensus control is
designed for each agent to achieve consensus. Then the
closed-loop multi-agent system is proven to be input-to-state
stable with respect to the measurement error and, simul-
taneously, a positive lower bound is found for the event-time
between two consecutive actuation updates.

Throughout this paper, the following notations are used.
𝐼
𝑛×𝑛

denotes an 𝑛 × 𝑛 identity matrix; 0
𝑛×𝑚

denotes an
𝑛 × 𝑚 zero matrix; col(⋅) denotes a column vector; 1

𝑛
=

col(1, . . . , 1) ∈ R𝑛. The norm of a vector 𝑥 ∈ R𝑛 is defined
as ‖𝑥‖ = √𝑥𝑇𝑥. The spectral norm of matrix 𝐴 ∈ R𝑚×𝑛 is
defined as ‖𝐴‖ = max

1≤𝑖≤𝑛
√𝜆
𝑖
, where 𝜆

𝑖
are eigenvalues of

𝐴
𝑇

𝐴. For a matrix 𝐴 ∈ R𝑛×𝑛, 𝜆min(𝐴) and 𝜆max(𝐴) denote,
respectively, its minimal and maximal eigenvalues.

2. Preliminaries and Problem Formulation

2.1. Some Preliminaries. Let G = (V,E, 𝐴) be a weighted
directed graph with a set of vertices V = {1, . . . , 𝑛}, a set of
arcsE ⊆ V×V, and a weighted adjacencymatrix𝐴 = [𝑎

𝑖𝑗
] ∈

R𝑛×𝑛. In themapping of graphG to the interconnection topo-
logy of a multi-agent system, vertex 𝑖 ∈ V represents agent 𝑖,
and arc (𝑖, 𝑗), which starts from vertex 𝑖 and ends on vertex
𝑗, is in E if and only if agent 𝑖 can receive information from
agent 𝑗. In this case, agent 𝑗 is called a neighbor of agent 𝑖,
and, accordingly,N

𝑖
= {𝑗|(𝑖, 𝑗) ∈ E} denotes the neighboring

set of agent 𝑖. The element 𝑎
𝑖𝑗
in the adjacency matrix 𝐴 is

associated with the arc (𝑖, 𝑗), that is, 𝑎
𝑖𝑗

> 0 if and only if
(𝑖, 𝑗) ∈ E. Moreover, we assume that 𝑎

𝑖𝑖
= 0 for all 𝑖 ∈ V.

When a single leader-agent is involved in the multi-agent
systems, a vertex 0 is added to represent the leader-agent and
the interconnection topology is denoted by G⃗ = (V⃗, E⃗) with
V⃗ = {0, 1, 2, . . . , 𝑛} and E⃗ = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ V⃗}.

Definition 1 (see [26]). A path from vertex 𝑖 to vertex 𝑗 is
a sequence of arcs (𝑖

0
, 𝑖
1
), (𝑖
1
, 𝑖
2
), . . . , (𝑖

𝑙−1
, 𝑖
𝑙
) in the directed

graph G with distinct vertexes 𝑖
𝑘
, 𝑘 = 0, 1, . . . , 𝑙 and 𝑖

0
= 𝑖,

𝑖
𝑙
= 𝑗. A directed graphG is strongly connected if there exists

a path from vertex 𝑖 to vertex 𝑗, for every 𝑖, 𝑗 ∈ V.

Definition 2 (see [26]). Vertex 𝑗 is said to be reachable from
vertex 𝑖 if there exists a path from vertex 𝑖 to vertex 𝑗 in the
directed graphG. Vertex 𝑗 is globally reachable if there exists
a path from every other vertex to vertex 𝑗 inG.

According to Definitions 1 and 2, a directed graph G
is strongly connected if and only if each vertex in G is
globally reachable, which shows that the global reachability
of a directed graph is much weaker than the strong connect-
edness.

A diagonal matrix 𝐷 = diag(𝑑
1
, . . . , 𝑑

𝑛
) ∈ R𝑛×𝑛 is a

degree matrix of G, whose diagonal elements 𝑑
𝑖
= ∑
𝑗∈N𝑖

𝑎
𝑖𝑗

for 𝑖 = 1, . . . , 𝑛. Then the Laplacian matrix of a weighted
directed graph is defined as

𝐿 = 𝐷 − 𝐴. (1)

The next lemma shows an important property of Lapla-
cian matrix 𝐿 associated with directed graphG.

Lemma 3 (see [4]). Laplacian matrix 𝐿 has least one zero
eigenvalue with 1

𝑛
as its eigenvector, and all the non-zero

eigenvalues of 𝐿 have positive real parts. 𝐿 has a simple zero
eigenvalue if and only ifG has a globally reachable vertex.

In the leader-follower consensus literature, it is always
assumed that the leader-agent is self-active, that is, the leader
does not need information feedback from other agents and
thus, the adjacency coefficients 𝑎

0𝑖
= 0 for every follower-

agent 𝑖 = 1, . . . , 𝑛. For followers, we define a diagonal mat-
rix 𝐵 = diag{𝑎

10
, . . . , 𝑎

𝑛0
} to represent the leader-follower

adjacency relationship. Let𝐻 = 𝐿 + 𝐵.

