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A simple approach is formulated to predict the elastic, kinematic pile bending during harmonic or transient excitation for a circular
pile (rather than a simplified thin strip). The kinematic response of a pile embedded in two-layer soil is resolved in the frequency
domain caused by the upward propagation of shear waves from the underlying bedrock. The simplified approach is generally valid
to nonhomogeneous soil profiles, in light of the good comparison with the dynamic FEmethod and BDWF solution. It employs the
soil-displacement-influence coefficients 𝐼

𝑠
to consider the pile-soil interaction (resembling the spring constant 𝑘

𝑥
in the BDWF)

and provides conservative estimations of maximum kinematic bending moments at the soil-layer interface (with a sharper stiffness
contrast). The accuracy of the approach may be improved by incorporating the interaction of soil into the soil-displacement-
influence coefficients 𝐼

𝑠
for such cases with 𝑉

𝑏
/𝑉
𝑎
< 3.

1. Introduction

Kinematic response is one of the key issues in seismic design
of pile foundations [1–4], as the dynamic response of the pile
structure largely differs from the response at the free field soil
caused by seismic wave. In practice, the influence of inertial
loading at the pile-head level has conventionally received
sufficient attention by design engineers, but not the kinematic
seismic response [5]. The existing earthquake investigations
[6, 7] and experimental studies [8] demonstrate that at the
interface of two-layer soils with a sharp stiffness contrast
[2, 3, 9, 10], or at a pile-head with fixed constraints [11, 12],
large kinematic bending moments may be induced to inflict
damage to the pile. This problem has attracted the attention
researchers [13–15] and is highlighted in some advanced
seismic codes [16].

The kinematic response in the pile-soil system has been
analyzed by considering the effect of the passive pile using
rigorous mechanical solutions [17, 18], numerical methods
[19–25], and some simplified models [2, 3, 26–30]. Rigorous

solutions and numerical methods for the kinematic pile
bending are, however, not convenient to design purposes.
Empirical formulas are developed for evaluating the bending
moment at the pile-head or at the interface of two-layer
soils [2, 3, 11]. Among them, a Beam-on-Dynamic-Winkler-
Foundation (BDWF) formulation was used successfully in
practice, although it was confined to the harmonic excitation
at the pile head. The BDWF (or the Winkler model) is
underpinned by a frequency-dependent impedance (= 𝑘

𝑥
+

𝑖𝜔𝐶
𝑥
), in which the continuously distributed springs 𝑘

𝑥
(≅

𝛿𝐸
𝑠
) is empirically related to a dimensionless coefficient

𝛿 (used for a given pile-soil system, regardless of layers).
Accurate selection of the value 𝛿 is not critical to calculating
the pile-head deflection but is important to predicting the
kinematic bending moment and shear force [19, 31]. An
optimized 𝛿 is thus required to obtain correct kinematic
pile bending at the interface of soil layers. On the other
hand, a simplified boundary element formulation proposed
by Poulos and Davis [32] offers good estimates of bending
moment and shear force for static loading. It would be good to
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see its accuracy in predicting the kinematic seismic response
of pile, especially at the sharp stiffness contrasts between
adjacent soil layers.

In this paper, the simplified approach [32] is employed
to evaluate the kinematic pile bending during harmonic
or transient excitation, concerning piles in two-layer soil.
The pile is modeled as a circular shape rather than a thin
strip adopted previously [32], and the soil displacement is
given by the Mindlin equation with corresponding elastic
modulus. A nodal relative displacement is obtained by one-
dimensional site response and is then imposed on the pile.
The solution was compiled into a program operating in
Matlab platform. For some typical cases, a comprehensive
study on the kinematic seismic response during harmonic
or transient excitation has been carried out, and the results
are compared with available dynamic FE method and the
BDWF solutions.The study sheds new light on the kinematic
bending moment at the interface of two-layer soil and at the
pile head andmay facilitate the use of the simplified boundary
element method to predict the kinematic seismic response of
a single pile.

