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This paper is concerned with solvability of the second-order nonlinear neutral delay difference equation Δ
2
(𝑥
𝑛

+ 𝑎
𝑛
𝑥
𝑛−𝜏

) +

Δℎ(𝑛, 𝑥
ℎ1𝑛

, 𝑥
ℎ2𝑛

, . . . , 𝑥
ℎ𝑘𝑛

) + 𝑓(𝑛, 𝑥
𝑓1𝑛

, 𝑥
𝑓2𝑛

, . . . , 𝑥
𝑓𝑘𝑛

) = 𝑏
𝑛
, ∀𝑛 ≥ 𝑛

0
. Utilizing the Banach fixed point theorem and some new

techniques, we show the existence of uncountably many unbounded positive solutions for the difference equation, suggest several
Mann-type iterative schemes with errors, and discuss the error estimates between the unbounded positive solutions and the
sequences generated by the Mann iterative schemes. Four nontrivial examples are given to illustrate the results presented in this
paper.

1. Introduction and Preliminaries

Recently, the oscillation, nonoscillation, asymptotic behavior,
and existence of solutions of different classes of linear
and nonlinear second-order difference equations have been
studied by many authors; see, for example, [1–26] and
the references cited therein. Using the Banach fixed point
theorem, Jinfa [5] discussed the existence of a bounded
nonoscillatory solution for the second-order neutral delay
difference equation with positive and negative coefficients:

Δ
2
(𝑥
𝑛
+ 𝑝𝑥
𝑛−𝑚

) + 𝑝
𝑛
𝑥
𝑛−𝑘

− 𝑞
𝑛
𝑥
𝑛−𝑙

= 0, ∀𝑛 ≥ 𝑛
0

(1)

under the condition 𝑝 ̸= − 1. Luo and Bainov [13] and M.
Migda and J. Migda [16] considered the asymptotic behaviors
of nonoscillatory solutions for the second-order neutral
difference equation with maxima:

Δ
2
(𝑥
𝑛
+ 𝑝
𝑛
𝑥
𝑛−𝑘

) + 𝑞
𝑛
max {𝑥

𝑠
: 𝑛 − 𝑙 ≤ 𝑠 ≤ 𝑛} = 0, ∀𝑛 ≥ 1

(2)

and the second-order neutral difference equation:

Δ
2
(𝑥
𝑛
+ 𝑝𝑥
𝑛−𝑘

) + 𝑓 (𝑛, 𝑥
𝑛
) = 0, ∀𝑛 ≥ 1, (3)

respectively. Meng and Yan [15] studied the existence of
bounded nonoscillatory solutions for the second-order non-
linear nonautonomous neutral delay difference equation:

Δ
2
(𝑥
𝑛
− 𝑝𝑥
𝑛−𝜏

) =

𝑚

∑

𝑛=1

𝑞
𝑖
𝑥
𝑛−𝜎
𝑖

+ 𝑓 (𝑛, 𝑥
𝑛−𝜂
1𝑛

, . . . , 𝑥
𝑛−𝜂
𝑙𝑛

) ,

∀𝑛 ≥ 𝑛
0
.

(4)

Applying the cone compression and expansion theorem in
Fréchet spaces, Tian and Ge [21] established the existence
of multiple positive solutions of the second-order discrete
equation on the half-line:

Δ
2
𝑥
𝑛−1

− 𝑝Δ𝑥
𝑛−1

− 𝑞𝑥
𝑛−1

+ 𝑓 (𝑛, 𝑥
𝑛
) = 0, ∀𝑛 ≥ 1 (5)

with certain boundary value conditions. But to the best of our
knowledge, results on multiplicity of unbounded solutions



2 Abstract and Applied Analysis

for neutral delay difference equations are very scarce in
the literature. Nothing has been done with the existence of
uncountably many unbounded positive solutions for (1)∼
(5) and any other second-order neutral delay difference
equations:

Inspired and motivated by the results in [1–26], in this
paper we introduce and study the second-order nonlinear
neutral delay difference equation:

Δ
2
(𝑥
𝑛
+ 𝑎
𝑛
𝑥
𝑛−𝜏

) + Δℎ (𝑛, 𝑥
ℎ
1𝑛

, 𝑥
ℎ
2𝑛

, . . . , 𝑥
ℎ
𝑘𝑛

)

+ 𝑓 (𝑛, 𝑥
𝑓
1𝑛

, 𝑥
𝑓
2𝑛

, . . . , 𝑥
𝑓
𝑘𝑛

) = 𝑏
𝑛
, ∀𝑛 ≥ 𝑛

0
,

(6)

where 𝜏, 𝑘, 𝑛
0

∈ N, {𝑎
𝑛
}
𝑛∈N
𝑛0

, {𝑏
𝑛
}
𝑛∈N
𝑛0

⊂ R, ℎ, 𝑓 ∈ 𝐶(N
𝑛
0

×

R𝑘,R), {ℎ
𝑙𝑛
}
𝑛∈N
𝑛0

, {𝑓
𝑙𝑛
}
𝑛∈N
𝑛0

⊆ N, and

lim
𝑛→∞

ℎ
𝑙𝑛

= lim
𝑛→∞

𝑓
𝑙𝑛

= +∞, 𝑙 ∈ {1, 2, . . . , 𝑘} . (7)

By means of the Banach fixed point theorem and some
new techniques, we establish sufficient conditions for the
existence of uncountablymany unbounded positive solutions
of (6), suggest a few Mann iterative schemes with errors
for approximating these unbounded positive solutions, and
prove their convergence and the error estimates. The results
obtained in this paper extend the result in [5]. Four nontrivial
examples are interested in the text to illustrate the importance
of our results.

Throughout this paper, we assume that Δ is the forward
difference operator defined by Δ𝑥

𝑛
= 𝑥
𝑛+1

− 𝑥
𝑛
, R =

(−∞, +∞), R+ = [0, +∞), Z, N
0
, and N denote the sets

of all integers, nonnegative integers, and positive integers,
respectively,

N
𝑡
= {𝑛 : 𝑛 ∈ N with 𝑛 ≥ 𝑡} , ∀𝑡 ∈ N,

𝛽 = min {𝑛
0
− 𝜏, inf {ℎ

𝑙𝑛
, 𝑓
𝑙𝑛

: 1 ≤ 𝑙 ≤ 𝑘, 𝑛 ∈ N
𝑛
0

}} ∈ N,

𝐻
𝑛

= max {ℎ
𝑙𝑛

: 𝑙 ∈ {1, 2, . . . , 𝑘}} ,

𝐹
𝑛

= max {𝑓
𝑙𝑛

: 𝑙 ∈ {1, 2, . . . , 𝑘}} , ∀𝑛 ∈ N
𝑛
0

,

(8)

𝑙
∞

𝛽
represents the Banach space of all real sequences on N

𝛽

with norm

‖𝑥‖ = sup
𝑛∈N
𝛽



𝑥
𝑛

𝑛


< +∞ for each 𝑥 = {𝑥

𝑛
}
𝑛∈N
𝛽

∈ 𝑙
∞

𝛽
,

𝐴 (𝑁,𝑀) = {𝑥 = {𝑥
𝑛
}
𝑛∈N
𝛽

∈ 𝑙
∞

𝛽
: 𝑁 ≤

𝑥
𝑛

𝑛
≤ 𝑀, 𝑛 ∈ N

𝛽
}

for any 𝑀 > 𝑁 > 0.

(9)

It is clear that 𝐴(𝑁,𝑀) is a closed and convex subset of 𝑙
∞

𝛽
.

By a solution of (6), we mean a sequence {𝑥
𝑛
}
𝑛∈N
𝛽

with a
positive integer 𝑇 ≥ 𝑛

0
+ 𝜏 + 𝛽 such that (6) holds for all

𝑛 ≥ 𝑇.
The following lemmas play important roles in this paper.

Lemma 1 (see [27]). Let {𝛼
𝑛
}
𝑛∈N
0

, {𝛽
𝑛
}
𝑛∈N
0

, {𝛾
𝑛
}
𝑛∈N
0

, and
{𝑡
𝑛
}
𝑛∈N
0

be four nonnegative sequences satisfying the inequality

𝛼
𝑛+1

≤ (1 − 𝑡
𝑛
) 𝛼
𝑛
+ 𝑡
𝑛
𝛽
𝑛
+ 𝛾
𝑛
, ∀𝑛 ∈ N

0
, (10)

where {𝑡
𝑛
}
𝑛∈N
0

⊂ [0, 1], ∑∞
𝑛=0

𝑡
𝑛

= +∞, lim
𝑛→∞

𝛽
𝑛

= 0, and
∑
∞

𝑛=0
𝛾
𝑛

< +∞. Then lim
𝑛→∞

𝛼
𝑛

= 0.