Lemma 4 (see [11]). If vertex 0 is globally reachable in G⃗, then
all eigenvalues of 𝐻 have positive real-parts.

A Schur-complement lemma will be used in the stability
analysis of the close-loop multi-agent systems and is given to
end this subsection.

Lemma 5 (see [27]). Consider a symmetric matrix

Δ = (

Δ
11

Δ
12

Δ
𝑇

12
Δ
22

) , (2)

whereΔ
11
andΔ

22
are square.ThenΔ is positive definite if and

only if both Δ
11

− Δ
12
Δ
−1

22
Δ
𝑇

12
and Δ

22
are positive definite.

2.2. ProblemFormulation. In a leaderless consensus problem,
a group of 𝑛 identical agents are moving with a continuous-
time dynamics described by a second-order differential equa-
tion as follows:

�̇�
𝑖
(𝑡) = V

𝑖
(𝑡) ,

V̇
𝑖
(𝑡) = 𝑢

𝑖
(𝑡) ,

𝑖 = 1, . . . , 𝑛, (3)

where 𝑥
𝑖
(𝑡) ∈ R𝑚, V

𝑖
(𝑡) ∈ R𝑚, and 𝑢

𝑖
(𝑡) ∈ R𝑚 are, respec-

tively, the position, velocity, and control input of agent 𝑖.
In a leader-follower consensus problem, the dynamics of

follower-agents are given as (3) while the kinematics of the
self-active leader is described by the following second-order
differential equation:

�̇�
0
(𝑡) = V

0
(𝑡) ,

V̇
0
(𝑡) = 𝑎

0
(𝑡) ,

(4)

where 𝑥
0
(𝑡) ∈ R𝑚, V

0
(𝑡) ∈ R𝑚, and 𝑎

0
(𝑡) ∈ R𝑚 are,

respectively, the position, velocity, and acceleration. Here for
notation simplicity, let𝑚 = 1.

When agents are equipped with resource-limited micro-
processors, it is preferable to design an event-driven consen-
sus controls for all agents such that the consensus controls
need no update in continuous-time. For agent 𝑖 ∈ V,
we define a state measurement error 𝑒

𝑖
(𝑡) and let 𝑒(𝑡) =

col(𝑒
1
(𝑡), . . . , 𝑒

𝑛
(𝑡)) ∈ R𝑛. Then an event-trigger condition is
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defined as 𝑓(𝑒(𝑡), 𝑥(𝑡), V(𝑡)) = 0, where 𝑥(𝑡), V(𝑡) ∈ R𝑛 are,
respectively, the concatenation vector of the state variables
in system (3). All agents update their consensus controls
𝑢
𝑖
(𝑡) at a series of event-times 𝜏(𝑠) (𝑠 = 0, 1, . . .) which are

implicitly defined by 𝑓(𝑒(𝜏(𝑠)), 𝑥(𝜏(𝑠)), V(𝜏(𝑠))) = 0. Between
control updates at two consecutive event-times, the event-
driven consensus control is held constant until the next event
is triggered, that is,

𝑢
𝑖
(𝑡) = 𝑢

𝑖
(𝜏 (𝑠)) , ∀𝑡 ∈ [𝜏 (𝑠) , 𝜏 (𝑠 + 1)) . (5)

We say that the event-driven consensus problem of
leaderless multi-agent system (3) is solved if an event-driven
consensus control can be found to ensure that

lim
𝑡→∞


𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)


= 0,

lim
𝑡→∞


V
𝑖
(𝑡) − V

𝑗
(𝑡)


= 0,

(6)

for 𝑖, 𝑗 ∈ V. Similarly, the event-driven consensus problem of
leader-follower multi-agent system (3)-(4) is solved if

lim
𝑡→∞

𝑥𝑖 (𝑡) − 𝑥
0
(𝑡)

 = 0,

lim
𝑡→∞

V𝑖 (𝑡) − V
0
(𝑡)

 = 0,

(7)

for 𝑖 ∈ V.

3. Control Design and Stability Analysis

3.1. Leaderless Consensus Control. We assume that the con-
sensus laws 𝑢

𝑖
(𝑡) in system (3) are updated only at discrete

event-times. Suppose that the event-times of all agents are
modeled as a sequence 𝜏(𝑠) for 𝑠 = 0, 1, . . .. For agent 𝑖

with dynamics (3), define two measurement errors 𝑒
𝑖,𝑥
(𝑡) =

𝑥
𝑖
(𝜏(𝑠)) − 𝑥

𝑖
(𝑡), 𝑒
𝑖,V(𝑡) = V

𝑖
(𝜏(𝑠)) − V

𝑖
(𝑡), 𝑡 ∈ [𝜏(𝑠), 𝜏(𝑠 + 1)).