2. Simplified Analysis Procedure

2.1. Basic Assumptions for Pile and Soil Model. The one-
dimensional model for a floating or end-bearing single pile
embedded in a two-layer soil is shown in Figure 1. The
circle pile is assumed as linearly hysteretic beam having a
length 𝐿, a diameter 𝑑, a mass density 𝜌

𝑝
, and a bending

stiffness 𝐸
𝑝
𝐼
𝑝
. The pile is discretized into 𝑛 + 1 segments

of equal lengths ℎ, but for a length of ℎ/2 for the top and
the tip segments, respectively. Each segment is subjected to
a uniformly distributed load 𝑝

𝑖
over the semicircular area.

The pile is head restrained (fixed head) or free to rotate (free
head), and sits above a bedrock. The linearly hysteretic soil
profile is characterized by an upper-layer of thickness𝐻

𝑎
and

a shear wave velocity 𝑉
𝑎
, which is underlain by a lower layer

of thickness 𝐻
𝑏
and shear wave velocity 𝑉

𝑏
. The two layers

have damping ratios 𝛽
𝑏
and 𝛽

𝑎
, mass densities 𝜌

𝑏
and 𝜌
𝑎
and

Poisson’s ratios 𝜇
𝑎
and 𝜇

𝑏
. A shear wave propagates vertically

through the free field soil, which induces the horizontal
harmonic motion and horizontal displacements. The motion
at the bedrock surface is expressed by the amplitude of either
bedrock displacement 𝑈

𝑔
or the bedrock acceleration 𝜔2𝑈

𝑔
.

2.2. Calculation of the Horizontal Displacement of the Pile.
Kinematic response of a single pile is induced by the free-field
soil displacement shown in Figure 1. The Mindlin hypothesis
does not meet the needs of dynamic analysis. However,
the Mindlin equation is still valid for calculating elastic
displacement and stress fields caused by a dynamic loading,
provided that the characteristic wavelength in the soil is
sufficiently long in comparison with the horizontal distance
across the zone of major influence [28, 33], as is noted
for nonhomogeneous soil by Poulos and Davis [32]. In the
current, simplified BEM formulation, the soil displacement
u
𝑠
(due to the pile-soil interface pressure) is gained using

h
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Figure 1: Analysismodel of a pile in a two layer soil profile subjected
to vertically-propagating seismic SH waves.

the Mindlin solution [34], which is then added together with
free-field soil displacement

u
𝑠
= I
𝑠
p
𝑖
+ u
𝑒
, (1)

where I
𝑠
is the soil-displacement-influence coefficient; p

𝑖

is the vector of soil-pile interface pressure over the semi-
circular area; and u

𝑒
is the free-field soil displacement

estimated using one-dimensional site response for vertically
propagating shear waves through an unbounded medium
[35].

The dynamic equilibrium under steady-state conditions
for the pile may be written in the following form using the
finite-difference method [28]:

𝐸
𝑝
𝐼
𝑝

ℎ4
Du
𝑝
+Mü

𝑝
+ C
𝑥
(u̇
𝑝
− u̇
𝑒
) = −𝑑p

𝑝
, (2)

where u
𝑝
is the horizontal displacement of the pile, with the

cap “⋅” indicating differentiation with time; p
𝑝
is the vector of

soil-pile interface pressure;D is the matrix of finite difference
coefficients; M is the pile mass; and C

𝑥
is the soil radiation

damping. Here, the soil damping is the same as that of the
simplified boundary element model [28], and

𝐶
𝑥
= 5𝑑𝜌

𝑠
𝑉
𝑠
, (3)

where𝑉
𝑠
is the shear wave velocity of soil and 𝜌

𝑠
is the density

of soil.
The displacement compatibility between the pile and the

adjacent soil offers u
𝑠
= u
𝑝
. Taking the displacement as u

𝑝

and substituting (1) into (2) result in the following:

I
𝑠

𝑑
[Mü
𝑝
+ C
𝑥
u̇
𝑝
+

𝐸
𝑝
𝐼
𝑝

ℎ4
Du
𝑝
] + u
𝑝
= u
𝑒
+
I
𝑠

𝑑
C
𝑥
u̇
𝑒
. (4)

Equation (4), together with the pile-top and -bottom bound-
ary conditions, leads to 𝑛 + 5 unknown displacements, which
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involve the pile nodes from 1 to 𝑛 + 1 (see Figure 1) and
4 additional nodes at the pile top and tip. Equation (4) is
resolved in either frequency or time domain and may attain
the required accuracy using 21 segments of the pile [32].