Lemma 2 (see [11]). Let 𝜏, 𝑛
0

∈ N and {𝑏
𝑛
}
𝑛∈N
𝑛0

be a
nonnegative sequence. Then

(a) ∑
∞

𝑖=0
∑
∞

𝑠=𝑛
0
+𝑖𝜏

𝑏
𝑠
< +∞ ⇔ ∑

∞

𝑠=𝑛
0

𝑠𝑏
𝑠
< +∞;

(b) ∑
∞

𝑖=0
∑
∞

𝑠=𝑛
0
+𝑖𝜏

∑
∞

𝑡=𝑠
𝑏
𝑡
< +∞ ⇔ ∑

∞

𝑠=𝑛
0

∑
∞

𝑡=𝑠
𝑠𝑏
𝑡
< +∞.

2. Existence of Uncountably Many Unbounded
Positive Solutions

Using the Banach fixed point theorem and the Mann iter-
ative schemes with errors, we next discuss the existence
of uncountably many unbounded positive solutions of (6),
prove that the Mann iterative schemes with errors converge
to these unbounded positive solutions, and compute the error
estimates between the Mann iterative schemes with errors
and the unbounded positive solutions.

Theorem 3. Assume that there exist two constants 𝑀 and
𝑁 with 𝑀 > 𝑁 > 0 and four nonnegative sequences
{𝑃
𝑛
}
𝑛∈N
𝑛0

, {𝑄
𝑛
}
𝑛∈N
𝑛0

, {𝑅
𝑛
}
𝑛∈N
𝑛0

, and {𝑊
𝑛
}
𝑛∈N
𝑛0

satisfying

𝑓 (𝑛, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
) − 𝑓 (𝑛, 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑘
)


≤ 𝑃
𝑛
max {

𝑢𝑙 − 𝑢
𝑙

 : 1 ≤ 𝑙 ≤ 𝑘} ,

ℎ (𝑛, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
) − ℎ (𝑛, 𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑘
)


≤ 𝑅
𝑛
max {

𝑢𝑙 − 𝑢
𝑙

 : 1 ≤ 𝑙 ≤ 𝑘} ,

∀ (𝑛, 𝑢
𝑙
, 𝑢
𝑙
) ∈ N
𝑛
0

× (R
+

\ {0})
2

, 1 ≤ 𝑙 ≤ 𝑘,

(11)

𝑓 (𝑛, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
)
 ≤ 𝑄
𝑛
,

ℎ (𝑛, 𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
)
 ≤ 𝑊
𝑛
,

∀ (𝑛, 𝑢
𝑙
) ∈ N
𝑛
0

× (R
+

\ {0}) , 1 ≤ 𝑙 ≤ 𝑘,

(12)

lim
𝑛→∞

1

𝑛

∞

∑

𝑖=0

∞

∑

𝑠=𝑛+𝑖𝜏

max {𝑅
𝑠
𝐻
𝑠
,𝑊
𝑠
} = 0, (13)

lim
𝑛→∞

1

𝑛

∞

∑

𝑖=0

∞

∑

𝑠=𝑛+𝑖𝜏

∞

∑

𝑡=𝑠

max {𝑃
𝑡
𝐹
𝑡
, 𝑄
𝑡
,
𝑏𝑡

} = 0, (14)

𝑎
𝑛

= −1 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦. (15)
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Then
(a) for any 𝐿 ∈ (𝑁,𝑀), there exist 𝜃 ∈ (0, 1) and 𝑇 ≥ 𝑛

0
+

𝜏 + 𝛽 such that for each 𝑥
0
= {𝑥
0𝑛

}
𝑛∈N
𝛽

∈ 𝐴(𝑁,𝑀), the Mann
iterative sequence with errors {𝑥

𝑚
}
𝑚∈N
0

= {𝑥
𝑚𝑛

}
(𝑚,𝑛)∈N

0
×N
𝛽

generated by the scheme

𝑥
𝑚+1𝑛

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(1 − 𝛼
𝑚

− 𝛽
𝑚
) 𝑥
𝑚𝑛

+𝛼
𝑚

{𝑛𝐿

−

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+𝑖𝜏

[ℎ (𝑠, 𝑥
𝑚ℎ
1𝑠

, 𝑥
𝑚ℎ
2𝑠

, . . . , 𝑥
𝑚ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

(𝑓 (𝑡, 𝑥
𝑚𝑓
1𝑡

, 𝑥
𝑚𝑓
2𝑡

, . . . ,

𝑥
𝑚𝑓
𝑘𝑡

)−𝑏
𝑡
) ]}

+𝛽
𝑚
𝛾
𝑚𝑛

, 𝑛 ≥ 𝑇, 𝑚 ≥ 0,

(1 − 𝛼
𝑚

− 𝛽
𝑚
) 𝑥
𝑚𝑇

+𝛼
𝑚

{𝑇𝐿

−

∞

∑

𝑖=1

∞

∑

𝑠=𝑇+𝑖𝜏

[ℎ (𝑠, 𝑥
𝑚ℎ
1𝑠

, 𝑥
𝑚ℎ
2𝑠

, . . . , 𝑥
𝑚ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

(𝑓 (𝑡, 𝑥
𝑚𝑓
1𝑡

, 𝑥
𝑚𝑓
2𝑡

, . . . ,

𝑥
𝑚𝑓
𝑘𝑡

) − 𝑏
𝑡
) ]}

+𝛽
𝑚
𝛾
𝑚𝑇

, 𝛽 ≤ 𝑛 < 𝑇, 𝑚 ≥ 0

(16)

converges to an unbounded positive solution 𝑥 ∈ 𝐴(𝑁,𝑀) of
(6) and has the following error estimate:

𝑥𝑚+1 − 𝑥
 ≤ [1 − (1 − 𝜃) 𝛼

𝑚
]
𝑥𝑚 − 𝑥

 + 2𝑀𝛽
𝑚
,

∀𝑚 ∈ N
0
,

(17)

where {𝛾
𝑚
}
𝑚∈N
0

= {𝛾
𝑚𝑛

}
(𝑚,𝑛)∈N

0
×N
𝛽

is an arbitrary sequence
in 𝐴(𝑁,𝑀) and {𝛼

𝑚
}
𝑚∈N
0

and {𝛽
𝑚
}
𝑚∈N
0

are any sequences in
[0, 1] such that

∞

∑

𝑚=0

𝛼
𝑚

= +∞,

∞

∑

𝑚=0

𝛽
𝑚

< +∞ or there exists a sequence

{𝜉
𝑚
}
𝑚∈N
0

⊂ [0, +∞) satisfying

𝛽
𝑚

= 𝜉
𝑚
𝛼
𝑚
, 𝑚 ∈ N

0
, lim

𝑚→∞
𝜉
𝑚

= 0;

(18)

(b) equation (6) possesses uncountably many unbounded
positive solutions in 𝐴(𝑁,𝑀).

Proof. First of all we show that (a) holds. Set 𝐿 ∈ (𝑁,𝑀). It
follows from (13), (14), and (15) that there exist 𝜃 ∈ (0, 1) and
𝑇 ≥ 𝑛

0
+ 𝜏 + 𝛽 satisfying

𝜃 =
1

𝑇

∞

∑

𝑖=1

∞

∑

𝑠=𝑇+𝑖𝜏

(𝑅
𝑠
𝐻
𝑠
+

∞

∑

𝑡=𝑠

𝑃
𝑡
𝐹
𝑡
) , (19)

1

𝑇

∞

∑

𝑖=1

∞

∑

𝑠=𝑇+𝑖𝜏

(𝑊
𝑠
+

∞

∑

𝑡=𝑠

𝑄
𝑡
+

∞

∑

𝑡=𝑠

𝑏𝑡
) < min {𝑀 − 𝐿, 𝐿 − 𝑁} ,

(20)

𝑎
𝑛

= −1, ∀𝑛 ≥ 𝑇. (21)

Define a mapping 𝑆
𝐿

: 𝐴(𝑁,𝑀) → 𝑙
∞

𝛽
by

𝑆
𝐿
𝑥
𝑛

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑛𝐿

−

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+𝑖𝜏

{ℎ (𝑠, 𝑥
ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

[𝑓 (𝑡, 𝑥
𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

) − 𝑏
𝑡
]} ,

𝑛 ≥ 𝑇,

𝑆
𝐿
𝑥
𝑇
, 𝛽 ≤ 𝑛 < 𝑇

(22)

for each 𝑥 = {𝑥
𝑛
}
𝑛∈N
𝛽

∈ 𝐴(𝑁,𝑀). In view of (11), (12), (19),
(20), and (22), we deduce that for each 𝑥 = {𝑥