The event-times 𝜏(𝑠) are defined by the function 𝑓(𝑒(𝜏(𝑠)),

𝑥(𝜏(𝑠)), V(𝜏(𝑠))) = 0, which will be determined in sequel.
An event-driven consensus control of agent 𝑖 is proposed

as follows:

𝑢
𝑖
(𝑡) = 𝑘

2

∑

𝑗∈N𝑖

𝑎
𝑖𝑗
[𝑥
𝑗
(𝜏 (𝑠)) − 𝑥

𝑖
(𝜏 (𝑠))]

+ 𝑘
3

∑

𝑗∈N𝑖

𝑎
𝑖𝑗
[V
𝑗
(𝜏 (𝑠)) − V

𝑖
(𝜏 (𝑠))] ,

(8)

for 𝑡 ∈ [𝜏(𝑠), 𝜏(𝑠 + 1)). The control gain parameter 𝑘 will be
determined in sequel.

Then a compact form of (3) using control (8) is given by

�̇� (𝑡) = V (𝑡) ,

V̇ (𝑡) = −𝑘
2

𝐿𝑥 (𝜏 (𝑠)) − 𝑘
3

𝐿V (𝜏 (𝑠)) ,

(9)

where 𝑥, V ∈ R𝑛, 𝐿 is the Laplacian matrix.
Denote 𝑒

𝑥
(𝑡) = col(𝑒

1,𝑥
(𝑡), . . . , 𝑒

𝑛,𝑥
(𝑡)), 𝑒V(𝑡) = col(𝑒

1,V(𝑡),

. . . , 𝑒
𝑛,V(𝑡)). One has 𝑥(𝜏(𝑠)) = 𝑒

𝑥
(𝑡) + 𝑥(𝑡), V(𝜏(𝑠)) = 𝑒V(𝑡) +

V(𝑡). Furthermore, system (9) can be rewritten as

�̇� (𝑡) = V (𝑡) ,

V̇ (𝑡) = −𝑘
2

𝐿𝑥 (𝑡) − 𝑘
3

𝐿V (𝑡) − 𝑘
2

𝐿𝑒
𝑥
(𝑡) − 𝑘

3

𝐿𝑒V (𝑡) ,

(10)

or

(

�̇� (𝑡)

V̇ (𝑡)
) = 𝐹

1
(

𝑥 (𝑡)

V (𝑡)
) + 𝐽
1
(

𝑒
𝑥
(𝑡)

𝑒V (𝑡)
) , (11)

where

𝐹
1
= (

0
𝑛×𝑛

𝐼
𝑛

−𝑘
2

𝐿 −𝑘
3

𝐿

) , 𝐽
1
= (

0
𝑛×𝑛

0
𝑛×𝑛

−𝑘
2

𝐿 −𝑘
3

𝐿

) . (12)

Now we will analyze the convergence of the closed-loop
multi-agent system (11) under the event-driven consensus
control (8). To facilitate the convergence analysis, we describe
the following lemma. Its proof is quite obvious and omitted
here.

Lemma6. For Laplacianmatrix𝐿 associatedwith the directed
graphG, there exists a non-singular matrix

𝑈 = (

1 ∗ ⋅ ⋅ ⋅ ∗

1 ∗ ⋅ ⋅ ⋅ ∗

...
...

...
1 ∗ ⋅ ⋅ ⋅ ∗

) ∈ R
𝑛×𝑛 (13)

such that

𝑈
−1

𝐿𝑈 = (

0 ℎ
𝑇

0
𝑛−1

𝐻

) = Λ ∈ R
𝑛×𝑛

, (14)

where ℎ ∈ R𝑛−1, 𝐻 ∈ R(𝑛−1)×(𝑛−1).

FromLemma6, the submatrix𝐻 ofΛ is a full-rankmatrix
if and only if G has a global reachable vertex. Moreover, the
eigenvalues of𝐻 have positive real-parts, or equivalently, −𝐻
is Hurwitz stable. Therefore, there exists a positive definite
matrix 𝑃 ∈ R(𝑛−1)×(𝑛−1) such that

𝑃𝐻 + 𝐻
𝑇

𝑃 = 𝐼
𝑛−1

. (15)

Take a coordinate transformation

𝑥 (𝑡) = 𝑈
−1

𝑥 (𝑡) , V (𝑡) = 𝑈
−1

V (𝑡) ,

𝑒
𝑥
(𝑡) = 𝑈

−1

𝑒
𝑥
(𝑡) , 𝑒V (𝑡) = 𝑈

−1

𝑒V (𝑡) ,

(16)

and then system (10) becomes

�̇� (𝑡) = V (𝑡) ,

V̇ (𝑡) = −𝑘
2

Λ𝑥 (𝑡) − 𝑘
3

ΛV (𝑡) − 𝑘
2

Λ𝑒
𝑥
(𝑡) − 𝑘

3

Λ𝑒V (𝑡) .

