
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 237984, 9 pages
http://dx.doi.org/10.1155/2013/237984

Research Article
Firefly Algorithm for Polynomial Bézier
Surface Parameterization

Akemi Gálvez1 and Andrés Iglesias1,2

1 Department of Applied Mathematics and Computational Sciences, E.T.S.I. Caminos, Canales y Puertos,
University of Cantabria, Avenida de los Castros, s/n, 39005 Santander, Spain

2Department of Information Science, Faculty of Sciences, Toho University, 2-2-1 Miyama, Funabashi 274-8510, Japan

Correspondence should be addressed to Andrés Iglesias; iglesias@unican.es

Received 21 June 2013; Accepted 7 August 2013

Academic Editor: Xin-She Yang

Copyright © 2013 A. Gálvez and A. Iglesias. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

A classical issue in many applied fields is to obtain an approximating surface to a given set of data points. This problem arises
in Computer-Aided Design and Manufacturing (CAD/CAM), virtual reality, medical imaging, computer graphics, computer
animation, and many others. Very often, the preferred approximating surface is polynomial, usually described in parametric form.
This leads to the problem of determining suitable parametric values for the data points, the so-called surface parameterization.
In real-world settings, data points are generally irregularly sampled and subjected to measurement noise, leading to a very
difficult nonlinear continuous optimization problem, unsolvable with standard optimization techniques. This paper solves
the parameterization problem for polynomial Bézier surfaces by applying the firefly algorithm, a powerful nature-inspired
metaheuristic algorithm introduced recently to address difficult optimization problems. The method has been successfully applied
to some illustrative examples of open and closed surfaces, including shapes with singularities. Our results show that the method
performs very well, being able to yield the best approximating surface with a high degree of accuracy.

1. Introduction

Obtaining a curve or surface that approximates a given cloud
of data points is a classical problem in several scientific
and technological domains such as computer-aided design
and manufacturing (CAD/CAM), virtual reality, medical
imaging, computer graphics, computer animation, and many
others. In real-world settings, data points come from real
measurements of an existing geometric entity, as it typically
happens in the construction of car bodies, ship hulls, airplane
fuselage, and other free-form objects [1–8]. This process is
also applied in the shoes industry, in archeology (recon-
struction of archeological assets), in medicine (computed
tomography), and in many other fields. The primary goal is
to convert the real data from a physical object into a fully
usable digital model, a process called reverse engineering.
Such digital models are usually easier and cheaper to modify
than their real counterparts, leading to a significant reduction
of the costs associatedwith the processing andmanufacturing

time of the real goods they represent. Furthermore, due to
their inherent digital nature, they become available anytime
and anywhere, a very valuable feature in our current digital-
world era.

Data points in reverse engineering are usually acquired
through laser scanning and other digitizing methods (light
digitizers, coordinate measuring machines, CT scanners, and
tactile scanners) and are, therefore, subjected to measure-
ment noise, irregular sampling, and other artifacts [7, 9].
Consequently, a good fitting of data is generally based on
approximation schemes (where the curve/surface is expected
to pass near the data points) rather than on interpolation
(where the curve/surface is constrained to pass through all
input data points). Because this is the typical case in many
real-world industrial problems, in this paper we focus on the
approximation scheme to a given set of irregularly sampled
noisy data points.

There are two key components for a good approximation
of data points: a proper choice of the approximating function



2 Journal of Applied Mathematics

and a suitable parameter tuning. The usual models for data
fitting in CAD/CAM and other industrial fields are free-form
parametric entities, such as Bézier, B-spline, and NURBS, as
they have a great flexibility and can represent well any smooth
shape with only a few parameters, thus leading to substantial
savings in terms of computer memory and storage capacity
[10–17].

In this paper we focus particularly on the case of polyno-
mial Bézier surfaces, a kind of free-form splines very popular
in fields such as CAD/CAM and computer graphics. Bézier
splines were developed independently in the early 60s by
Paul de Casteljau and Pierre Bézier for the CAD systems
of the French automotive companies Citröen and Renault,
respectively. Mathematically, they are based on the Bernstein
polynomials (see Section 4 for details), developed as early
as 1912 but whose applicability to engineering design was
unknownuntil the 60s. ABézier curve is a linear combination
of the Bernstein polynomials and vector coefficients called
control points. The curve follows approximately the shape of
its control polygon (the collection of segments joining the
control points), and hence, it reacts to the movement of its
control points by following a push-pull effect. This powerful
feature was fundamental for the popularization of free-form
curves and surfaces for interactive design.The generalization
of this idea to surfaces leads to the Bézier surfaces, which
are linear combinations of the control points (now arranged
in a three-dimensional net) and the so-called tensor-product
basis functions (given by the products of all possible com-
binations of univariate Bernstein polynomials in surface
parameters 𝑢 and V, resp.).

Although nowadays Bézier splines have been overtaken
by the B-splines (developed during the 70s and of which the
Bézier splines are a particular case), they played a key role in
the current development of computer design. In addition to
their historical value, they are still widely used today for dif-
ferent purposes, such as computer fonts (e.g., TrueType fonts,
PostScript), computer animation (for simple movements of
objects in programs such as Adobe Flash), and computer
design (Adobe Photoshop, Corel Draw, Adobe illustrator).
The reader is referred to [18–20] for further details about the
subject. See also [21] for a nice historical approach written by
some of the most prominent figures in the field.