𝑛
}
𝑛∈N
𝛽

, 𝑦 =

{𝑦
𝑛
}
𝑛∈N
𝛽

∈ 𝐴(𝑁,𝑀) and for all 𝑛 ≥ 𝑇



𝑆
𝐿
𝑥
𝑛

𝑛
−

𝑆
𝐿
𝑦
𝑛

𝑛



≤
1

𝑛

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+𝑖𝜏

[

ℎ (𝑠, 𝑥

ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)

− ℎ (𝑠, 𝑦
ℎ
1𝑠

, 𝑦
ℎ
2𝑠

, . . . , 𝑦
ℎ
𝑘𝑠

)


+

∞

∑

𝑡=𝑠


𝑓 (𝑡, 𝑥

𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

)

− 𝑓 (𝑡, 𝑦
𝑓
1𝑡

, 𝑦
𝑓
2𝑡

, . . . , 𝑦
𝑓
𝑘𝑡

)

]

≤
1

𝑛

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+𝑖𝜏

[𝑅
𝑠
max {


𝑥
ℎ
𝑙𝑠

− 𝑦
ℎ
𝑙𝑠


: 1 ≤ 𝑙 ≤ 𝑘}

+

∞

∑

𝑡=𝑠

𝑃
𝑡
max {


𝑥
𝑓
𝑙𝑡

− 𝑦
𝑓
𝑙𝑡


: 1 ≤ 𝑙 ≤ 𝑘}]
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≤

𝑥 − 𝑦


𝑛

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+𝑖𝜏

[𝑅
𝑠
max {ℎ

𝑙𝑠
: 1 ≤ 𝑙 ≤ 𝑘}

+

∞

∑

𝑡=𝑠

𝑃
𝑡
max {𝑓

𝑙𝑡
: 1 ≤ 𝑙 ≤ 𝑘}]

≤

𝑥 − 𝑦


𝑇

∞

∑

𝑖=1

∞

∑

𝑠=𝑇+𝑖𝜏

(𝑅
𝑠
𝐻
𝑠
+

∞

∑

𝑡=𝑠

𝑃
𝑡
𝐹
𝑡
)

= 𝜃
𝑥 − 𝑦

 ,



𝑆
𝐿
𝑥
𝑛

𝑛
− 𝐿



=



1

𝑛

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+𝑖𝜏

{ℎ (𝑠, 𝑥
ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

[𝑓 (𝑡, 𝑥
𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

) − 𝑏
𝑡
]}



≤
1

𝑛

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+𝑖𝜏

{

ℎ (𝑠, 𝑥

ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)


+

∞

∑

𝑡=𝑠

[

𝑓 (𝑡, 𝑥

𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

)

+

𝑏𝑡
]}

≤
1

𝑇

∞

∑

𝑖=1

∞

∑

𝑠=𝑇+𝑖𝜏

[𝑊
𝑠
+

∞

∑

𝑡=𝑠

(𝑄
𝑡
+

𝑏𝑡
)]

< min {𝑀 − 𝐿, 𝐿 − 𝑁} ,

(23)

which yield that

𝑆
𝐿
(𝐴 (𝑁,𝑀)) ⊆ 𝐴 (𝑁,𝑀) ,

𝑆𝐿𝑥 − 𝑆
𝐿
𝑦
 ≤ 𝜃

𝑥 − 𝑦
 ,

∀𝑥, 𝑦 ∈ 𝐴 (𝑁,𝑀) ,

(24)

which means that 𝑆
𝐿
is a contraction in 𝐴(𝑁,𝑀). It follows

from the Banach fixed point theorem that 𝑆
𝐿
has a unique

fixed point 𝑥 = {𝑥
𝑛
}
𝑛∈N
𝛽

∈ 𝐴(𝑁,𝑀), that is,

𝑥
𝑛

= 𝑛𝐿

−

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+𝑖𝜏

{ℎ (𝑠, 𝑥
ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

[𝑓 (𝑡, 𝑥
𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

)−𝑏
𝑡
]} ,

∀𝑛 ≥ 𝑇,

𝑥
𝑛−𝜏

= (𝑛 − 𝜏) 𝐿

−

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+(𝑖−1)𝜏

{ℎ (𝑠, 𝑥
ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

[𝑓 (𝑡, 𝑥
𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

)−𝑏
𝑡
]} ,

∀𝑛 ≥ 𝑇 + 𝜏,

(25)

which imply that

𝑥
𝑛
− 𝑥
𝑛−𝜏

= 𝜏𝐿 +

∞

∑

𝑠=𝑛

{ℎ (𝑠, 𝑥
ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

[𝑓 (𝑡, 𝑥
𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

) − 𝑏
𝑡
]} ,

∀𝑛 ≥ 𝑇 + 𝜏,

(26)

which yields that

Δ (𝑥
𝑛
− 𝑥
𝑛−𝜏

) = − ℎ (𝑛, 𝑥
ℎ
1𝑛

, 𝑥
ℎ
2𝑛

, . . . , 𝑥
ℎ
𝑘𝑛

)

+

∞

∑

𝑡=𝑛

[𝑓 (𝑡, 𝑥
𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

) − 𝑏
𝑡
] ,

∀𝑛 ≥ 𝑇 + 𝜏,

Δ
2
(𝑥
𝑛
− 𝑥
𝑛−𝜏

) = − Δℎ (𝑛, 𝑥
ℎ
1𝑛

, 𝑥
ℎ
2𝑛

, . . . , 𝑥
ℎ
𝑘𝑛

)

− 𝑓 (𝑛, 𝑥
𝑓
1𝑛

, 𝑥
𝑓
2𝑛

, . . . , 𝑥
𝑓
𝑘𝑛

) + 𝑏
𝑛
,

∀𝑛 ≥ 𝑇 + 𝜏,

(27)

which together with (21) gives that 𝑥 = {𝑥
𝑛
}
𝑛∈N
𝛽

is an
unbounded positive solution of (6) in 𝐴(𝑁,𝑀). It follows
from (16), (19), (21), (22), and (24) that for any 𝑚 ∈ N

0
and

𝑛 ≥ 𝑇



𝑥
𝑚+1𝑛

𝑛
−

𝑥
𝑛

𝑛



=
1

𝑛



(1 − 𝛼
𝑚

− 𝛽
𝑚
) 𝑥
𝑚𝑛
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+ 𝛼
𝑚

{𝑛𝐿

−

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+𝑖𝜏

[ℎ (𝑠, 𝑥
𝑚ℎ
1𝑠

, 𝑥
𝑚ℎ
2𝑠

, . . . , 𝑥
𝑚ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

(𝑓 (𝑡, 𝑥
𝑚𝑓
1𝑡

, 𝑥
𝑚𝑓
2𝑡

, . . . ,

𝑥
𝑚𝑓
𝑘𝑡

)−𝑏
𝑡
) ]}

+𝛽
𝑚
𝛾
𝑚𝑛

− 𝑥
𝑛



≤ (1 − 𝛼
𝑚

− 𝛽
𝑚
)

𝑥𝑚𝑛 − 𝑥
𝑛



𝑛

+ 𝛼
𝑚

𝑆𝐿𝑥𝑚𝑛 − 𝑆
𝐿
𝑥
𝑛



𝑛
+ 𝛽
𝑚

𝛾𝑚𝑛 − 𝑥
𝑛



𝑛

≤ (1 − 𝛼
𝑚

− 𝛽
𝑚
)
𝑥𝑚 − 𝑥

 + 𝜃𝛼
𝑚

𝑥𝑚 − 𝑥
 + 2𝑀𝛽

𝑚

≤ [1 − (1 − 𝜃) 𝛼
𝑚
]
𝑥𝑚 − 𝑥

 + 2𝑀𝛽
𝑚
,

(28)

which implies that

𝑥𝑚+1 − 𝑥
 ≤ [1 − (1 − 𝜃) 𝛼

𝑚
]
𝑥𝑚 − 𝑥

 + 2𝑀𝛽
𝑚
,

∀𝑚 ∈ N
0
.