2.3. Soil-Displacement-Influence Coefficients. Poulos and
Davis [32] obtained soil-displacement-influence coefficients
I
𝑠
by integrating the Mindlin equation over a rectangular

plane and taking the pile as a thin rectangular vertical strip.
Ideally, a circular pile (rather than a thin strip) should
be used. In elastic, semi-infinite space, the force 𝑃 in the
horizontal direction at a depth 𝑐 induces a displacement
component 𝑢

𝑥
, which at any other point (𝑥, 𝑦, 𝑧) is given by

𝑢
𝑥
=
𝑃

𝐺
𝑓 (𝜇
𝑠
, 𝑥, 𝑦, 𝑧, 𝑐) , (5)

where 𝐺 is shear modulus of soil and 𝜇
𝑠
is the Poisson ratio.

The coefficients of the proposed method are obtained in
two steps: firstly, (5) is integrated over a rectangular area from
a depth 𝑐 of 𝑐

1
to 𝑐
2
and across the pile width from−𝑑/2 to 𝑑/2

in Figure 2 which offers

𝑢
𝑥
(𝜇
𝑠
, 𝑥, 𝑦, 𝑧, 𝑐, 𝑠) =

𝑃

𝐺
∫

𝑑/2

−𝑑/2

∫

𝑐
1

𝑐
2

𝑓 (𝜇
𝑠
, 𝑥, 𝑦 − 𝑠, 𝑧, 𝑐) 𝑑𝑠. (6)

Secondly, (6) is reexpressed in a cylindrical coordinate,
which is then integrated over the semi-circular pile surface
with respect to the angle 𝜃 (see Figure 2) to gain the horizon-
tal component of the displacement. The soil-displacement-
influence coefficients, taking as weighted average of the
integrated horizontal displacements, are deduced as

𝐼
𝑠
=
𝑃

𝐺
∫

𝜋/2

0

∫

𝑑/2

−𝑑/2

∫

𝑐1

𝑐2

𝑓(𝜇
𝑠
,
𝑑

2
cos 𝜃, 𝑑

2
sin 𝜃 − 𝑠, 𝑧, 𝑐) cos 𝜃 𝑑𝑐 𝑑𝑠 𝑑𝜃.

(7)

Equation (7) is solved by numerical integration using an
adaptive Lobatto rule [36].

2.4. Harmonic Response in the Frequency Domain. Wave
produces horizontal harmonic motion in the free field, as
shown in Figure 1. This is described by 𝑢(𝑡) = 𝑈

𝑔
𝑒
𝑖𝜔𝑡, and

the associated free-field horizontal displacement is given by
𝑢(𝑡) = 𝑈

𝑒
𝑒
𝑖𝜔𝑡. One-dimensional site response analysis can be

formulated as

𝜌
𝜕
2

𝑢

𝜕𝑡2
= 𝐺

𝜕
2

𝑢

𝜕𝑧2
+ 𝜂

𝜕
3

𝑢

𝜕𝑧2𝜕𝑡
, (8)

where 𝜌 is the mass density, 𝜂 is viscosity, and 𝑢(𝑧, 𝑡) is
displacement. Equation (8) is resolved in frequency domain
analysis [37, 38], allowing the nodal relative displacement to
be obtained.