(17)
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Essentially, system (17) can be regarded as a series
interconnection of two subsystems:

�̇�
1
(𝑡) = V

1
(𝑡) ,

V̇
1
(𝑡) = − 𝑘

2

ℎ
𝑇

𝑥
2
(𝑡) − 𝑘

3

ℎ
𝑇

V
2
(𝑡)

− 𝑘
2

ℎ
𝑇

𝑒
2

𝑥
(𝑡) − 𝑘

3

ℎ
𝑇

𝑒
2

V (𝑡) ,

(18)

�̇�
2
(𝑡) = V

2
(𝑡) ,

V̇
2
(𝑡) = − 𝑘

2

𝐻𝑥
2
(𝑡) − 𝑘

3

𝐻V
2
(𝑡)

− 𝑘
2

𝐻𝑒
2

𝑥
(𝑡) − 𝑘

3

𝐻𝑒
2

V (𝑡) ,

(19)

where 𝑥
1
, V
1
, 𝑒
1

𝑥
, 𝑒
1

V ∈ R and 𝑥
2
, V
2
, 𝑒
2

𝑥
, 𝑒
2

V ∈ R𝑛−1,

𝑥 = (

𝑥
1

𝑥
2

) , V = (

V
1

V
2

) , 𝑒
𝑥
= (

𝑒
1

𝑥

𝑒
2

𝑥

) , 𝑒V = (

𝑒
1

V

𝑒
2

V

) .

(20)

Let 𝜖 = col(𝑥
2
, V
2
), 𝑒 = col(𝑒2

𝑥
, 𝑒
2

V), then subsystem (19)
becomes

̇𝜖 = 𝐹
2
𝜖 + 𝐽
2
𝑒, (21)

where

𝐹
2
= (

0
(𝑛−1)×(𝑛−1)

𝐼
𝑛−1

−𝑘
2

𝐻 −𝑘
3

𝐻

) ,

𝐽
2
= (

0
(𝑛−1)×(𝑛−1)

0
(𝑛−1)×(𝑛−1)

−𝑘
2

𝐻 −𝑘
3

𝐻

) .

(22)

Now a main result is obtained for system (10).

Theorem 7. Assume that the interconnection topology G
associated with multi-agent system (3) has a globally reachable
vertex. If the control gain 𝑘 satisfies

𝑘 >
√

𝜆max (𝑃)

2
+ 1

(23)

with𝑃 given in (15), then the event-driven consensus problemof
the leaderless multi-agent system (3) is solved with the control
(8), that is,

lim
𝑡→∞


𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)


= 0,

lim
𝑡→∞


V
𝑖
(𝑡) − V

𝑗
(𝑡)


= 0.

(24)

Proof. For system (19), or equivalently (21), take a Lyapunov
function

𝑉 (𝜖) = 𝜖
𝑇

𝑃𝜖, (25)

where

𝑃 = (
𝑘 1

1 𝑘
) ⊗ 𝑃, (26)

where 𝑃 satisfies (15). Thus, 𝑃 is positive definite with 𝑘 given
in (23).

Differentiating 𝑉(𝜖) leads to

�̇� (𝜖) |
(21)

= 𝜖
𝑇

(𝐹
𝑇

2
𝑃 + 𝑃𝐹

2
) 𝜖 + 2𝜖

𝑇

𝑃𝐽
2
e

= −𝜖
𝑇

𝑄𝜖 + 2𝜖
𝑇

𝑃𝐽
2
e,

(27)

where

𝑄 = − (𝐹
𝑇

2
𝑃 + 𝑃𝐹

2
)

= (

𝑘
2

𝐼
𝑛−1

𝑘
3

𝐼
𝑛−1

− 𝑘𝑃

𝑘
3

𝐼
𝑛−1

− 𝑘𝑃 𝑘
4

𝐼
𝑛−1

− 2𝑃

) .

(28)

According to Schur complement Lemma 5, 𝑄 is positive
definite with 𝑘 given in (23).

Therefore,

�̇� (𝜖) |
(21)

≤ −𝜆min (𝑄) ‖𝜖‖
2

+ 2𝜆max (𝑃)
𝐽2

 ‖𝜖‖ ‖𝑒‖

= − ‖𝜖‖ [𝜆min (𝑄) ‖𝜖‖ − 2𝜆max (𝑃)
𝐽2

 ‖𝑒‖] .

(29)

Due to the fact that ‖𝐽
2
‖
2

= 𝑘
4

(𝑘
2

+ 1)‖𝐻‖
2, enforcing the

measurement error 𝑒 to satisfy

‖𝑒‖ ≤ 𝜎
𝜆min (𝑄) ‖𝜖‖

2𝑘2√𝑘2 + 1𝜆max (𝑃)

𝐻



(30)

with 𝜎 ∈ (0, 1), one has

�̇� (𝜖) ≤ − (1 − 𝜎) 𝜆min (𝑄) ‖𝜖‖
2

≤ −
(1 − 𝜎) 𝜆min (𝑄)

𝜆max (𝑃)
𝑉 (𝜖) .

(31)

From (31), we conclude that lim
𝑡→∞

𝜖(𝑡) = 0, that is, as 𝑡 →

∞, 𝑥
2
(𝑡) → 0, V

2
(𝑡) → 0.