(29)

That is, (17) holds.Thus, Lemma 1 and (17) and (18) guarantee
that lim

𝑚→∞
𝑥
𝑚

= 𝑥.
Next we show that (b) holds. Let 𝐿

1
, 𝐿
2

∈ (𝑁,𝑀) and
𝐿
1

̸= 𝐿
2
. As in the proof of (a), we deduce similarly that for

each 𝑐 ∈ {1, 2} there exist constants 𝜃
𝑐
∈ (0, 1), 𝑇

𝑐
≥ 𝑛
0
+ 𝜏 +

𝛽, and a mapping 𝑆
𝐿
𝑐

satisfying (19)∼(24), where 𝜃, 𝐿, and 𝑇

are replaced by 𝜃
𝑐
, 𝐿
𝑐
and 𝑇

𝑐
, respectively, and the mapping

𝑆
𝐿
𝑐

has a fixed point 𝑧
𝑐

= {𝑧
𝑐

𝑛
}
𝑛∈N
𝛽

∈ 𝐴(𝑁,𝑀), which is an
unbounded positive solution of (6) in 𝐴(𝑁,𝑀), that is,

𝑧
𝑐

𝑛
= 𝑛𝐿
𝑐

−

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+𝑖𝜏

{ℎ (𝑠, 𝑧
𝑐

ℎ
1𝑠

, 𝑧
𝑐

ℎ
2𝑠

, . . . , 𝑧
𝑐

ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

[𝑓 (𝑡, 𝑧
𝑐

𝑓
1𝑡

, 𝑧
𝑐

𝑓
2𝑡

, . . . , 𝑧
𝑐

𝑓
𝑘𝑡

) − 𝑏
𝑡
]} ,

∀𝑛 ≥ 𝑇
𝑐
,

(30)

which together with (11) and (17) implies that for 𝑛 ≥

max{𝑇
1
, 𝑇
2
}



𝑧
1

𝑛

𝑛
−

𝑧
2

𝑛

𝑛



≥
𝐿1−𝐿

2



−
1

𝑛

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+𝑖𝜏

{

ℎ (𝑠, 𝑧

1

ℎ
1𝑠

, 𝑧
1

ℎ
2𝑠

, . . . , 𝑧
1

ℎ
𝑘𝑠

)

− ℎ (𝑠, 𝑧
2

ℎ
1𝑠

, 𝑧
2

ℎ
2𝑠

, . . . , 𝑧
2

ℎ
𝑘𝑠

)


+

∞

∑

𝑡=𝑠


𝑓 (𝑡, 𝑧

1

𝑓
1𝑡

, 𝑧
1

𝑓
2𝑡

, . . . , 𝑧
1

𝑓
𝑘𝑡

)

− 𝑓 (𝑡, 𝑧
2

𝑓
1𝑡

, 𝑧
2

𝑓
2𝑡

, . . . , 𝑧
2

𝑓
𝑘𝑡

)

}

≥
𝐿1 − 𝐿

2



−
1

𝑛

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+𝑖𝜏

[𝑅
𝑠
max {


𝑧
1

ℎ
𝑙𝑠

− 𝑧
2

ℎ
𝑙𝑠


: 1≤𝑙≤𝑘}

+

∞

∑

𝑡=𝑠

𝑃
𝑡
max {


𝑧
1

𝑓
𝑙𝑡

−𝑧
2

𝑓
𝑙𝑡


: 1≤𝑙≤𝑘}]

≥
𝐿1 − 𝐿

2

 −


𝑧
1
− 𝑧
2

𝑛

∞

∑

𝑖=1

∞

∑

𝑠=𝑛+𝑖𝜏

(𝑅
𝑠
𝐻
𝑠
+

∞

∑

𝑡=𝑠

𝑃
𝑡
𝐹
𝑡
)

≥
𝐿1 − 𝐿

2

 −


𝑧
1
− 𝑧
2

max {𝑇
1
, 𝑇
2
}

×

∞

∑

𝑖=1

∞

∑

𝑠=max{𝑇
1
,𝑇
2
}+𝑖𝜏

(𝑅
𝑠
𝐻
𝑠
+

∞

∑

𝑡=𝑠

𝑃
𝑡
𝐹
𝑡
)

≥
𝐿1 − 𝐿

2

 − max {𝜃
1
, 𝜃
2
}

𝑧
1
− 𝑧
2

,

(31)

which yields that


𝑧
1
− 𝑧
2

≥

𝐿1 − 𝐿
2



1 + max {𝜃
1
, 𝜃
2
}

> 0, (32)

that is, 𝑧1 ̸= 𝑧
2. This completes the proof.

Theorem 4. Assume that there exist two constants 𝑀 and 𝑁

with 𝑀 > 𝑁 > 0 and four nonnegative sequences {𝑃
𝑛
}
𝑛∈N
𝑛0

,
{𝑄
𝑛
}
𝑛∈N
𝑛0

, {𝑅
𝑛
}
𝑛∈N
𝑛0

, and {𝑊
𝑛
}
𝑛∈N
𝑛0

satisfying (11), (12),

lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

max {𝑅
𝑠
𝐻
𝑠
,𝑊
𝑠
} = 0, (33)

lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

max {𝑃
𝑡
𝐹
𝑡
, 𝑄
𝑡
,
𝑏𝑡

} = 0, (34)

𝑎
𝑛

= 1 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦. (35)
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Then
(a) for any 𝐿 ∈ (𝑁,𝑀), there exist 𝜃 ∈ (0, 1) and 𝑇 ≥ 𝑛

0
+

𝜏 + 𝛽 such that for each 𝑥
0
= {𝑥
0𝑛

}
𝑛∈N
𝛽

∈ 𝐴(𝑁,𝑀), the Mann
iterative sequence with errors {𝑥

𝑚
}
𝑚∈N
0

= {𝑥
𝑚𝑛

}
(𝑚,𝑛)∈N

0
×N
𝛽

generated by the scheme

𝑥
𝑚+1𝑛

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(1 − 𝛼
𝑚

− 𝛽
𝑚
) 𝑥
𝑚𝑛

+𝛼
𝑚

{𝑛𝐿

+

∞

∑

𝑖=1

𝑛+2𝑖𝜏−1

∑

𝑠=𝑛+(2𝑖−1)𝜏

[ℎ (𝑠, 𝑥
𝑚ℎ
1𝑠

, 𝑥
𝑚ℎ
2𝑠

, . . . , 𝑥
𝑚ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

(𝑓 (𝑡, 𝑥
𝑚𝑓
1𝑡

, 𝑥
𝑚𝑓
2𝑡

, . . . ,

𝑥
𝑚𝑓
𝑘𝑡

) − 𝑏
𝑡
) ]}

+𝛽
𝑚
𝛾
𝑚𝑛

, 𝑛 ≥ 𝑇, 𝑚 ≥ 0,

(1 − 𝛼
𝑚

− 𝛽
𝑚
) 𝑥
𝑚𝑇

+𝛼
𝑚

{𝑇𝐿

+

∞

∑

𝑖=1

𝑇+2𝑖𝜏−1

∑

𝑠=𝑇+(2𝑖−1)𝜏

[ℎ (𝑠, 𝑥
𝑚ℎ
1𝑠

, 𝑥
𝑚ℎ
2𝑠

, . . . , 𝑥
𝑚ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

(𝑓 (𝑡, 𝑥
𝑚𝑓
1𝑡

, 𝑥
𝑚𝑓
2𝑡

, . . . ,

𝑥
𝑚𝑓
𝑘𝑡

) − 𝑏
𝑡
) ]}

+𝛽
𝑚
𝛾
𝑚𝑇

, 𝛽 ≤ 𝑛 < 𝑇, 𝑚 ≥ 0

(36)

converges to an unbounded positive solution 𝑥 ∈ 𝐴(𝑁,𝑀)

of (6) and has the error estimate (17), where {𝛾
𝑚
}
𝑚∈N
0

=

{𝛾
𝑚𝑛

}
(𝑚,𝑛)∈N

0
×N
𝛽

is an arbitrary sequence in 𝐴(𝑁,𝑀), and
{𝛼
𝑚
}
𝑚∈N
0

and {𝛽
𝑚
}
𝑚∈N
0

are any sequences in [0, 1] satisfying
(18);

(b) equation (6) possesses uncountably many unbounded
positive solutions in 𝐴(𝑁,𝑀).