The current dynamic analysis employs time domain anal-
ysis and frequency domain analysis [21, 35, 39]. Frequency
domain methods are widely used to estimate the dynamic
impendences of the pile head. In the strong seismic motions,
time domain method (involving the Newton-Raphson iter-
ation and the Newmark method [40]) is used to obtain the

nonlinear results. Equation (4) was resolved in time domain
[28]. In contrast, to facilitate comparison with the rigorous
FE method and BDWF model, (4) is resolved herein in the
frequency domain by the following form:

[E + I
𝑠

𝑑
(

𝐸
𝑝
𝐼
𝑝

ℎ4
D − 𝜔

2M + 𝑖𝜔C
𝑥
)]U
𝑝
= (E + 𝑖𝜔 I𝑠C𝑥

𝑑
)U
𝑒
,

(9)

where 𝑖 = √−1; 𝜔 is the excitation frequency; U
𝑝
is

the amplitude of pile displacement; U
𝑒
is the amplitude of

addition displacement in the free-field soil; and E is the
identity matrix.

A cut-off method [28, 33] is generally used to accommo-
date soil yield around the pile. If the pressure at the pile-
soil interface exceeds the ultimate lateral pressure of soil, the
excess pressure is redistributed to other segments through
iteration until pressure at all pile nodes within the ultimate
values. This study, however, will not consider this yield
and will be confined to elastic analysis using the simplified
approach for piles in two-layer soil.

3. Validation of Simplified Method

3.1. Comparison with Dynamic Finite-Element Solution. The
proposed simple approach is compared with dynamic FE
results concerning a free head pile embedded in a two-layer
soil deposit [19]. The pile-soil model is the same as that
shown in Figure 1, except that the pile tip is extended into the
underlying bedrock.The pile-soil system is featured by a ratio
of soil layer thickness𝐻

𝑎
/𝐻
𝑏
of 1, a soil density 𝜌

𝑎
= 𝜌
𝑏
, a soil

Poisson’s ratio 𝜇
𝑎
= 𝜇
𝑏
= 0.4, and a soil damping coefficient

𝛽
𝑎
= 𝛽
𝑏
= 10%. The pile has a slenderness ratio 𝐿/𝑑 of 20, a

pile-to-soil stiffness ratio 𝐸
𝑝
/𝐸
𝑎
of 5000, and a pile density 𝜌

𝑝

of 1.60 𝜌
𝑎
(𝜌
𝑎
= 1900 kg/m3).

A comparison between the simplified approach and FE
solution [19] is presented in Figures 3(a) and 3(b), respec-
tively, for the profiles of the pile deflection and bending
moment amplitude at the natural frequency of soil deposit
(𝜔 = 𝜔

1
). A good agreement is evident. The current, simpli-

fied approach can reveal the kinematic bending moments at
the interface of the two layers, despite the ∼20% overestima-
tion of the maximum bending moment (against FE result) of
the pile in Case D.

Figure 4 shows the amplitude spectrum of maximum
kinematic bending moment as a function of the frequency
ratio 𝜔/𝜔

1
. A good agreement is again observed between the

simplified approach and the dynamic FE solution [19]. Both
indicate that the peak kinematic bending moment occurs at
the inherent frequency of the soil.

3.2. Comparison with BDWF Formulation. The proposed
approach for kinematic loading along the pile depth during
the lateral ground movements is compared with the BDWF
solution [19]. The pile-soil system is the same as the case
just discussed in the last section. To examine the sensitivity
of the parameters, four groups of 12 cases (Table 1) were
studied, by maintaining soil density 𝜌

𝑎
= 𝜌
𝑏
, soil Poisson’s
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Figure 3: Comparison of amplitude of pile deflections and bending moment between FE solution and simplified method in a two-layer soil
(A: 𝑉
𝑏
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𝑎
= 0.58, B: 𝑉

𝑏
/𝑉
𝑎
= 1, C: 𝑉

𝑏
/𝑉
𝑎
= 1.73, and D: 𝑉

𝑏
/𝑉
𝑎
= 3).

ratio 𝜇
𝑎
= 𝜇
𝑏
= 0.4, soil damping coefficient 𝛽

𝑎
= 𝛽
𝑏
= 10%,

and pile density 𝜌
𝑝
= 1.60𝜌

𝑎
.