On the other hand, for system (18), let 𝑥
1
(0), V
1
(0) be the

initial values of 𝑥
1
(𝑡), V
1
(𝑡) and take a variable change 𝑥

1
(𝑡) =

𝑥
1
(𝑡)−(V

1
(0)𝑡+𝑥

1
(0)), Ṽ

1
(𝑡) = V

1
(𝑡)−V

1
(0).Then the solution

can be described by the following integral equation:

(
𝑥
1

Ṽ
1

) = ∫

𝑡

0

(
1 𝑡 − 𝜍

0 1
)

× (
0

−𝑘
2

ℎ
𝑇

𝑥
2
(𝜍) − 𝑘

3

ℎ
𝑇V
2
(𝜍) − 𝑘

2

ℎ
𝑇

𝑒
2

𝑥
(𝜍) − 𝑘

3

ℎ
𝑇

𝑒
2

V (𝜍)
) 𝑑𝜍.

(32)

Since the system (19) is exponentially stable, based on
the event-triggered condition (30), solution (32) has an
exponential decay term with respect to time 𝑡. Consequently,
the solution is convergent to 0 as 𝑡 → ∞, and thus,

(

𝑥
1
(𝑡)

𝑥
2
(𝑡)

) − (

V
1
(0) 𝑡 + 𝑥

1
(0)

0
𝑛−1

) → 0
𝑛
,

(

V
1
(𝑡)

V
2
(𝑡)

) → (

V
1
(0)

0
𝑛−1

) ,

(33)
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as 𝑡 → ∞. Furthermore, from the variable change (16), one
has

𝑥 − 𝑈(
V
1
(0) 𝑡 + 𝑥

1
(0)

0
𝑛−1

)

= 𝑥 − 1
𝑛
⊗ (V
1
(0) 𝑡 + 𝑥

1
(0)) → 0

𝑛
,

V − 𝑈(
V
1
(0)

0
𝑛−1

) = V − 1
𝑛
⊗ V
1
(0) → 0

𝑛
.

(34)

Therefore, when the event-driven consensus control (8) is
applied to each agent, one has 𝑥

𝑖
(𝑡) − 𝑥

𝑗
(𝑡) → 0, V

𝑖
(𝑡) −

V
𝑗
(𝑡) → 0 as 𝑡 → ∞. The proof is complete.

Remark 8. The gain 𝑘 in (23) can be taken without exact
knowledge of the interconnection topology associated with
the multi-agent system in real application of the control (8).
In fact, the spectral norm of 𝑃 in (23) can be obtained by
estimating the bound of the solution of Lyapunov equation
(15) (see [28]), which is closely related with the Laplacian
spectrum. Fortunately, there have been many results on the
bounds of the eigenvalues of a Laplacian matrix [29].

Next, we show that the inter-event times 𝜏(s + 1) − 𝜏(𝑠)

have a lower bound for 𝑠 = 0, 1, . . .. It is noticed that, from
(16),

(

𝑥 (𝑡)

V (𝑡)
) = (𝐼

2
⊗ 𝑈
−1

)(

𝑥 (𝑡)

V (𝑡)
) ,

(

𝑒
𝑥
(𝑡)

𝑒V (𝑡)
) = (𝐼

2
⊗ 𝑈
−1

)(

𝑒
𝑥
(𝑡)

𝑒V (𝑡)
) .

(35)

Define a matrix 𝑊 = [0
𝑛−1

𝐼
𝑛−1

] ∈ R(𝑛−1)×𝑛. Then, based on
(35), one has

𝜖 = (𝐼
2
⊗ 𝑊)(

𝑥 (𝑡)

V (𝑡)
) = (𝐼

2
⊗ 𝑊𝑈

−1

)(

𝑥 (𝑡)

V (𝑡)
) ,

𝑒 = (𝐼
2
⊗ 𝑊𝑈

−1

)(

𝑒
𝑥
(𝑡)

𝑒V (𝑡)
) .

(36)

For convenience of simplified calculation, let 𝑝(𝑡) = col(𝑥(𝑡),
V(𝑡)), 𝑒

𝑝
(𝑡) = col(𝑒

𝑥
(𝑡), 𝑒V(𝑡)) and 𝑧(𝑡) = ‖𝑒

𝑝
(𝑡)‖/‖𝑝(𝑡)‖. Take

the derivative of 𝑧(𝑡):

�̇� =
𝑑

𝑑𝑡

(𝑒
𝑇

𝑝
𝑒
𝑝
)
1/2

(𝑝𝑇𝑝)
1/2

= −

𝑒
𝑇

𝑝
�̇�


𝑒
𝑝



𝑝


−


𝑒
𝑝


𝑝



𝑝
𝑇

�̇�

𝑝


2

≤ [1 +


𝑒
𝑝


𝑝



]

�̇�


𝑝


= (1 + 𝑧) (
𝐹1

 +
𝐽1

 𝑧) .