Proof. Let 𝐿 ∈ (𝑁,𝑀). It follows from (33)∼(35) that there
exist 𝜃 ∈ (0, 1) and 𝑇 ≥ 𝑛

0
+ 𝜏 + 𝛽 satisfying

𝜃 =
1

𝑇

∞

∑

𝑠=𝑇

(𝑅
𝑠
𝐻
𝑠
+

∞

∑

𝑡=𝑠

𝑃
𝑡
𝐹
𝑡
) , (37)

1

𝑇

∞

∑

𝑠=𝑇

(𝑊
𝑠
+

∞

∑

𝑡=𝑠

(𝑄
𝑡
+

𝑏𝑡
)) < min {𝑀 − 𝐿, 𝐿 − 𝑁} ,

(38)

𝑎
𝑛

= 1, ∀𝑛 ≥ 𝑇. (39)

Define a mapping 𝑆
𝐿

: 𝐴(𝑁,𝑀) → 𝑙
∞

𝛽
by

𝑆
𝐿
𝑥
𝑛

=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑛𝐿

+

∞

∑

𝑖=1

𝑛+2𝑖𝜏−1

∑

𝑠=𝑛+(2𝑖−1)𝜏

{ℎ (𝑠, 𝑥
ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

[𝑓 (𝑡, 𝑥
𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

)−𝑏
𝑡
]} ,

𝑛 ≥ 𝑇,

𝑆
𝐿
𝑥
𝑇
, 𝛽 ≤ 𝑛 < 𝑇

(40)

for each 𝑥 = {𝑥
𝑛
}
𝑛∈N
𝛽

∈ 𝐴(𝑁,𝑀). Using (11), (12), (37), (38),
and (40), we get that for each 𝑥 = {𝑥

𝑛
}
𝑛∈N
𝛽

, 𝑦 = {𝑦
𝑛
}
𝑛∈N
𝛽

∈

𝐴(𝑁,𝑀) and 𝑛 ≥ 𝑇



𝑆
𝐿
𝑥
𝑛

𝑛
−

𝑆
𝐿
𝑦
𝑛

𝑛



≤
1

𝑛

∞

∑

𝑖=1

𝑛+2𝑖𝜏−1

∑

𝑠=𝑛+(2𝑖−1)𝜏

[

ℎ (𝑠, 𝑥

ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)

− ℎ (𝑠, 𝑦
ℎ
1𝑠

, 𝑦
ℎ
2𝑠

, . . . , 𝑦
ℎ
𝑘𝑠

)


+

∞

∑

𝑡=𝑠


𝑓 (𝑡, 𝑥

𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

)

− 𝑓 (𝑡, 𝑦
𝑓
1𝑡

, 𝑦
𝑓
2𝑡

, . . . , 𝑦
𝑓
𝑘𝑡

)

]

≤

𝑥 − 𝑦


𝑛

∞

∑

𝑖=1

𝑛+2𝑖𝜏−1

∑

𝑠=𝑛+(2𝑖−1)𝜏

(𝑅
𝑠
𝐻
𝑠
+

∞

∑

𝑡=𝑠

𝑃
𝑡
𝐹
𝑡
)

≤

𝑥 − 𝑦


𝑇

∞

∑

𝑠=𝑇

(𝑅
𝑠
𝐻
𝑠
+

∞

∑

𝑡=𝑠

𝑃
𝑡
𝐹
𝑡
)

= 𝜃
𝑥 − 𝑦

 ,



𝑆
𝐿
𝑥
𝑛

𝑛
− 𝐿



≤
1

𝑛

×

∞

∑

𝑖=1

𝑛+2𝑖𝜏−1

∑

𝑠=𝑛+(2𝑖−1)𝜏

{

ℎ (𝑠, 𝑥

ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)


+

∞

∑

𝑡=𝑠

[

𝑓 (𝑡, 𝑥

𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

)

+

𝑏𝑡
]}

≤
1

𝑇

∞

∑

𝑖=𝑇

[𝑊
𝑠
+

∞

∑

𝑡=𝑠

(𝑄
𝑡
+

𝑏𝑡
)]

< min {𝑀 − 𝐿, 𝐿 − 𝑁} ,

(41)
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which imply (24). Consequently, (24) means that 𝑆
𝐿
is a

contraction in 𝐴(𝑁,𝑀) and has a unique fixed point 𝑥 =

{𝑥
𝑛
}
𝑛∈N
𝛽

∈ 𝐴(𝑁,𝑀), which is also an unbounded positive
solution of (6) in 𝐴(𝑁,𝑀). The rest of the proof is similar
to the proof of Theorem 3 and is omitted. This completes the
proof.

Theorem 5. Assume that there exist three constants 𝑎,𝑀, and
𝑁 with (1 − 𝑎)𝑀 > 𝑁 > 0 and four nonnegative sequences
{𝑃
𝑛
}
𝑛∈N
𝑛0

, {𝑄
𝑛
}
𝑛∈N
𝑛0

, {𝑅
𝑛
}
𝑛∈N
𝑛0

, and {𝑊
𝑛
}
𝑛∈N
𝑛0

satisfying (11),
(12), (33), (34) and

0 ≤ 𝑎
𝑛

≤ 𝑎 < 1 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦. (42)

Then
(a) for any 𝐿 ∈ (𝑎𝑀 + 𝑁,𝑀), there exist 𝜃 ∈ (0, 1)

and 𝑇 ≥ 𝑛
0

+ 𝜏 + 𝛽 such that for any 𝑥
0

= {𝑥
0𝑛

}
𝑛∈N
𝛽

∈

𝐴(𝑁,𝑀), the Mann iterative sequence with errors {𝑥
𝑚
}
𝑚∈N
0

=

{𝑥
𝑚𝑛

}
(𝑚,𝑛)∈N

0
×N
𝛽

generated by the scheme

𝑥
𝑚+1𝑛

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(1 − 𝛼
𝑚

− 𝛽
𝑚
) 𝑥
𝑚𝑛

+𝛼
𝑚

{𝑛𝐿 − 𝑎
𝑛
𝑥
𝑚𝑛−𝜏

+

∞

∑

𝑠=𝑛

[ℎ (𝑠, 𝑥
𝑚ℎ
1𝑠

, 𝑥
𝑚ℎ
2𝑠

, . . . , 𝑥
𝑚ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

(𝑓 (𝑡, 𝑥
𝑚𝑓
1𝑡

, 𝑥
𝑚𝑓
2𝑡

, . . . ,

𝑥
𝑚𝑓
𝑘𝑡

) − 𝑏
𝑡
) ]}

+𝛽
𝑚
𝛾
𝑚𝑛

, 𝑛 ≥ 𝑇, 𝑚 ≥ 0,

(1 − 𝛼
𝑚

− 𝛽
𝑚
) 𝑥
𝑚𝑇

+𝛼
𝑚

{𝑇𝐿 − 𝑎
𝑇
𝑥
𝑚𝑇−𝜏

+

∞

∑

𝑠=𝑇

[ℎ (𝑠, 𝑥
𝑚ℎ
1𝑠

, 𝑥
𝑚ℎ
2𝑠

, . . . , 𝑥
𝑚ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

(𝑓 (𝑡, 𝑥
𝑚𝑓
1𝑡

, 𝑥
𝑚𝑓
2𝑡

, . . . ,

𝑥
𝑚𝑓
𝑘𝑡

) − 𝑏
𝑡
) ]}

+𝛽
𝑚
𝛾
𝑚𝑇

, 𝛽 ≤ 𝑛 < 𝑇, 𝑚 ≥ 0

(43)

converges to an unbounded positive solution 𝑥 ∈ 𝐴(𝑁,𝑀)

of (6) and has the error estimate (17), where {𝛾
𝑚
}
𝑚∈N
0

=

{𝛾
𝑚𝑛

}
(𝑚,𝑛)∈N

0
×N
𝛽

is an arbitrary sequence in 𝐴(𝑁,𝑀) and
{𝛼
𝑚
}
𝑚∈N
0

and {𝛽
𝑚
}
𝑚∈N
0

are any sequences in [0, 1] satisfying
(18);

(b) equation (6) possesses uncountably many unbounded
positive solutions in 𝐴(𝑁,𝑀).

Proof. Put 𝐿 ∈ (𝑎𝑀 + 𝑁,𝑀). It follows from (33), (34), and
(42) that there exist 𝜃 ∈ (0, 1) and 𝑇 ≥ 𝑛

0
+ 𝜏 + 𝛽 satisfying

𝜃 = 𝑎 +
1

𝑇

∞

∑

𝑠=𝑇

(𝑅
𝑠
𝐻
𝑠
+

∞

∑

𝑡=𝑠

𝑃
𝑡
𝐹
𝑡
) ,

1

𝑇

∞

∑

𝑠=𝑇

[𝑊
𝑠
+

∞

∑

𝑡=𝑠

(𝑄
𝑡
+

𝑏𝑡
)] < min {𝑀 − 𝐿, 𝐿 − 𝑎𝑀 − 𝑁} ,

0 ≤ 𝑎
𝑛

≤ 𝑎 < 1, ∀𝑛 ≥ 𝑇.