Best approximation methods make commonly use of
least-squares techniques [1, 8, 10, 13, 14, 22–28], where the goal
is to obtain the relevant parameters of the polynomial approx-
imating surface that fits the data points better in the least-
squares sense. This problem is far from being trivial: because
the surface is parametric, we are confrontedwith the problem
of obtaining a suitable parameterization of the data points
[18, 20]. As remarked in [29], the selection of an appropriate
parameterization is essential for a good fitting. Unfortunately,
it also becomes a very hard problem, specially for the cases of
irregularly sampled noisy data points. In fact, it is well known
that it leads to a very difficult overdetermined continuous
nonlinear optimization problem. It is also multivariate, as it
typically involves a large number of unknown variables for a
large number of data points, a case that happens very often
in real-world examples. Finally, it is usually a multimodal

problem as well, because of the potential existence of several
(global or local) optima of the objective function.

In this context, the present paper describes a newmethod
to solve this challenging parameterization problem for free-
form polynomial Bézier surfaces. Our method applies a pow-
erful nature-inspired metaheuristic algorithm, called firefly
algorithm, introduced recently by Professor Yang (Cam-
bridge University) to solve difficult optimization problems.
The trademark of the firefly algorithm is its search mecha-
nism, inspired by the social behavior of the swarms of fireflies
and the phenomenon of bioluminescent communication.The
paper shows that this approach can be effectively applied to
obtain an optimal approximating Bézier surface to a given set
of noisy data points, provided that an adequate representation
of the problem and a proper selection of the parameters
are carried out. To check the performance of our approach,
it has been applied to some illustrative examples of open
and closed surfaces, including shapes with singularities. Our
results show that the method performs very well, being able
to yield the best approximating surface with a high degree of
accuracy.

The structure of this paper is as follows: in Section 2
the previous work in the field is briefly reported. Then,
the fundamentals and main ideas of the firefly algorithm,
the method used in this paper, are briefly explained in
Section 3. Our proposed firefly-based method for data fitting
with Bézier surfaces is described in Section 4. The section
begins with the description of the problem to be solved.Then,
the application of the firefly algorithm to solve it is explained
in detail. Some illustrative examples of its application to
open and closed surfaces, including shapes with singularities,
along with some implementation details are reported in
Section 5. The paper closes with the main conclusions of this
contribution and our plans for future work in the field.

2. Previous Work

The problem of data fitting through free-form parametric
surfaces has been the subject of research for many years
[1, 20, 30–35]. One of themost important problems regarding
this issue is the surface parameterization, that is, the com-
putation of suitable parametric values for the fitting surface
to data points. In many practical situations, it is advisable
to obtain a parameterization as similar as possible to the
arc-length parameterization. The ultimate reason for this is
that a constant step on the parametric domain automatically
translates into a constant distance along an arc-length param-
eterized curve on the surface. In other words, for constant
parameter intervals, the curve on the surface exhibits a
point spacing that is as uniform as possible. Therefore, this
parameterization is very convenient for surface interrogation
issues, such as surface intersections or measuring distances
on a surface [36, 37]. For instance, it has been traditionally
applied inmetrology for design andmanufacturing, to collect
measurement data from industrial parts of the designed and
manufactured products. Many other industrial operations
also require a uniform parameterization. For example, in
computer controlled milling operations, the curve path fol-
lowed by the milling machine must be parameterized such



Journal of Applied Mathematics 3

that the cutter neither speeds up nor slows down along the
path [9]. This property is only guaranteed when the curve
path is parameterized with the arc-length parameterization.
Consequently, this has been the preferred and most classical
choice for surface parameterization.

Some recent papers have shown that the application
of Artificial Intelligence techniques can achieve remarkable
results regarding this parameterization problem [2, 5, 6, 38–
40]. Most of these methods rely on some kind of neural
networks, either standard neural networks [38], Kohonen’s
SOM (Self-Organizing Maps) nets [29, 39], or the Bernstein
Basis Function (BBF) network [40]. In the case of surfaces,
the network is used exclusively to order the data and create a
grid of control vertices with quadrilateral topology [39]. After
this preprocessing step, any standard surface reconstruction
method (such as those referenced in the bibliography) has to
be applied. In some other cases, the neural network approach
is combined with partial differential equations [29] or other
approaches. The generalization to functional networks (an
extension of neural networks where the weights are replaced
by functions) is also analyzed in [2, 5, 6, 41].

Due to their good behavior for complex optimization
problems involving ambiguous and noisy data, there has
recently been an increasing interest in applying nature-
inspired optimization techniques (such asmetaheuristics and
evolutionary methods) to this problem. However, there are
still few works reported in the literature. A previous paper
in [42] describes the application of genetic algorithms and
functional networks yielding pretty good results for both
curves and surfaces. Other approaches are based on the
application of metaheuristic techniques, which have been
intensively applied to solve difficult optimization problems
that cannot be tackled through traditional optimization algo-
rithms. Recent schemes in this area are described in [4, 10] for
particle swarm optimization (PSO), [3, 27, 28, 43] for genetic
algorithms (GA), [44, 45] for artificial immune systems, [46]
for estimation of distribution algorithms, and [11] for hybrid
GA-PSO techniques. The method used in this paper also
belongs to this category, as described in next section.