(37)

Assume that 𝜙(𝑡, 𝜙
0
) is the solution of

̇𝜙 = (1 + 𝜙) (
𝐹1

 +
𝐽1

 𝜙) , 𝜙 (0, 𝜙
0
) = 𝜙
0
. (38)

Then, one has 𝑧(𝑡) ≤ 𝜙(𝑡, 𝜙
0
) for 𝑡 ≥ 0. From the variable

change (36) and the event-driven condition (30), 𝑧(𝑡) satisfies

𝑧 (𝑡) =


𝑒
𝑝
(𝑡)


𝑝 (𝑡)



=
‖𝑒 (𝑡)‖

‖𝜖 (𝑡)‖
, (39)

and the inter-event times are bounded by the time 𝜏
𝐷

∈ R+

it takes for 𝜙 to evolve from 0 to 𝜙(𝜏
𝐷
, 0) = (𝜎𝜆min(𝑄)/

2𝑘
2√𝑘2 + 1𝜆max(𝑃)‖𝐻‖). Solving the differential equation

(38) leads to

𝜏
𝐷

=
1

𝐹1
 −

𝐽1


ln(
1 + 𝜙 (𝜏

𝐷
, 0)

1 +
𝐽1

 /
𝐹1

 𝜙 (𝜏
𝐷
, 0)

) , (40)

which is a positive bound due to the fact that ‖𝐹
1
‖ > ‖𝐽

1
‖.

Then a result is stated as follows.

Theorem 9. When the event-driven consensus control (8) is
applied to themulti-agent system (3), the inter-event times 𝜏(𝑠+
1) − 𝜏(𝑠) for 𝑠 = 0, 1, . . ., have a lower bound given by (40).

3.2. Leader-Follower Consensus Control. In the leader-
following problem, we assume that the state information,
that is, 𝑥

0
(𝑡), V
0
(𝑡), and 𝑎

0
(𝑡) of the leader can be measured

in continuous-time by the followers. Thus, we propose the
following event-driven consensus control of the follower 𝑖:

𝑢
𝑖
(𝑡) = 𝑎

0
(𝑡) + 𝑘

2

∑

𝑗∈N𝑖

𝑎
𝑖𝑗
[𝑥
𝑗
(𝜏 (𝑠)) − 𝑥

𝑖
(𝜏 (𝑠))]

+ 𝑘
2

𝑎
𝑖0
[𝑥
0
(𝑡) − 𝑥

𝑖
(𝑡)]

+ 𝑘
3

∑

𝑗∈N𝑖

𝑎
𝑖𝑗
[V
𝑗
(𝜏 (𝑠)) − V

𝑖
(𝜏 (𝑠))]

+ 𝑘
3

𝑎
𝑖0
[V
0
(𝑡) − V

𝑖
(𝑡)]

(41)

for 𝑡 ∈ [𝜏(𝑠), 𝜏(𝑠 + 1)).

Remark 10. For the leader-following problem (3)-(4) under
investigation, the leader is assumed to be self-active, which
means that the leader is moving according to its own (pre-
designed) policy and needs no feedback information from
any other agent. In some sense, the leader plays the role of
an external commander of all the followers. Thus, no event-
driven strategy is applied to update the state of the leader.
Though the followers are using the event-driven relative
information from the neighboring followers, but they can
obtain the real-time relative position and velocity measure-
ments from the leader only if the followers are connected to
the leader. Therefore, in the control (41), it would be pre-
ferable to assume that 𝑥

0
(𝑡) − 𝑥

𝑖
(𝑡) and V

0
(𝑡) − V

𝑖
(𝑡) are

measured in continuous time.

Still denote the measurement errors 𝑒
𝑖,𝑥
(𝑡) = 𝑥

𝑖
(𝜏(𝑠)) −

𝑥
𝑖
(𝑡), 𝑒
𝑖,V(𝑡) = V

𝑖
(𝜏(𝑠))−V

𝑖
(𝑡) for 𝑖 = 1, . . . , 𝑛, 𝑡 ∈ [𝜏(𝑠), 𝜏(𝑠+1)).

Applying control (41) to system (3) leads to

�̇� (𝑡) = V (𝑡) ,

V̇ (𝑡) = 𝑎
0
(𝑡) 1 − 𝑘

2

𝐻𝑥 (𝑡) + 𝑘
2

𝐵1𝑥
0
(𝑡)

− 𝑘
3

𝐻V (𝑡) + 𝑘
3

𝐵1V
0
(𝑡)

− 𝑘
2

𝐿𝑒
𝑥
(𝑡) − 𝑘

3

𝐿𝑒V (𝑡) ,

(42)
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where 𝐻 = 𝐿 + 𝐵. Define 𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

0
(𝑡), Ṽ
𝑖
(𝑡) =

V
𝑖
(𝑡) − V

0
(𝑡) and 𝑥(𝑡) = col(𝑥

1
(𝑡), . . . , 𝑥

𝑛
(t)), Ṽ(𝑡) = col(Ṽ

1
(𝑡),

. . . , Ṽ
𝑛
(𝑡)). Based on the fact that −𝐻𝑥(𝑡) = −𝐻𝑥(𝑡)+𝐵1𝑥

0
(𝑡),

−𝐻Ṽ(𝑡) = −𝐻V(𝑡) + 𝐵1V
0
(𝑡), one has

(

̇̃𝑥 (𝑡)

̇̃V (𝑡)
) = 𝐹

3
(

𝑥 (𝑡)

Ṽ (𝑡)
) + 𝐽
3
(

𝑒
𝑥
(𝑡)