(44)

Define a mapping 𝑆
𝐿

: 𝐴(𝑁,𝑀) → 𝑙
∞

𝛽
by

𝑆
𝐿
𝑥
𝑛

=

{{{{{{{{{

{{{{{{{{{

{

𝑛𝐿 − 𝑎
𝑛
𝑥
𝑛−𝜏

+

∞

∑

𝑠=𝑛

{ℎ (𝑠, 𝑥
ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)

−

∞

∑

𝑡=𝑠

[𝑓 (𝑡, 𝑥
𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

)−𝑏
𝑡
]} , 𝑛≥𝑇,

𝑆
𝐿
𝑥
𝑇
, 𝛽≤𝑛<𝑇,

(45)

for each 𝑥 = {𝑥
𝑛
}
𝑛∈N
𝛽

∈ 𝐴(𝑁,𝑀). In view of (11), (12), and
(44) and (45), we obtain that for each 𝑥 = {𝑥

𝑛
}
𝑛∈N
𝛽

, 𝑦 =

{𝑦
𝑛
}
𝑛∈N
𝛽

∈ 𝐴(𝑁,𝑀) and 𝑛 ≥ 𝑇,



𝑆
𝐿
𝑥
𝑛

𝑛
−

𝑆
𝐿
𝑦
𝑛

𝑛



≤ 𝑎
𝑛



𝑥
𝑛−𝜏

− 𝑦
𝑛−𝜏

𝑛



+
1

𝑛

∞

∑

𝑠=𝑛

[

ℎ (𝑠, 𝑥

ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)

− ℎ (𝑠, 𝑦
ℎ
1𝑠

, 𝑦
ℎ
2𝑠

, . . . , 𝑦
ℎ
𝑘𝑠

)


+

∞

∑

𝑡=𝑠


𝑓 (𝑡, 𝑥

𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

)

− 𝑓 (𝑡, 𝑦
𝑓
1𝑡

, 𝑦
𝑓
2𝑡

, . . . , 𝑦
𝑓
𝑘𝑡

)

]

≤ [𝑎 +
1

𝑇

∞

∑

𝑠=𝑇

(𝑅
𝑠
𝐻
𝑠
+

∞

∑

𝑡=𝑠

𝑃
𝑡
𝐹
𝑡
)]

𝑥 − 𝑦


= 𝜃
𝑥 − 𝑦

 ,
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𝑆
𝐿
𝑥
𝑛

𝑛
≤ 𝐿

+
1

𝑛

∞

∑

𝑠=𝑛

{

ℎ (𝑠, 𝑥

ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)


+

∞

∑

𝑡=𝑠

[

𝑓 (𝑡, 𝑥

𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

)

+

𝑏𝑡
]}

≤ 𝐿 +
1

𝑇

∞

∑

𝑠=𝑇

[𝑊
𝑠
+

∞

∑

𝑡=𝑠

(𝑄
𝑡
+

𝑏𝑡
)]

< 𝐿 + min {𝑀 − 𝐿, 𝐿 − 𝑎𝑀 − 𝑁}

≤ 𝑀,

𝑆
𝐿
𝑥
𝑛

𝑛
≥ 𝐿 − 𝑎𝑀

−
1

𝑛

∞

∑

𝑠=𝑛

{

ℎ (𝑠, 𝑥

ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)


+

∞

∑

𝑡=𝑠

[

𝑓 (𝑡, 𝑥

𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

)

+

𝑏𝑡
]}

≥ 𝐿 − 𝑎𝑀 −
1

𝑇

∞

∑

𝑠=𝑇

[𝑊
𝑠
+

∞

∑

𝑡=𝑠

(𝑄
𝑡
+

𝑏𝑡
)]

> 𝐿 − 𝑎𝑀 − min {𝑀 − 𝐿, 𝐿 − 𝑎𝑀 − 𝑁}

≥ 𝑁,

(46)

which give (24), in turn, which implies that 𝑆
𝐿
is a contraction

in𝐴(𝑁,𝑀) and possesses a unique fixed point𝑥 = {𝑥
𝑛
}
𝑛∈N
𝛽

∈

𝐴(𝑁,𝑀), which is an unbounded positive solution of (6) in
𝐴(𝑁,𝑀). The rest of the proof is similar to that ofTheorem 3
and is omitted. This completes the proof.

Theorem 6. Assume that there exist constants 𝑎, 𝑀, and 𝑁

with (1 + 𝑎)𝑀 > 𝑁 > 0 and four nonnegative sequences
{𝑃
𝑛
}
𝑛∈N
𝑛0

, {𝑄
𝑛
}
𝑛∈N
𝑛0

, {𝑅
𝑛
}
𝑛∈N
𝑛0

, and {𝑊
𝑛
}
𝑛∈N
𝑛0

satisfying (11),
(12), (33), (34), and

−1 < 𝑎 ≤ 𝑎
𝑛

≤ 0 𝑒𝑣𝑒𝑛𝑡𝑢𝑎𝑙𝑙𝑦. (47)

Then
(a) for any 𝐿 ∈ (𝑁, (1 + 𝑎)𝑀), there exist 𝜃 ∈ (0, 1) and

𝑇 ≥ 𝑛
0
+ 𝜏 + 𝛽 such that for any 𝑥

0
= {𝑥
0𝑛

}
𝑛∈N
𝛽

∈ 𝐴(𝑁,𝑀)

and the Mann iterative sequence with errors {𝑥
𝑚
}
𝑚∈N
0

=

{𝑥
𝑚𝑛

}
(𝑚,𝑛)∈N

0
×N
𝛽

generated by (43) converges to an unbounded
positive solution 𝑥 ∈ 𝐴(𝑁,𝑀) of (6) and has the error
estimate (17), where {𝛾

𝑚
}
𝑚∈N
0

= {𝛾
𝑚𝑛

}
(𝑚,𝑛)∈N

0
×N
𝛽

is an
arbitrary sequence in 𝐴(𝑁,𝑀), {𝛼

𝑚
}
𝑚∈N
0

and {𝛽
𝑚
}
𝑚∈N
0

are
any sequences in [0, 1] satisfying (18);

(b) equation (6) possesses uncountably many unbounded
positive solutions in 𝐴(𝑁,𝑀).

Proof. Put 𝐿 ∈ (𝑁, (1 + 𝑎)𝑀). It follows from (33), (34), and
(47) that there exist 𝜃 ∈ (0, 1) and 𝑇 ≥ 𝑛

0
+ 𝜏 + 𝛽 satisfying

𝜃 = −𝑎 +
1

𝑇

∞

∑

𝑠=𝑇

(𝑅
𝑠
𝐻
𝑠
+

∞

∑

𝑡=𝑠

𝑃
𝑡
𝐹
𝑡
) , (48)

1

𝑇

∞

∑

𝑠=𝑇

[𝑊
𝑠
+

∞

∑

𝑡=𝑠

(𝑄
𝑡
+

𝑏𝑡
)] < min {(1 + 𝑎)𝑀 − 𝐿, 𝐿 − 𝑁} ,

(49)

−1 < 𝑎 ≤ 𝑎
𝑛

≤ 0, ∀𝑛 ≥ 𝑇. (50)

Define a mapping 𝑆
𝐿

: 𝐴(𝑁,𝑀) → 𝑙
∞

𝛽
by (45). By virtue of

(12), (45), (48), and (50), we easily verify that

𝑆
𝐿
𝑥
𝑛

𝑛
≤ 𝐿 − 𝑎𝑀

+
1

𝑛

∞

∑

𝑠=𝑛

{

ℎ (𝑠, 𝑥

ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)


+

∞

∑

𝑡=𝑠

[

𝑓 (𝑡, 𝑥

𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

)

+

𝑏𝑡
]}

≤ 𝐿 − 𝑎𝑀 +
1

𝑇

∞

∑

𝑠=𝑇

[𝑊
𝑠
+

∞

∑

𝑡=𝑠

(𝑄
𝑡
+

𝑏𝑡
)]

< 𝐿 + min {(1 + 𝑎)𝑀 − 𝐿, 𝐿 − 𝑁}

≤ 𝑀,

𝑆
𝐿
𝑥
𝑛

𝑛
≥ 𝐿

−
1

𝑛

𝑛−1

∑

𝑠=𝑇

{

ℎ (𝑠, 𝑥

ℎ
1𝑠

, 𝑥
ℎ
2𝑠

, . . . , 𝑥
ℎ
𝑘𝑠

)


+

∞

∑

𝑡=𝑠

[

𝑓 (𝑡, 𝑥

𝑓
1𝑡

, 𝑥
𝑓
2𝑡

, . . . , 𝑥
𝑓
𝑘𝑡

)

+
𝑏𝑡

]}

≥ 𝐿 −
1

𝑇

∞

∑

𝑠=𝑇

[𝑊
𝑠
+

∞

∑

𝑡=𝑠

(𝑄
𝑡
+

𝑏𝑡
)]

> 𝐿 − min {(1 + 𝑎)𝑀 − 𝐿, 𝐿 − 𝑁}

≥ 𝑁,

(51)

which yield that 𝑆
𝐿
(𝐴(𝑁,𝑀)) ⊆ 𝐴(𝑁,𝑀). The rest of the

proof is similar to that of Theorem 5 and is omitted. This
completes the proof.