3. The Firefly Algorithm

The firefly algorithm is a nature-inspired metaheuristic algo-
rithm introduced in 2008 by Yang to solve optimization prob-
lems [47, 48] (see also [49] for a recent modified version of
this algorithm). The algorithm is based on the social flashing
behavior of fireflies in nature. The key ingredients of the
method are the variation of light intensity and formulation of
attractiveness. In general, the attractiveness of an individual
is assumed to be proportional to their brightness, which in
turn is associated with the encoded objective function. The
reader is kindly referred to [50] for a comprehensive review of
the firefly algorithm and other nature-inspired metaheuristic
approaches. See also [51] for a gentle introduction to meta-
heuristic applications in engineering optimization.

In the firefly algorithm, there are three particular ideal-
ized rules, which are based on some of the major flashing
characteristics of real fireflies [47]. They are

(1) all fireflies are unisex, so that one firefly will be att-
racted to other fireflies regardless of their sex;

(2) the degree of attractiveness of a firefly is proportional
to its brightness, which decreases as the distance from
the other firefly increases due to the fact that the air
absorbs light. For any two flashing fireflies, the less
brighter one will move towards the brighter one. If
there is not a brighter or more attractive firefly than
a particular one, it will then move randomly;

(3) the brightness or light intensity of a firefly is deter-
mined by the value of the objective function of a given
problem. For instance, for maximization problems,
the light intensity can simply be proportional to the
value of the objective function.

The distance between any two fireflies 𝑖 and 𝑗, at positions
X
𝑖
and X

𝑗
, respectively, can be defined as a Cartesian or

Euclidean distance as follows:

𝑟
𝑖𝑗
=






X
𝑖
− X
𝑗






= √

𝐷

∑

𝑘=1

(𝑥
𝑖,𝑘
− 𝑥
𝑗,𝑘
)

2

, (1)

where 𝑥
𝑖,𝑘

is the 𝑘-th component of the spatial coordinate X
𝑖

of the 𝑖-th firefly and𝐷 is the number of dimensions.
In the firefly algorithm, as attractiveness function of a

firefly 𝑗 one should select any monotonically decreasing
function of the distance to the chosen firefly, for example, the
exponential function:

𝛽 = 𝛽
0
𝑒
−𝛾𝑟
𝜇

𝑖𝑗
(𝜇 ≥ 1) , (2)

where 𝑟
𝑖𝑗
is the distance defined as in (1), 𝛽

0
is the initial att-

ractiveness at 𝑟 = 0, and 𝛾 is an absorption coefficient at the
source which controls the decrease of the light intensity.

The movement of a firefly 𝑖 which is attracted by a more
attractive (i.e., brighter) firefly 𝑗 is governed by the following
evolution equation:

X
𝑖
= X
𝑖
+ 𝛽
0
𝑒
−𝛾𝑟
𝜇

𝑖𝑗
(X
𝑗
− X
𝑖
) + 𝛼 (𝜎 −

1

2

) , (3)

where the first term on the right-hand side is the current
position of the firefly, the second term is used for considering
the attractiveness of the firefly to light intensity seen by
adjacent fireflies, and the third term is used for the random
movement of a firefly in case there are not any brighter ones.
The coefficient 𝛼 is a randomization parameter determined
by the problem of interest, while 𝜎 is a random number
generator uniformly distributed in the space [0, 1].

The method described in previous paragraphs corre-
sponds to the original version of the firefly algorithm (FFA),
as originally developed by its inventor. Since then, many
different modifications and improvements on the original
version have been developed, including the discrete FFA,
multiobjective FFA, chaotic FFA, parallel FFA, elitist FFA,
Lagrangian FFA, andmany others, including its hybridization
with other techniques.The interested reader is referred to the
nice paper in [52] for a comprehensive, updated review and
taxonomic classification of the firefly algorithms and all its
variants and applications.



4 Journal of Applied Mathematics

4. The Proposed Method

A free-form polynomial parametric surface is defined as [18,
19]:

S (𝑢, V) =
𝑚

∑

𝑖=0

𝑛

∑

𝑗=0

P
𝑖𝑗
𝜙
𝑖 (
𝑢) 𝜑𝑗 (

V) , (4)

where {P
𝑖𝑗
}
𝑖,𝑗

are vector coefficients in R3 (usually referred
to as the control points as they roughly control the shape of
the surface), {𝜙

𝑖
(𝑢)𝜑
𝑗
(V)}
𝑖,𝑗
are the tensor-product functions

obtained from two sets of basis functions (or blending func-
tions) {𝜙

𝑖
(𝑢)}
𝑖
, and {𝜑

𝑗
(V)}
𝑗
, and (𝑢, V) are the surface param-

eters, usually defined on a bounded rectangular domain
[𝛼
𝑢
, 𝛽
𝑢
] × [𝛼V, 𝛽V] ⊂ R2. Note that in this paper vectors are

denoted in bold.
In this work we will focus on the particular case of free-

form polynomial Bézier surfaces. In this case, (4) becomes

S (𝑢, V) =
𝑚

∑

𝑖=0

𝑛

∑

𝑗=0

P
𝑖,𝑗
Ψ
𝑚

𝑖
(𝑢)Ψ
𝑛

𝑗
(V) , (5)

where the blending functions Ψ𝑑
𝑘
(𝜔) are the Bernstein poly-

nomials of index 𝑘 and degree 𝑑, given by

Ψ
𝑑

𝑘
(𝜔) = (

𝑑

𝑘
)𝜔
𝑘
(1 − 𝜔)

𝑑−𝑘
, (6)

where

(

𝑑

𝑘
) =

𝑑!

𝑘! (𝑑 − 𝑘)!

, (7)

and the surface parameters 𝑢, V are defined on the unit square
[0, 1] × [0, 1]. Note that, by convention, 0! = 1.