As shown in Table 1, the BDWF method adopts an
optimized 𝛿 to obtain kinematic pile bending at the interface
of two-layer soil. In contrast, the current method uses the
displacement-influence coefficients I

𝑠
to consider the pile-

soil interaction (resembling the spring constant 𝑘
𝑥
in the

Winkler model) and may incorporate the interaction of soil
along the pile to improve the accuracy. Nevertheless, when
the ratio of the shear wave velocities 𝑉

𝑏
/𝑉
𝑎
of two soil layers

exceeds 3, a larger than 15% error (compared with the FE
method) in maximum kinematic bending moment may be
seen using the simplified method. This is discussed next
concerning Case 12 for kinematic bending at the two-layer
interface and at the pile head (at the natural frequency of soil
deposit).

3.2.1. Kinematic Pile Bending. Figure 5 shows the amplitude
distributions of kinematic pile bending and shear force
from the simplified method and the BDWF solutions. The
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kinematic pile bending and shear force profiles are slightly
sensitive to the value 𝛿. At 𝛿 = 2.5, the distribution profiles of
pile moment and shear force agree with each other between
the simplified results and the BDWF solution, although the
maximum moment of the simplified method is 17.2% larger
than the BDWF solution.

Figure 6 provides the corresponding amplitude spectrum
of maximum kinematic pile bending moment in the two-
layer soil, owing to variation in the frequency ratio 𝜔/𝜔

1
,

among the FE, the BDWF, and the simplified approaches.
It shows a consistent trend of variation in bending moment
among various approaches.

3.2.2. Kinematic Response of Pile Head. Kinematic responses
are obtained in form of the ratio of the amplitudes of pile-
head displacement u

𝑝
(0) over the excitation motion u

𝑔
or

the ratio of the head displacement u
𝑝
(0) over the free field

surface displacement u
𝑒
(0) [17, 26, 39]. The responses for

the free-head pile are plotted in Figure 7 for a spectrum of
the frequency ratio 𝜔/𝜔

1
. The good agreement of the factors

u
𝑝
(0)/u
𝑔
andu
𝑝
(0)/u
𝑒
(0) among the simplified approach, the

FEmethod, and theBDWF solution has been attributed to the
predominant effect of the free field soil displacement.

As for fixed-head piles, equally successful prediction is
seen in Figure 8, concerning the kinematic response of pile to



6 Journal of Applied Mathematics

Ta
bl
e
1:
C
om

pa
ris

on
of

FE
,B

D
W
F,
an
d
th
ep

re
se
nt

sim
pl
ifi
ed

ap
pr
oa
ch

fo
rd

im
en
sio

nl
es
sm

ax
im

um
ki
ne
m
at
ic
pi
le
be
nd

in
g
𝑀

m
ax
(
𝜔
1
)
/
𝜌
𝑑
𝑑
4

𝑈
𝑔
du

rin
g
th
eh

ar
m
on

ic
ex
ci
ta
tio

n.