Remark 7. Theorems 3∼6 extend and improve Theorem 1 in
[5].

3. Examples

In this section we suggest four examples to explain the results
presented in Section 2. Note that Theorem 1 in [5] is useless
for all these examples.
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Example 8. Consider the second-order nonlinear neutral
delay difference equation:

Δ
2
(𝑥
𝑛
− 𝑥
𝑛−𝜏

) + Δ(
sin2𝑥
𝑛−2

𝑛4
) +

1

(𝑛6 + 𝑛3 + 2) (1 +
𝑥𝑛2



3

)

=
𝑛
2
− 3𝑛 + 1

𝑛7 + 𝑛4 + 1
, 𝑛 ≥ 3,

(52)

where 𝜏 ∈ N is fixed. Let 𝑛
0

= 3, 𝑘 = 1, 𝛽 = min{3 − 𝜏, 1}, 𝑀
and 𝑁 two positive constants with 𝑀 > 𝑁 and

𝑎
𝑛

= −1, 𝑏
𝑛

=
𝑛
2
− 3𝑛 + 1

𝑛7 + 𝑛4 + 1
,

𝑓 (𝑛, 𝑢) =
1

(𝑛6 + 𝑛3 + 2) (1 + |𝑢|
3
)

,

ℎ (𝑛, 𝑢) =
sin2𝑢
𝑛4

, 𝐹
𝑛

= 𝑓
1𝑛

= 𝑛
2
, 𝐻

𝑛
= ℎ
1𝑛

= 𝑛 − 2,

𝑃
𝑛

=
3𝑀
2

(1 + 𝑁3)
2

𝑛6
, 𝑄

𝑛
=

1

𝑛6
, 𝑅

𝑛
=

2

𝑛4
,

𝑊
𝑛

=
1

𝑛4
, ∀ (𝑛, 𝑢) ∈ N

𝑛
0

× R.

(53)

It is easy to see that (11), (12), and (15) are satisfied. Note that
∞

∑

𝑠=𝑛

𝑠max {𝑅
𝑠
𝐻
𝑠
,𝑊
𝑠
}

=

∞

∑

𝑠=𝑛

𝑠max {
2 (𝑠 − 2)

𝑠4
,
1

𝑠4
}

=

∞

∑

𝑠=𝑛

2 (𝑠 − 2)

𝑠3
< +∞, ∀𝑛 ∈ N

𝑛
0

,

(54)

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

𝑠max {𝑃
𝑡
𝐹
𝑡
, 𝑄
𝑡
,
𝑏𝑡

}

=

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

𝑠max{
3𝑀
2

(1 + 𝑁3)
2

𝑡4
,
1

𝑡6
,


𝑡
2
− 3𝑡 + 1



𝑡7 + 𝑡4 + 1
}

≤ max{1,
3𝑀
2

(1 + 𝑁3)
2
}

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

𝑠

𝑡4

≤ max{1,
3𝑀
2

(1 + 𝑁3)
2
}

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

1

𝑡3

= max{1,
3𝑀
2

(1 + 𝑁3)
2
}

∞

∑

𝑡=𝑛

𝑡 − 𝑛 + 1

𝑡3

≤ max{1,
3𝑀
2

(1 + 𝑁3)
2
}

∞

∑

𝑡=𝑛

1

𝑡2
< +∞, ∀𝑛 ∈ N

𝑛
0

,

(55)

which together with Lemma 2 yield that (13) and (14) hold.
It follows from Theorem 3 that (52) possesses uncount-
ably many unbounded positive solutions in 𝐴(𝑁,𝑀). On
the other hand, for any 𝐿 ∈ (𝑁,𝑀), there exist 𝜃 ∈

(0, 1) and 𝑇 ≥ 𝑛
0

+ 𝜏 + 𝛽 such that for each 𝑥
0

=

{𝑥
0𝑛

}
𝑛∈N
𝛽

∈ 𝐴(𝑁,𝑀), the Mann iterative sequence with
errors {𝑥

𝑚
}
𝑚∈N
0

= {𝑥
𝑚𝑛

}
(𝑚,𝑛)∈N

0
×N
𝛽

generated by (16) con-
verges to an unbounded positive solution 𝑥 ∈ 𝐴(𝑁,𝑀)

of (52) and has the error estimate (17), where {𝛾
𝑚
}
𝑚∈N
0

=

{𝛾
𝑚𝑛

}
(𝑚,𝑛)∈N

0
×N
𝛽

is an arbitrary sequence in 𝐴(𝑁,𝑀) and
{𝛼
𝑚
}
𝑚∈N
0

and {𝛽
𝑚
}
𝑚∈N
0

are any sequences in [0, 1] satisfying
(18).

Example 9. Consider the second-order nonlinear neutral
delay difference equation:

Δ
2
(𝑥
𝑛
+ 𝑥
𝑛−𝜏

) + Δ(
sin2𝑥
3𝑛
3
+1

𝑛3 (𝑛2 + 2) (1 + 𝑥
4

2𝑛
2
−3

)

)

+
(−1)
𝑛
𝑛
3
(𝑥
𝑛
2
−𝑛−1

+ 𝑥
(𝑛+1)(𝑛+2)

)

(𝑛11 + 𝑛5 + 1) (1 + 𝑥
2

𝑛
2
−𝑛−1

+ 𝑥
2

(𝑛+1)(𝑛+2)
)

=
𝑛
2
− ln 𝑛

𝑛6 + 𝑛5 + 1
, 𝑛 ≥ 5,

(56)

where 𝜏 ∈ N is fixed. Let 𝑛
0

= 5, 𝑘 = 2, 𝛽 = 5 − 𝜏, 𝑀 and 𝑁

two positive constants with 𝑀 > 𝑁 and

𝑎
𝑛

= 1, 𝑏
𝑛

=
𝑛
2
− ln 𝑛

𝑛6 + 𝑛5 + 1
,

𝑓 (𝑛, 𝑢, 𝑣) =
(−1)
𝑛
𝑛
3
(𝑢 + 𝑣)

(𝑛11 + 𝑛5 + 1) (1 + 𝑢2 + 𝑣2)
,

ℎ (𝑛, 𝑢, 𝑣) =
sin2𝑣

𝑛3 (𝑛2 + 2) (1 + 𝑢4)
,

𝑓
1𝑛

= 𝑛
2
− 𝑛 − 1, 𝐹

𝑛
= 𝑓
2𝑛

= (𝑛 + 1) (𝑛 + 2) ,

ℎ
1𝑛

= 2𝑛
2
− 3, 𝐻

𝑛
= ℎ
2𝑛

= 3𝑛
3
+ 1,

𝑃
𝑛
=𝑄
𝑛
=

4

𝑛8
, 𝑅

𝑛
=𝑊
𝑛
=

10

𝑛5
, ∀ (𝑛, 𝑢, 𝑣)∈N

𝑛
0

×R
2
.

(57)
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It is clear that (11), (12), and (35) are fulfilled. Note that

lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

max {𝑅
𝑠
𝐻
𝑠
,𝑊
𝑠
}

= lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

max{

10 (3𝑠
3
+ 1)

𝑠5
,
10

𝑠5
} = 0,

1

𝑛

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

max {𝑃
𝑡
𝐹
𝑡
, 𝑄
𝑡
,
𝑏𝑡

}

=
1

𝑛

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

max{
4 (𝑡 + 1) (𝑡 + 2)

𝑡8
,
4

𝑡8
,

𝑡
2
− ln 𝑡

𝑡6 + 𝑡5 + 1
}

≤
4

𝑛

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

1

𝑡4
≤

4

𝑛

∞

∑

𝑡=𝑛

1

𝑡3
→ 0 as 𝑛 → ∞,

(58)

which yields that

lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

max {𝑃
𝑡
𝐹
𝑡
, 𝑄
𝑡
,
𝑏𝑡

} = 0. (59)

Thus, Theorem 4 guarantees that (56) possesses uncountably
unbounded positive solutions in 𝐴(𝑁,𝑀). On the other
hand, for any 𝐿 ∈ (𝑁,𝑀), there exist 𝜃 ∈ (0, 1) and
𝑇 ≥ 𝜏 + 𝑛

0
+ 𝛽 such that the Mann iterative sequence with

error {𝑥
𝑚
}
𝑚∈N
0

generated by (36) converges to an unbounded
positive solution 𝑥 ∈ 𝐴(𝑁,𝑀) of (56) and has the error
estimate (17), where {𝛾

𝑚
}
𝑚∈N
0

is an arbitrary sequence in
𝐴(𝑁,𝑀) and {𝛼

𝑚
}
𝑚∈N
0

and {𝛽
𝑚
}
𝑚∈N
0

are any sequences in
[0, 1] satisfying (18).