𝑒V (𝑡)
) , (43)

where

𝐹
3
= (

0
𝑛×𝑛

𝐼
𝑛

−𝑘
2

𝐻 −𝑘
3

𝐻

) , 𝐽
3
= (

0
𝑛×𝑛

0
𝑛×𝑛

−𝑘
2

𝐿 −𝑘
3

𝐿

) . (44)

Theorem 11. Assume that the vertex 0 is globally reachable in
the leader-follower interconnection topology G⃗. If the control
gain 𝑘 satisfies

𝑘 >
√

𝜆max (�̃�)

2
+ 1,

(45)

where �̃� is the solution of the Lyapunov equation �̃�𝐻+𝐻
𝑇

�̃� =

𝐼
𝑛
, then the event-driven consensus problem of the leader-

follower multi-agent system (3)-(4) is solved with the control
(41), that is,

lim
𝑡→∞

𝑥𝑖 (𝑡) − 𝑥
0
(𝑡)

 = 0,

lim
𝑡→∞

V𝑖 (𝑡) − V
0
(𝑡)

 = 0.

(46)

Proof. For system (43), take a Lyapunov function

𝑉 (𝜀) = 𝜀
𝑇

𝑃
𝐿
𝜀, (47)

where

𝜀 (𝑡) = (
𝑥 (𝑡)

Ṽ (𝑡)
) , 𝑃

𝐿
= (

𝑘 1

1 𝑘
) ⊗ �̃�. (48)

It is not difficult to show that 𝑃
𝐿
is positive definite with 𝑘

given in (45).
Differentiating 𝑉(𝜀) leads to

�̇� (𝜀) |
(43)

= 𝜀
𝑇

(𝐹
𝑇

3
𝑃
𝐿
+ 𝑃
𝐿
𝐹
3
) 𝜀 + 2𝜀

𝑇

𝑃
𝐿
𝐽
3
𝑒

= −𝜀
𝑇

𝑄
𝐿
𝜀 + 2𝜀

𝑇

𝑃
𝐿
𝐽
3
𝑒,

(49)

where

𝑄
𝐿
= − (𝐹

𝑇

3
𝑃
𝐿
+ 𝑃
𝐿
𝐹
3
) = (

𝑘
2

𝐼
𝑛

𝑘
3

𝐼
𝑛
− 𝑘�̃�

𝑘
3

𝐼
𝑛
− 𝑘�̃� 𝑘

4

𝐼
𝑛
− 2�̃�

) . (50)

According to Schur complement Lemma 5, 𝑄
𝐿
is positive

definite with 𝑘 given in (45).
Therefore,

�̇� (𝜀) |
(43)

≤ −𝜆min (𝑄
𝐿
) ‖𝜖‖
2

+ 2𝜆max (𝑃𝐿)
𝐽3

 ‖𝜀‖ ‖𝑒‖

= − ‖𝜀‖ [𝜆min (𝑄
𝐿
) ‖𝜖‖ − 2𝜆max (𝑃𝐿)

𝐽3
 ‖𝑒‖] .

(51)
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Figure 1: The interconnection topologyG.
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Figure 2: The evolution of position states 𝑥
𝑖
(𝑡) for 𝑖 = 1, . . . , 4.

Due to the fact that ‖𝐽
3
‖
2

= 𝑘
4

(𝑘
2

+ 1)‖𝐻‖
2, enforcing the

measurement error 𝑒(𝑡) to satisfy

‖𝑒 (𝑡)‖ ≤ 𝜎
𝜆min (𝑄

𝐿
) ‖𝜀‖

2𝑘2√𝑘2 + 1𝜆max (𝑃𝐿)

𝐻



(52)

with 𝜎 ∈ (0, 1), one has

�̇� (𝜀) ≤ − (1 − 𝜎) 𝜆m𝑖𝑛 (𝑄𝐿) ‖𝜀‖
2

≤ −
(1 − 𝜎) 𝜆min (𝑄

𝐿
)

𝜆max (𝑃𝐿)
𝑉 (𝜀) .

(53)

From (53), we conclude that lim
𝑡→∞

𝜀(𝑡) = 0, that is, as 𝑡 →

∞, 𝑥
2
(𝑡) → 0, Ṽ

2
(𝑡) → 0. The proof is thus competed.

Similar toTheorem9, a conclusion about the lower bound
of the event-times can also be found true, which is omitted
here.

4. Simulations

Example 12. Consider four agents whose dynamics is des-
cribed by (3). The interconnection topology is shown in
Figure 1. Obviously, G has a globally vertex 4; however, it is
not strongly connected.
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Figure 3: The evolution of velocity state V
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(𝑡) for 𝑖 = 1, . . . , 4.
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Figure 4: Evolution of the measurement error norm ‖𝑒(𝑡)‖.