Let us suppose now that we are given a set of data points
{Q
𝑘,𝑙
}
𝑘=1,...,𝑝;𝑙=1,...,𝑞

in an 𝜉-dimensional space (usually 𝜉 = 2

or 𝜉 = 3). Our goal is to obtain the free-form polynomial
Bézier surface S(𝑢, V) that fits the data points better in the
discrete least-squares sense. To do so, we have to compute the
control points {P

𝑖,𝑗
}
𝑖=0,...,𝑚;𝑗=0,...,𝑛

of the approximating surface
by minimizing the least-squares error, 𝐸, defined as the sum
of squares of the residuals:

𝐸 =

𝑝

∑

𝑘=1

𝑞

∑

𝑙=1

(Q
𝑘,𝑙
−

𝑚

∑

𝑖=0

𝑛

∑

𝑗=0

P
𝑖,𝑗
Ψ
𝑚

𝑖
(𝑢
𝑘
) Ψ
𝑛

𝑗
(V
𝑙
))

2

. (8)

In the case of irregularly sampled data points {Q
𝑟
}
𝑟=1,...,𝑅

,
ourmethodwill work in a similar way by simply replacing the
previous expression (8) by

𝐸 =

𝑅

∑

𝑟=1

(Q
𝑟
−

𝑚

∑

𝑖=0

𝑛

∑

𝑗=0

P
𝑖,𝑗
Ψ
𝑚

𝑖
(𝑢
𝑟
) Ψ
𝑛

𝑗
(V
𝑟
))

2

. (9)

The least-squares minimization of either (8) or (9) leads
to the system of equations:

⟨Q⟩ = ⟨P⟩ ⋅ Ξ, (10)

where ⟨Q⟩ corresponds to the vectorization of the set of
data points {Q

𝑘,𝑙
}
𝑘=1,...,𝑝;𝑙=1,...,𝑞

(alternatively, {Q
𝑟
}
𝑟=1,...,𝑅

), ⟨P⟩
corresponds to the vectorization of the set of control points
{P
𝑖,𝑗
}
𝑖=0,...,𝑚;𝑗=0,...,𝑛

, and Ξ is a matrix given by Ξ
𝑖,𝑗
= Ψ
𝑛
(V
𝑗
) ⊙

Ψ
𝑚

0
(u), with Ψ𝑑(𝜔

𝑘
) = (Ψ

𝑑

0
(𝜔
𝑘
), . . . , Ψ

𝑑

𝐷
(𝜔
𝑘
)), Ψ𝑑
𝑘
(Θ) =

(Ψ
𝑑

𝑘
(𝜃
1
), . . . , Ψ

𝑑

𝑘
(𝜃
𝐾
)), for any Θ = (𝜃

1
, . . . , 𝜃

𝐾
), and ⊙

represents the tensor product of vectors. The indices in (10)
vary in the ranges of values indicated throughout the section.

The algebraic solution of (10) is given by, P = Ξ
+
⋅ Q,

where Ξ+ denotes the Moore-Penrose pseudoinverse of Ξ.
Due to the fact that the blending functions are nonlinear
in 𝑢 and V, the least-squares minimization of the errors
is a strongly nonlinear problem, with a large number of
unknowns for large sets of data points. Our strategy for
solving the problem consists of applying the firefly algorithm
to determine suitable parameter values for the least-squares
minimization of functional 𝐸 according to either (8) or (9).
However, in order to do it, some previous steps must be
carefully carried out.

(1) First of all, we need an adequate representation of
the unknowns of the problem. Because of the tensor-
product structure of the free-form Bézier surfaces,
the fireflies in our method can be encoded as either
strings of two sorted real-coded vectors on the inter-
val [0, 1] of length 𝑝 and 𝑞, respectively, for organized
data points, or as sorted real-coded vectors of length
𝑅 for the case of irregularly sampled data points.
All fireflies are initialized with sorted uniformly
distributed random numbers on the coordinate para-
metric domain.

(2) The objective function corresponds to the evaluation
of the least-squares function given by either (8) or
(9). Since this error function does not consider the
number of data points, we also compute the RMSE
(root-mean squared error), given by

RMSE

=
√
∑
𝑝

𝑘=1
∑
𝑞

𝑙=1
(Q
𝑘,𝑙
− ∑
𝑚

𝑖=0
∑
𝑛

𝑗=0
P
𝑖,𝑗
Ψ
𝑚

𝑖
(𝑢
𝑘
) Ψ
𝑛

𝑗
(V
𝑙
))

2

𝑝 ⋅ 𝑞

,

(11)

for (8) or, alternatively by:

RMSE = √
∑
𝑅

𝑟=1
(Q
𝑟
− ∑
𝑚

𝑖=0
∑
𝑛

𝑗=0
P
𝑖,𝑗
Ψ
𝑚

𝑖
(𝑢
𝑟
) Ψ
𝑛

𝑗
(V
𝑟
))

2

𝑅

,

(12)

for (9) and report our results by using these error
criteria.

(3) We also need to choose the degree of the approximat-
ing surface, which in turn depends on the number
of control points. This value is chosen according
to the complexity of the shape of the underlying
function of data. In general, a small amount of control
points is needed for simple, smooth shapes, while



Journal of Applied Mathematics 5

a large number of control points must be selected
for complicated, twisted, or irregular shapes. Since
this number is unknown a priori, it is advisable to
start with a low number of control points for each
parametric coordinate and increase it until the error
reaches values below a prescribed threshold, which
generally depends on both the underlying surface and
the application domain.