Example 10. Consider the second-order nonlinear neutral
delay difference equation:

Δ
2
(𝑥
𝑛
+

3𝑛
3
− 1

4𝑛3 + 2
𝑥
𝑛−𝜏

)

+ Δ(

sin (ln (1 + 𝑛
2 𝑥3𝑛2−1

))

𝑛9 − √𝑛 − 4

−
𝑛
2
− (−1)

𝑛(𝑛−1)/2

(𝑛7 + 3𝑛5 − 1) 2
|𝑥
4𝑛
3
+1
|
)

+
(−1)
𝑛

𝑛6 (1 + 𝑥
2

𝑛−2
)

−
1

(𝑛5 + 1)√1 +
𝑥𝑛+4



=
(−1)
𝑛
𝑛
3
− 1

𝑛8ln3𝑛 + 1
, 𝑛 ≥ 7,

(60)

where 𝜏 ∈ N is fixed. Let 𝑛
0
= 7, 𝑘 = 2, 𝑎 = 3/4, 𝛽 = min{7 −

𝜏, 5}, 𝑀 and 𝑁 two positive constants with 𝑀 > 4𝑁 and

𝑎
𝑛

=
3𝑛
3
− 1

4𝑛3 + 2
, 𝑏

𝑛
=

(−1)
𝑛
𝑛
3
− 1

𝑛8ln3𝑛 + 1
,

𝑓 (𝑛, 𝑢, 𝑣) =
(−1)
𝑛

𝑛6 (1 + 𝑢2)
−

1

(𝑛5 + 1)√1 + |𝑣|

,

ℎ (𝑛, 𝑢, 𝑣) =

sin (ln (1 + 𝑛
2
|𝑢|))

𝑛9 − √𝑛 − 4
−

𝑛
2
− (−1)

𝑛(𝑛−1)/2

(𝑛7 + 3𝑛5 − 1) 2|𝑣|
,

𝑓
1𝑛

= 𝑛 − 2,

𝐹
𝑛

= 𝑓
2𝑛

= 𝑛 + 4, ℎ
1𝑛

= 3𝑛
2
− 1,

𝐻
𝑛

= ℎ
2𝑛

= 4𝑛
3
+ 1,

𝑃
𝑛

= 𝑄
𝑛

=
2

𝑛4
, 𝑅

𝑛
= 𝑊
𝑛

=
2

𝑛5
, ∀ (𝑛, 𝑢, 𝑣) ∈ N

𝑛
0

× R
2
.

(61)

It is not difficult to verify that (11), (12), and (42) are fulfilled.
Note that

lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

max {𝑅
𝑠
𝐻
𝑠
,𝑊
𝑠
}

= lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

max{

2 (4𝑠
3
+ 1)

𝑠5
,
2

𝑠5
}

= lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

2 (4𝑠
3
+ 1)

𝑠5
= 0,

lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

max {𝑃
𝑡
𝐹
𝑡
, 𝑄
𝑡
,
𝑏𝑡

}

= lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

max{
2𝑡 + 8

𝑡4
,
2

𝑡4
,


(−1)
𝑡
𝑡
3
− 1



𝑡8ln3𝑡 + 1
}

= lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

2𝑡 + 8

𝑡4
= 0.

(62)

That is, (33) and (34) are satisfied. Consequently Theorem 5
implies that (60) possesses uncountably many unbounded
positive solutions in 𝐴(𝑁,𝑀). On the other hand, for any
𝐿 ∈ ((3/4)𝑀 + 𝑁,𝑀), there exist 𝜃 ∈ (0, 1) and 𝑇 ≥

𝑛
0

+ 𝜏 + 𝛽 such that the Mann iterative sequence with
error {𝑥

𝑚
}
𝑚∈N
0

generated by (43) converges to an unbounded
positive solution 𝑥 ∈ 𝐴(𝑁,𝑀) of (60) and has the error
estimate (17), where {𝛾

𝑚
}
𝑚∈N
0

is an arbitrary sequence in
𝐴(𝑁,𝑀) and {𝛼

𝑚
}
𝑚∈N
0

and {𝛽
𝑚
}
𝑚∈N
0

are any sequences in
[0, 1] satisfying (18).
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Example 11. Consider the second-order nonlinear neutral
delay difference equation:

Δ
2
(𝑥
𝑛
+

1 − 2𝑛
2

2 + 3𝑛2
𝑥
𝑛−𝜏

)

+ Δ(
𝑛
2
− 1

(𝑛5 + 2𝑛3 − 1) (1 + 𝑥
2

2𝑛−15
)
)

+

sin2 (𝑛3𝑥
5𝑛
2
−2

)

(𝑛 + 2)
8

=
(−1)
𝑛
𝑛
4
+ 𝑛
3
+ 3𝑛
2
− 1

𝑛9 + 𝑛7 + 3𝑛6 + 𝑛4 + 1
, 𝑛 ≥ 11,

(63)

where 𝜏 ∈ N is fixed. Let 𝑛
0

= 11, 𝑘 = 1, 𝑎 = −4/5, 𝛽 =

min{11−𝜏, 7},𝑀 and𝑁 two positive constants with𝑀 > 5𝑁

and

𝑎
𝑛
=

1−2𝑛
2

2+3𝑛2
, 𝑏

𝑛
=

(−1)
𝑛
𝑛
4
+𝑛
3
+3𝑛
2
−1

𝑛9+𝑛7+3𝑛6+𝑛4+1
,

𝑓 (𝑛, 𝑢) =

sin2 (𝑛3𝑢)

(𝑛 + 2)
8

,

ℎ (𝑛, 𝑢) =
𝑛
2
− 1

(𝑛5 + 2𝑛3 − 1) (1 + 𝑢2)
,

𝐹
𝑛

= 𝑓
1𝑛

= 5𝑛
2
− 2,

𝐻
𝑛
=ℎ
1𝑛

=2𝑛−15, 𝑃
𝑛
=

2

𝑛5
, 𝑄

𝑛
=

1

𝑛8
,

𝑅
𝑛

=
2

𝑛3
, 𝑊

𝑛
=

1

𝑛3
, ∀ (𝑛, 𝑢) ∈ N

𝑛
0

× R.

(64)

Obviously, (11), (12), and (50) are satisfied. Note that

lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

max {𝑅
𝑠
𝐻
𝑠
,𝑊
𝑠
}

= lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

max {
4𝑠 − 30

𝑠3
,
1

𝑠3
} = 0,

1

𝑛

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

max {𝑃
𝑡
𝐹
𝑡
, 𝑄
𝑡
,
𝑏𝑡

}

=
1

𝑛

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

max{

2 (5𝑡
2
− 2)

𝑡5
,
1

𝑡8
,


(−1)
𝑡
𝑡
4
+ 𝑡
3
+ 3𝑡
2
− 1



𝑡9 + 𝑡7 + 3𝑡6 + 𝑡4 + 1
}

≤
10

𝑛

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

1

𝑡3
→ 0 as 𝑛 → ∞,

(65)

which gives that

lim
𝑛→∞

1

𝑛

∞

∑

𝑠=𝑛

∞

∑

𝑡=𝑠

max {𝑃
𝑡
𝐹
𝑡
, 𝑄
𝑡
,
𝑏𝑡

} = 0. (66)

That is, (33) and (34) hold. Thus, Theorem 6 shows that (63)
possesses uncountablymany unbounded positive solutions in
𝐴(𝑁,𝑀). On the other hand, for any 𝐿 ∈ (𝑁,𝑀/5), there
exist 𝜃 ∈ (0, 1) and𝑇 ≥ 𝑛

0
+𝜏+𝛽 such that theMann iterative

sequence with error {𝑥
𝑚
}
𝑚∈N
0

generated by (43) converges to
an unbounded positive solution 𝑥 ∈ 𝐴(𝑁,𝑀) of (63) and
has the error estimate (17), where {𝛾

𝑚
}
𝑚∈N
0

is an arbitrary
sequence in 𝐴(𝑁,𝑀) and {𝛼

𝑚
}
𝑚∈N
0

and {𝛽
𝑚
}
𝑚∈N
0

are any
sequences in [0, 1] satisfying (18).
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