Ca
se

𝐿
/
𝑑

𝐸
𝑝
/
𝐸
𝑎

𝐻
𝑎
/
𝐻
𝑏

𝑉
𝑎
/
𝑉
𝑏

Pr
ev
io
us
𝜔
1
𝑑
/
𝑉
𝑎

C
om

pu
te
d
𝜔
1
𝑑
/
𝑉
𝑎

FE
m
et
ho

d
𝛿
co
m
p

BD
W
F
m
et
ho

d
Er
ro
r1
:%

Si
m
pl
ifi
ed

re
su
lts

Er
ro
r2
:%

1
10

50
0

1
0.
58

0.
09
64

0.
09
68

70
9

2.
21

76
0

7.2
75
2

6.
0

2
20

0.
04

82
0.
04

84
12
53

2.
41

12
82

2.
3

13
26

5.
8

3
40

0.
02
41

0.
02
42

20
88

2.
63

21
96

5.
2

23
13

10
.8

4
10

50
00

1
0.
09
64

0.
09
68

18
54

1.6
6

16
23

−
1
2
.5

19
21

3.
6

5
20

0.
04

82
0.
04

84
77
18

1.8
1

80
19

3.
9

77
35

0.
2

6
40

0.
02
41

0.
02
42

13
12
0

1.9
7

13
32
0

1.5
13
40

6
2.
2

7
20

10
00

3
1.5

0.
09
16

0.
09
10

50
8

2.
27

51
5

1.4
55
5

9.2
8

20
10
00
0

1/
3

0.
11
64

0.
11
59

11
13

1.4
2

10
97

−
1
.4

11
19

0.
6

9
20

1
0.
10
58

0.
10
56

93
1

1.5
5

10
70

14
.9

66
3

−
2
8
.8

10
20

3
0.
09
13

0.
09
10

14
82

1.7
0

14
33

−
3
.3

15
47

4.
4

11
10

50
0

1
1.7

3
0.
23
10

0.
22
93

86
2.
05

79
−
8
.1

96
11
.6

12
20

0.
11
55

0.
114

7
26
9

2.
24

25
3

−
5
.9

31
5

17.
2

13
40

0.
05
78

0.
05
73

65
6

2.
44

57
7

−
1
2
.0

77
8

18
.7

14
10

50
00

1
0.
23
10

0.
22
93

27
3

1.5
4

26
6

−
2
.6

26
5

−
2
.9

15
20

0.
11
55

0.
114

7
99
8

1.6
8

86
0

−
1
3
.8

96
3

−
3
.5

16
40

0.
05
78

0.
05
73

30
54

1.8
3

28
25

−
7
.5

31
44

3.
0

17
20

10
00

3
3

0.
10
17

0.
10
09

10
46

2.
17

10
75

2.
8

13
31

27
.3

18
20

10
00

0
1/3

0.
21
17

0.
20
94

87
5

1.3
5

89
6

2.
4

12
17

39
.1

19
20

3
0.
14
15

0.
14
03

29
49

1.4
8

30
42

3.
2

34
70

17.
7

20
20

3
0.
10
19

0.
10
09

48
67

1.6
3

49
11

0.
9

56
08

15
.2

21
20

10
00

3
6

0.
10
42

0.
10
37

14
86

2.
07

14
80

−
0
.4

20
77

39
.7

22
20

10
00
0

1/3
0.
28
97

0.
28
49

11
28

1.2
9

12
74

12
.9

18
27

62
.0

23
20

1
0.
15
35

0.
15
26

38
09

1.4
2

41
93

10
.1

50
73

33
.2

24
20

3
0.
10
45

0.
10
37

67
30

1.5
5

68
31

1.5
86
75

28
.9

(1
)V

al
ue
so

fp
re
vi
ou

s𝜔
1
𝑑
/
𝑉
𝑎
,F
E,
𝛿
co
m
p,
an
d
BD

W
F
co
m
pu

te
d
fo
rm

ap
ro
po

se
d
sim

pl
ea

na
ly
tic

al
ex
pr
es
sio

n
[19

].
(2
)E

rr
or
1:
pe
rc
en
ta
ge

er
ro
ri
n
th
eB

D
W
F
m
om

en
tc
om

pa
re
d
w
ith

th
eF

E
m
om

en
t.
Er
ro
r2
:p
er
ce
nt
ag
ee

rr
or

in
th
ee

la
sti
cm

om
en
tc
om

pa
re
d
w
ith

th
eF

E
m
om

en
t.

(3
)Th

ev
al
ue
so

fc
om

pu
te
d
𝜔
1
𝑑
/
𝑉
𝑎
ar
ea

ss
oc
ia
te
d
w
ith

th
ec

om
pu

te
d
tim

ei
nt
er
va
l.