(4) Regarding the firefly algorithm, some control param-
eters should be set up. As usual when working
with metaheuristic techniques, the choice of suitable
control parameters is very important as it determines
the performance of the method at large extent. It
is also challenging, because it is strongly problem
dependent. In this paper, our choice is based on a
large collection of empirical results. These control
parameters are

(a) the number of fireflies, 𝑛
𝑓
: this value is set up to

𝑛
𝑓
= 100 fireflies in all examples of this paper.

We also tried larger populations of fireflies (up
to 1000 individuals) but found that our results
do not change significantly. Since larger popu-
lations mean larger computation times with no
remarkable improvement at all, we found this
value to be appropriate in our simulations;

(b) the number of iterations, 𝑛iter: this number is
another parameter of the method that has to be
determined in order to run the algorithm until
the convergence of theminimization of the error
is achieved. In general, the firefly algorithmdoes
not need a large number of iterations to reach
the global optima.This also happens in this case.
In all our simulations, we found that 𝑛iter = 10 is a
suitable value, as larger values for this parameter
does not improve our results;

(c) the initial attractiveness, 𝛽
0
: some theoretical

results suggest that 𝛽
0
= 1 is a good choice for

many optimization problems. We also take this
value in this paper, with very good results, as it
will be discussed in next section;

(d) the absorption coefficient, 𝛾: it is set up to 𝛾 =
0.5 in this paper, as this value provides a quick
convergence of the algorithm to the optimal
solution;

(e) the potential coefficient, 𝜇: although any posi-
tive value can be used for this parameter, the
light intensity varies according to the inverse
square law. Therefore, we choose 𝜇 = 2 accord-
ingly;

(f) the randomization parameter, 𝛼. This param-
eter varies on the interval [0, 1] and allows
us to determine the degree of randomization
introduced in the algorithm. This stochastic
component is necessary in order to allow new
solutions appear and avoid getting stuck in a
local minimum. However, larger values intro-
duce large perturbations on the evolution of the

firefly and, therefore, delay convergence to the
global optima. Consequently, it is advisable to
select values in between. In this work, we take
𝛼 = 0.5.

After the selection of those parameters, the firefly algo-
rithm is performed iteratively for the given number of itera-
tions. To remove the stochastic effects and avoid premature
convergence, 20 independent executions have been carried
out for each choice of the surface degree.Then, the fireflywith
the best (i.e., minimum) fitness value is selected as the best
solution to the problem.

5. Experimental Results

To check the performance of our method described previ-
ously, it has been tested with a large collection of examples
with excellent results in all cases. To keep the paper at
manageable size, in this section we consider only three
of them. They have been primarily chosen to reflect the
diversity of situations to which the method can be applied.
The examples correspond to both open and closed surfaces,
including shapes with singularities. As the reader will see,
they clearly show the good performance of our approach.

Examples in this paper are shown in Figures 1, 2, and 3.
For each example, two different pictures are displayed: on
the left, we show the original cloud of input data points,
represented as small red points; on the right, the best approx-
imating Bézier surface, as obtained with our firefly-based
method, is displayed. Our input consists of sets of irregularly
sampled data points (this fact can readily be seen from simple
visual inspection of the point clouds on the left), which
are also affected by measurement noise of low to medium
intensity (signal-to-noise ratio of 15 : 1, 25 : 1, and 10 : 1, resp.).
In all examples, no information about the data points param-
eterization is available at all. In fact, no information about the
structure and properties of the underlying surface of data is
either assumed or known beyond the data points.

Table 1 summarizes the main results of our computer
simulations.The different examples are arranged in rows. For
each example, the following data are arranged in columns:
number of data points, 𝐸 error value (according to (8) and
(9)), the maximum of the 𝐸 error (denoted by Max𝐸 and
that provides a useful upper bound for that error), and RMSE
error value (according to (11) and (12)). The error values are
reported for each coordinate in all cases.

First observation is that, although our data points are
irregularly sampled and affected by noise, the method yields
very good fitting results in all cases. The RMSE is of order
10
−3 in all cases, while the order of the least-squares 𝐸

error is within the range 10−3–10−2 and so is its maximum.
Furthermore, these very small fitting errors are obtained
for surfaces that are more complicated than it may seem
at first sight. For instance, the surfaces of the first and
third examples are apparently simple, flat, and height-map
surfaces. However, a careful observation reveals that they
oscillate several times, and hence, they exhibit a rich variety
of hills and valleys, which have been highlighted by using an
illumination model for the sake of clarity. On the other hand,



6 Journal of Applied Mathematics

Table 1: Number of data points and error values (for each coordinate) of the three examples discussed in this paper.

Example Number of data points Error (E) Error (MaxE) Error (RMSE)

Example 1 6572

𝑥: 7.3652 × 10−2 𝑥: 9.5144 × 10−2 𝑥: 3.3476 × 10−3

𝑦: 7.4303 × 10−2 𝑦: 9.8452 × 10−2 𝑦: 3.3624 × 10−3

𝑧: 7.5126 × 10−2 𝑧: 9.9673 × 10−2 𝑧: 3.3811 × 10−3

Example 2 3378

𝑥: 5.2958 × 10−3 𝑥: 7.2446 × 10−3 𝑥: 1.2521 × 10−3

𝑦: 5.1216 × 10−3 𝑦: 7.0237 × 10−3 𝑦: 1.2313 × 10−3

𝑧: 5.2909 × 10−3 𝑧: 7.4532 × 10−3 𝑧: 1.2515 × 10−3

Example 3 7312
𝑥: 6.4191 × 10−2 𝑥: 8.4377 × 10−2 𝑥: 2.9629 × 10−3

𝑦: 6.3774 × 10−2 𝑦: 8.3875 × 10−2 𝑦: 2.9532 × 10−3

𝑧: 6.4746 × 10−2 𝑧: 9.3271 × 10−2 𝑧: 2.9756 × 10−3

(a) (b)

Figure 1: Applying the firefly algorithm to Bézier surface approximation of data points: (a) original data points; (b) best approximating Bézier
surface.