Assume that the weighted adjacency matrix 𝐴 reduces to
a 0 − 1matrix. Then the Laplacian matrix 𝐿 ofG is

𝐿 = (

1 0 0 −1

−1 1 0 0

0 −1 2 −1

0 0 0 0

) , (54)

which is an asymmetric matrix. A non-singular matrix 𝑈 in
Lemma 6 can be easily found as

𝑈 = (

1 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

) . (55)

Then the submatrices𝐻 = (
1 0 1

−1 2 0

0 0 1

) and ℎ = col(0, 0, −1).
The positive definite matrix satisfying (15) is given by

𝑃 = (

0.5833 0.0833 −0.3056

0.0833 0.2500 −0.0278

−0.3056 −0.0278 0.8056

) , (56)

whose minimal and maximal eigenvalues are, respectively,
𝜆min(𝑃) = 0.2248, 𝜆max(𝑃) = 1.0260. According to (23), take
the gain 𝑘 = 1.5.

0
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40
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0 1 2 3 4 5 6 7 8 9 10
Time (𝑡)

−10

−20

𝑢
𝑖(
𝑡)

𝑢1(𝑡) 𝑢3(𝑡)

𝑢2(𝑡) 𝑢4(𝑡)

Figure 5: Evolution of the consensus controllers 𝑢
𝑖
(𝑡) for 𝑖 =

1, . . . , 4.

1 4

2 3

0

Figure 6: V⃗(G⃗) = {0, 1, 2, 3, 4} andV(G) = {1, 2, 3, 4}.

The initial conditions of system (9) are 𝑥(0) = col(2, −4,
−9, 9), V(0) = col(2, 6, 3, −2) and 𝜏(0) = 0. In the event
triggered condition (30), we take 𝜎 = 0.8. It can be seen
that, from Figures 2 and 3, the four agents reach consensus
on the position and velocity states with the proposed event-
driven consensus control (8). Additionally, since the vertex 4

has no link starting from it, the agent 4 is moved according
to its own dynamics and the initial conditions, as shown
in Figures 2, 3, and 5. The evolution of the measurement
error vector 𝑒(𝑡) is depicted in Figure 4, which shows
that the error 𝑒(𝑡) is bounded by the specified thresh-
old (𝜎𝜆min(𝑄)‖𝜖‖/2𝑘

2√𝑘2 + 1𝜆max(𝑃)‖𝐻‖). In Figure 5, the
consensus controllers are illustrated for the four agents,
whose event-driven update frequencies are decreasing as time
evolves.

Example 13. Consider four followers and one leader whose
dynamics are, respectively, described by (3) and (4). The
leader-follower interconnection topology G⃗ is shown in
Figure 6, which has a globally reachable vertex 0.

It is not difficult to obtain the Laplacian matrix 𝐿 as

𝐿 = (

1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1

) , (57)

and the leader adjacency matrix 𝐵 = diag{1, 0, 0, 1}. Since
−𝐻 = −(𝐿 + 𝐵) is a stable matrix, one solves the Lyapunov



8 Abstract and Applied Analysis

0

5

10

15

Po
sit

io
n 

ev
ol

ut
io

n

Leader
Follower 1
Follower 2

Follower 3
Follower 4

0 1 2 3 4 5 6 7 8 9 10
Time (𝑡)

−5

−10

Figure 7: The evolution of position states 𝑥
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(𝑡) for 𝑖 = 0, 1, . . . , 4.

Ve
lo

ci
ty

 ev
ol

ut
io

n

Leader
Follower 1
Follower 2

Follower 3
Follower 4

0 1 2 3 4 5 6 7 8 9 10
Time (𝑡)

6

4

2

0

−2

−4

−6

Figure 8: The evolution of velocity states V
𝑖
(𝑡) for 𝑖 = 0, 1, . . . , 4.

equation �̃�𝐻+𝐻
𝑇

�̃� = 𝐼
4
and has the positive definite solution

as

�̃� = (

0.75 0.25 0 0

0.25 0.50 0 0

0 0 1.0 0.50

0 0 0.50 0.50

) (58)

whose maximal eigenvalue 𝜆max(𝐻) = 1.309. From (45), still
take 𝑘 = 1.5.

The acceleration of the active leader is assumed to be
𝑎
0
(𝑡) = 𝑒

−𝑡 sin(𝑡). The initial values of system (3) is same as
those in Example 12 and the initial values of the leader is given
as 𝑥
0
(0) = 0, V

0
(0) = 1 and 𝑎

0
(0) = 0. Figures 7 and 8 show

that the followers and the self-active leader reach consensus
on the position and velocity under the event-driven control
(41). The evolution of ‖𝑒(𝑡)‖ is also presented in Figure 9.

5. Conclusions

An event-driven consensus problem of second-order multi-
agent systems with/without a self-active leader was consid-
ered in this paper. The consensus controllers have been pro-
posed for all autonomous mobile agents based on an event-
driven control update strategy. The input-to-state stability
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Figure 9: Evolution of the measurement error norm ‖𝑒(𝑡)‖.

of the closed-loop multi-agent system has been analyzed
by employing an ISS Lyapunov function. Some numerical
examples have been presented to validate the proposed event-
driven controls. However, it is noted that the event-driven
condition depends on the states of the whole multi-agent
group and all agents have identical event-times. The result
is somewhat preliminary due to the centralized information
gathering, so further work will be devoted to designing a
decentralized event-driven consensus control for a second-
order multi-agent system in the future.
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