Journal of Applied Mathematics 7

0

100

200

300

400

0 1 2 3 4

M
m

ax
/𝜌

p
d
4
𝜔
2
U
g

𝜔/𝜔1

Simplified approach

BDWF 𝛿 = 1

BDWF 𝛿 = 2.5
BDWF 𝛿 = 4FE method

Figure 6: Comparison of maximum kinematic pile bending amplitude between FE, BDWF, and simplified approaches in a two-layer soil
(Case 12: 𝑉

𝑏
/𝑉
𝑎
= 1.73, 𝐸

𝑝
/𝐸
𝑎
= 500,𝐻

𝑎
/𝐻
𝑏
= 1, and 𝐿/𝑑 = 20).

0

2

4

6

8

U
p
(0
)/
U
g

0 3 6 9 12 15

Simplified approach

𝜔/𝜔1

BDWF method

(a) Amplitude of pile-top deflection

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Simplified approach

BDWF 𝛿 = 1

BDWF 𝛿 = 2.5
BDWF 𝛿 = 4FE method

U
p
(0
)/

(0
)

U
e

0 3 6 9 12 15
𝜔/𝜔1

(b) Pile-head to ground-surface displacements

Figure 7: Normalized kinematic response of pile head to excitation among FE, BDWF, and simplified methods in a two-layer soil (Case 12:
𝑉
𝑏
/𝑉
𝑎
= 1.73, 𝐸

𝑝
/𝐸
𝑎
= 500,𝐻

𝑎
/𝐻
𝑏
= 1, and 𝐿/𝑑 = 20).

soil displacement u
𝑝
(0)/u
𝑒
(0) among the simplified method,

the rigorous boundary integral method (Fan et al. [18]),
and the BDWF (Makris and Gazetas [26]). Nevertheless, the
current approach offers slightly larger ratio for 𝐸

𝑝
/𝐸
𝑠
= 1000

than the other two solutions at high frequencies.

4. Application under Seismic Excitation

4.1. Seismic Motion and Case Model. The harmonic steady
state is rarely seen in a practical engineering design. Kine-
matic seismic response of a pile should be tailored to cater
for the transient excitation [19] owing to earthquake shaking,
as is noted in dynamic analysis involving nonlinear pile-
soil interaction. A large soil resistance in certain depth may
render the nonlinear kinematic pile bending (e.g., caused by

SH wave) insignificant compared to pile-head inertial excita-
tion. In addition, previous study [13] does not allow either a
detrimental or a beneficial effect on kinematic pile bending to
be concluded due to non-linear site response. Consequently,
the validity of the simplified method is examined herein for
elastic pile and soil.

The performance of the simplified approach for the tran-
sient response is examined for six typical seismic accelero-
grams (see Table 2), which include 4 actual records selected
from ground motion database of the Pacific Earthquake
Engineering Research Center (PEER) [41] and 2 artificial
motions used in seismic design of a typical site in Shanghai
(China).The acceleration time histories for seismic events are
plotted in Figure 9 and the associated acceleration response
spectra are provided in Figure 10.
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Figure 9: Acceleration time history of the input motions at the bedrock roof.

Table 2: Ground motions employed in the parametric analysis.

Earthquake Record label 𝑀
𝑤

PGA (g) 𝑇
𝑝
(sec) 𝑇

𝑚
(sec)

Whittier Narrows 1987/10/01 A-TOR180 6.0 0.05 0.24 0.42
Kobe 1995/01/16 KJM000 6.9 0.82 0.34 0.64
Imperial Valley 1940/05/19 I-ELC180 7.0 0.31 0.46 0.53
ShangHai3-Elcentrol (IV Site) Artificial3 0.35 0.58 0.82
Friuli 1976/05/06 A-TMZ270 6.5 0.32 0.64 0.50
ShangHai2 (IV Site) Artificial2 0.35 0.72 0.75
𝑇
𝑝
: predominant period and 𝑇

𝑚
: mean period.
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and 𝜇
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𝑏
= 0.4).