(a) (b)

Figure 2: Applying the firefly algorithm to Bézier surface approximation of data points: (a) original data points; (b) best approximating Bézier
surface.



Journal of Applied Mathematics 7

(a) (b)

Figure 3: Applying the firefly algorithm to Bézier surface approximation of data points: (a) original data points; (b) best approximating Bézier
surface.

the second surface is a closed surface with a strong singularity
at its uppermost part, where many data points concentrate in
a very small volume.This is usually a very challenging feature
for free-form parametric surfaces, which typically tend to
distribute the control points by following a rectangular
topology. Clearly, such a distribution is not adequate for this
surface. To our delight, the proposed method identifies this
situation automatically and rearranges the control points by
itself to adapt to the underlying structure of data points. In
opinion of the authors, this is a striking and very remarkable
feature of this method and shows its ability to capture the real
behavior of data points even under unfavorable conditions.

To summarize, a visual inspection of the three figures
clearly shows that ourmethod yields a very good approximat-
ing surface to data points in all cases. This fact is validated
by the numerical results reported in Table 1, which confirm
the good behavior of the method. From these examples and
many other not reported here for the sake of brevity, we
conclude that the presented method performs very well,
with remarkable capability to provide a satisfactory, accurate
solution to our parameterization problem with polynomial
Bézier surfaces.

Regarding the implementation issues, all computations
in this paper have been performed on a 2.9GHz. Intel Core
i7 processor with 8GB of RAM. The source code has been
implemented by the authors in the native programming
language of the popular scientific program Matlab, version
2010b for Windows 8 operating system.

6. Conclusions and Future Work

This paper introduces a new method to address the surface
parameterization problem, that is, to compute a suitable
parameterization of a set of data points in order to construct
the free-form parametric surface approximating such data
points better in the least-squares sense. This is a challenging
problem that appears recurrently in reverse engineering for
computer design and manufacturing and in many other
industrial fields. Very often, data points in real-world settings
are irregularly sampled and subjected to measurement noise,

leading to a very difficult nonlinear continuous optimization
problem, which cannot be solved by using standard opti-
mization techniques. To overcome this limitation, this paper
proposes a new method based on a powerful nature-inspired
metaheuristic algorithm called firefly algorithm, introduced
recently to solve difficult optimization problems.Themethod
has been successfully applied to solve the parameterization
problem for polynomial Bézier surfaces. The paper discusses
the main issues in this problem, such as the solution repre-
sentation and the selection of suitable control parameters. To
check the performance of our approach, it has been applied
to some illustrative examples of open and closed surfaces,
including shapes with singularities. Our results show that
the method performs very well, being able to yield the best
approximating surface with a high degree of accuracy.

As mentioned in Section 3, the original firefly algorithm
has been improved and modified in many different ways.
Some of its variants have shown to be more efficient than
the original version, meaning that the presented approach
can arguably be improved with new, optimized features for
better performance. An illustrative example is given by a very
recent version called memetic self-adaptive firefly algorithm
[53], whose new capabilities (the use of self-adaptation
strategies on the control parameters, a new populationmodel
based on elitism, and the hybridization with a local search
heuristics) improve the original firefly algorithm significantly.
The application of many of these variants to our parameter-
ization problem along with a comparative analysis of their
performance is part of our future work.We are also interested
to extend this method to other families of surfaces, such as
the B-splines and NURBS, where the existence of additional
parameters (such as knots and weights) can modify our
procedure significantly. The application of this method to
some interesting real-world problems in industrial settings is
also part of our plans for future work.

Conflict of Interests

The authors of this paper have no current or past, direct or
indirect financial relationship with any commercial identity



8 Journal of Applied Mathematics

mentioned in this paper that might lead to any conflict of
interests. They are solely mentioned here for scientific pur-
poses.

Acknowledgments

This research has been kindly supported by the Com-
puter Science National Program of the Spanish Ministry
of Economy and Competitiveness, Project Reference no.
TIN2012-30768, Toho University (Funabashi, Japan), and
the University of Cantabria (Santander, Spain). The authors
are particularly grateful to the Department of Information
Science of Toho University for all the facilities given to carry
out this research work. Special thanks are due to the Editor
and the anonymous reviewers for their useful comments and
suggestions that allowed us to improve the final version of this
paper.

References

[1] R. E. Barnhill, Geometry Processing for Design and Manu-
facturing, Society for Industrial and Applied Mathematics,
Philadelphia, Pa, USA, 1992.

[2] G. Echevarra, A. Iglesias, and A. Galvez, “Extending neural net-
works for B-spline surface reconstruction,” in Computational
Science—ICCS 2002, vol. 2330 of Lecture Notes in Computer
Science, pp. 305–314, 2002.