4.2. Parametric Investigation. The parametric analysis is
again conducted for the pile-soil system shown in Figure 1,
with the following profile parameters: bedrock located at𝐻 =

30m, density of either soil layer = 1900 kg/m3, Poisson’s ratio
= 0.4, soil damping = 5%, pile density = 2500 kg/m3, and pile-
to-soil stiffness ratio 𝐸

𝑝
/𝐸
𝑎
= 1000. The shear wave velocity

is 100m/s for the upper soil layer, 150m/s for the lower
layer, and 1000m/s for the bedrock, respectively. The input
signals by Sica et al. [31] were scaled in amplitude to a peak
acceleration of 0.35 g [31]. Figure 11 shows the comparison

of kinematic pile bending between the simplified proposed
approach and the BDWF formulation [31]. A good agreement
in the predicted bending moment is evident between the
simplified method and the BDWF solution, but for the large
difference in the peak bending moment around the layer
interface and at a shear wave velocity ratio 𝑉

𝑎
/𝑉
𝑏
of 1/3.

Figure 12 shows the pile-diameter contrast on kinematic
bending moment under the six input motions. The ratio
of soil layer thickness 𝐻

𝑎
/𝐻
𝑏
is 1, the pile is 20m in

length and 0.6, 0.9, or 1.2m in diameter, and the head is
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Figure 12: Pile diameters contrast on kinematic pile bending moment under different input motions.
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Figure 13: Depths of the interface between the two layers contrast on kinematic pile bending moment under different input motions.

constrained against rotation (fixed head). The figure indi-
cates that small-diameter piles accommodate more easily to
seismically induced soil deformations than lager-diameter
piles. Kinematic bending moments at the pile head and
the interface of soil layers are nearly proportional to the
diameters. This will reduce the safety of pile head, although
it does not necessarily increase or reduce the seismic safety
of the pile body (depending on the circumstances), as is
discussed previously [10, 14].

Figure 13 presents the bending moment profiles owing to
variation in the depths of the interface of the two layers under
the six inputmotions.Theywere obtained for a fixed head pile
(20m in length, 0.6m in diameter) embedded in a soil with a

layer interface located at a depth of 5, 10, or 15m, respectively.
An increase in depth of the interface renders increase in the
peak value of kinematic pile bending but has a negligible
impact on the kinematic bending moment at the pile head.
This preliminary analysis suggests the simplified approach
has the potential in modeling kinematic seismic response of
piles during the earthquake.

5. Conclusion and Discussions

A simple approach is formulated to predict the elastic, kine-
matic pile bending during harmonic or transient excitation.
The approach employs a circular pile (rather than a simplified
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thin strip). The kinematic response of a pile embedded in
two-layer soil is resolved in the frequency domain owing to
specified soil displacement field. The simplified approach is
generally valid to nonhomogeneous soil problems, in light
of the good comparison with the dynamic FE method and
BDWF solution. The main conclusions from the study are as
follows.

The simplified method employs the soil-displacement-
influence coefficients I

𝑠
to consider the pile-soil interaction

(resembling the spring constant 𝑘
𝑥
in the BDWF). It provides

conservative estimation of maximum kinematic bending
moments at soil-layer interface (with a sharper stiffness con-
trast) despite an adequate accuracy in general. The accuracy
may be improved by incorporating the interaction of soil into
the soil-displacement-influence coefficients I

𝑠
for such cases

with 𝑉
𝑏
/𝑉
𝑎
< 3.

The parametric studies during the seismic excitation
show the impact of pile diameters and depths of the interface
of two layers and demonstrate the simplified approach com-
paring well with published results in gaining kinematic pile
bending during the earthquake.

The formulated simple method is intended for elastic
soil, elastic pressure on pile-soil interface, and elastic seismic
response of the free field soil, for which a judicious choice
of elastic modulus of the soil is required. The method
may be extended to elastoplastic case though introducing a
similar technology as cut-off method [28, 33] in the current
procedure.
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