[3] A. Gálvez, A. Iglesias, and J. Puig-Pey, “Iterative two-step gen-
etic-algorithm-based method for efficient polynomial B-spline
surface reconstruction,” Information Sciences, vol. 182, pp. 56–
76, 2012.

[4] A. Gálvez andA. Iglesias, “Particle swarmoptimization for non-
uniform rationalB-spline surface reconstruction from clouds of
3D data points,” Information Sciences, vol. 192, pp. 174–192, 2012.

[5] A. Iglesias andA.Galvez, “A new artificial intelligence paradigm
for computer aided geometric design,” in Artificial Intelligence
and Symbolic Computation, vol. 1930, pp. 200–213, Lecture
Notes in Computer Science, 2001.

[6] A. Iglesias, G. Echevarŕıa, and A. Gálvez, “Functional networks
for B-spline surface reconstruction,” Future Generation Com-
puter Systems, vol. 20, no. 8, pp. 1337–1353, 2004.

[7] H. Pottmann, S. Leopoldseder, M. Hofer, T. Steiner, and W.
Wang, “Industrial geometry: recent advances and applications
in CAD,” Computer Aided Design, vol. 37, no. 7, pp. 751–766,
2005.

[8] T. Varady and R.Martin, “Reverse engineering,” inHandbook of
Computer Aided Geometric Design, pp. 651–681, North-Holland,
Amsterdam, The Netherlands, 2002.

[9] N. M. Patrikalakis and T. Maekawa, Shape Interrogation for
Computer Aided Design and Manufacturing, Springer, Berlin,
Germany, 2002.

[10] A.Gálvez andA. Iglesias, “Efficient particle swarmoptimization
approach for data fitting with free knot B-splines,” Computer
Aided Design, vol. 43, no. 12, pp. 1683–1692, 2011.

[11] A. Galvez and A. Iglesias, “A new iterative mutually-coupled
hybrid GA-PSO approach for curve fitting in manufacturing,”
Applied Soft Computing, vol. 13, no. 3, pp. 1491–1504, 2013.

[12] J. Ling and S. Li, “Fitting B-spline curves by least squares
support vector machines,” in Proceedings of the International
Conference on Neural Networks and Brain Proceedings (ICNNB
’05), pp. 905–909, Beijing, China, October 2005.

[13] D. L. B. Jupp, “Approximation to data by splines with free knots,”
SIAM Journal on Numerical Analysis, vol. 15, no. 2, pp. 328–343,
1978.

[14] T. C. M. Lee, “On algorithms for ordinary least squares regres-
sion spline fitting: a comparative study,” Journal of Statistical
Computation and Simulation, vol. 72, no. 8, pp. 647–663, 2002.

[15] W. Li, S. Xu, G. Zhao, and L. P. Goh, “Adaptive knot placement
in B-spline curve approximation,” Computer Aided Design, vol.
37, no. 8, pp. 791–797, 2005.

[16] H. Park, “An error-bounded approximate method for repre-
senting planar curves in B-splines,” Computer Aided Geometric
Design, vol. 21, no. 5, pp. 479–497, 2004.

[17] H. Park and J. Lee, “B-spline curve fitting based on adaptive
curve refinement using dominant points,” Computer Aided
Design, vol. 39, no. 6, pp. 439–451, 2007.

[18] G. Farin, Curves and Surfaces for CAGD, Morgan Kaufmann,
San Francisco, Calif, USA, 5th edition, 2002.

[19] J. Hoschek and D. Lasser, Fundamentals of Computer Aided
Geometric Design, A K Peters, Wellesley, Mass, USA, 1993.

[20] L. Piegl and W. Tiller, The NURBS Book, Springer, Berlin,
Germany, 1997.

[21] D. F. Rogers, An Introduction to NURBS: With His Historical
Perspective, Morgan Kaufmann, 2000.

[22] G. E.Hölzle, “Knot placement for piecewise polynomial approx-
imation of curves,” Computer-Aided Design, vol. 15, no. 5, pp.
295–296, 1983.

[23] W. Ma and J. Kruth, “Parameterization of randomly measured
points for least squares fitting of B-spline curves and surfaces,”
Computer-Aided Design, vol. 27, no. 9, pp. 663–675, 1995.

[24] L. A. Piegl andW. Tiller, “Least-squares B-spline curve approx-
imation with arbitrary end derivatives,” Engineering with Com-
puters, vol. 16, no. 2, pp. 109–116, 2000.

[25] T. Várady, R. R. Martin, and J. Cox, “Reverse engineering of
geometric models—an introduction,” Computer Aided Design,
vol. 29, no. 4, pp. 255–268, 1997.

[26] W. P. Wang, H. Pottmann, and Y. Liu, “Fitting B-spline curves
to point clouds by curvaturebased squared distance minimiza-
tion,”ACMTransactions on Graphics, vol. 25, no. 2, pp. 214–238,
2006.

[27] F. Yoshimoto, M. Moriyama, and T. Harada, “Automatic knot
adjustment by a genetic algorithm for data fitting with a spline,”
inProceedings of the International Conference on ShapeModeling
International and Applications, pp. 162–169, IEEE Computer
Society Press, 1999.

[28] F. Yoshimoto, T. Harada, and Y. Yoshimoto, “Data fitting with
a spline using a real-coded genetic algorithm,” Computer Aided
Design, vol. 35, no. 8, pp. 751–760, 2003.

[29] J. Barhak and A. Fischer, “Parameterization and reconstruction
from 3D scattered points based on neural network and PDE
techniques,” IEEE Transactions on Visualization and Computer
Graphics, vol. 7, no. 1, pp. 1–16, 2001.

[30] M. Alhanaty and M. Bercovier, “Curve and surface fitting and
design by optimal control methods,” Computer Aided Design,
vol. 33, no. 2, pp. 167–182, 2001.

[31] P. Dierckx, Curve and Surface Fitting with Splines, Oxford
University Press, Oxford, Miss, USA, 1993.

[32] T. Lyche andK.Mørken, “Knot removal for parametricB-spline
curves and surfaces,” Computer Aided Geometric Design, vol. 4,
no. 3, pp. 217–230, 1987.



Journal of Applied Mathematics 9

[33] M. J. D. Powell, “Curve fitting by splines in one variable,” in
Numerical Approximation to Functions and Data, J. G. Hayes,
Ed., Athlone Press, London, UK, 1970.

[34] J. R. Rice,Numerical Methods, Software and Analysis, Academic
Press, New York, NY, USA, 2nd edition, 1993.

[35] H. Yang, W. Wang, and J. Sun, “Control point adjustment for
B-spline curve approximation,”Computer Aided Design, vol. 36,
no. 7, pp. 639–652, 2004.

[36] E. Castillo and A. Iglesias, “Some characterizations of families
of surfaces using functional equations,” ACM Transactions on
Graphics, vol. 16, no. 3, pp. 296–318, 1997.

[37] A. Gálvez, J. Puig-Pey, and A. Iglesias, “A differential method
for parametric surface intersection,” in Computational science
and its applications—ICCSA 2004, vol. 3044 of Lecture Notes
in Computer Science, pp. 651–660, Springer, Berlin, Germany,
2004.

[38] P. Gu and X. Yan, “Neural network approach to the reconstruc-
tion of freeform surfaces for reverse engineering,” Computer-
Aided Design, vol. 27, no. 1, pp. 59–64, 1995.

[39] M. Hoffmann, “Numerical control of Kohonen neural network
for scattered data approximation,” Numerical Algorithms, vol.
39, no. 1–3, pp. 175–186, 2005.

[40] G. K. Knopf and J. Kofman, “Free-form surface reconstruction
using Bernstein basis function networks,” in Proceedings of the
Artificial Neural Networks in Engineering Conference (ANNIE
’99), vol. 9, pp. 797–802, ASME Press, November 1999.

[41] A. Iglesias and A. Galvez, “Applying functional networks to
fit data points from B-spline surfaces,” in Proceedings of the
Computer Graphics International (CGI ’01), pp. 329–332, IEEE
Computer Society Press, Hong Kong, China, 2001.

[42] A. Galvez, A. Iglesias, A. Cobo, J. Puig-Pey, and J. Espinola,
“Bézier curve and surface fitting of 3D point clouds
through genetic algorithms, functional networks and least-
squares approximation,” in Computational Science and Its
Applications—ICCSA 2007, vol. 4706 of Lecture Notes in
Computer Science, pp. 680–693, 2007.

[43] M. Sarfraz and S. A. Raza, “Capturing outline of fonts using
genetic algorithms and splines,” in Proceedings of the 5th
International Conference on Information Visualization (IV ’01),
pp. 738–743, IEEE Computer Society Press, 2001.

[44] A. Galvez, A. Iglesias, and A. Avila, “Immunological-based
approach for accurate fitting of 3D noisy data points with
Bezier surfaces,” in Proceedings of the International Conference
onComputational Science (ICCS ’13), vol. 18, pp. 50–59, Procedia
Computer Science, 2013.

[45] E. Ülker and A. Arslan, “Automatic knot adjustment using an
artificial immune system for B-spline curve approximation,”
Information Sciences, vol. 179, no. 10, pp. 1483–1494, 2009.

[46] X. Zhao, C. Zhang, B. Yang, and P. Li, “Adaptive knot placement
using a GMM-based continuous optimization algorithm in B-
spline curve approximation,” Computer Aided Design, vol. 43,
no. 6, pp. 598–604, 2011.

[47] X.-S. Yang, “Firefly algorithms formultimodal optimization,” in
Stochastic Algorithms: Foundations and Applications, vol. 5792
of Lectures Notes in Computer Science, pp. 169–178, Springer,
Berlin, Germany, 2009.

[48] X. S. Yang, “Firey algorithm, stochastic test functions anddesign
optimisation,” International Journal of Bio-Inspired Computa-
tion, vol. 2, no. 2, pp. 78–84, 2010.

[49] S. L. Tilahun and H. C. Ong, “Modified firefly algorithm,”
Journal of Applied Mathematics, vol. 2012, Article ID 467631,
12 pages, 2012.

[50] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver
Press, Frome, UK, 2nd edition, 2010.

[51] X.-S. Yang, Engineering Optimization: An Introduction with
Metaheuristic Applications, Wiley & Sons, New Jersey, NJ, USA,
2010.

[52] I. Fister, I. Fister Jr., X. S. Yang, and J. Brest, “A comprehensive
review of firefly algorithms,” Swarm and Evolutionary Compu-
tation. In press.

[53] I. Fister, X. S. Yang, J. Brest, and I. Fister Jr., “Memetic self-
adaptive firefly algorithm,” in Swarm Intelligence and Bio-
Inspired Computation: Theory and Applications, X. S. Yang, Z.
Cui, R. Xiao, A. H. Gandomi, and M. Karamanoglu, Eds., pp.
73–102, Elsevier, 2013.


