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Left and right inverse eigenpairs problem for 𝜅-hermitian matrices and its optimal approximate problem are considered. Based on
the special properties of 𝜅-hermitian matrices, the equivalent problem is obtained. Combining a new inner product of matrices,
the necessary and sufficient conditions for the solvability of the problem and its general solutions are derived. Furthermore, the
optimal approximate solution and a calculation procedure to obtain the optimal approximate solution are provided.

1. Introduction

Throughout this paper we use some notations as follows. Let
𝐶
𝑛×𝑚 be the set of all 𝑛×𝑚 complex matrices,𝑈𝐶

𝑛×𝑛,𝐻𝐶
𝑛×𝑛,

𝑆𝐻𝐶
𝑛×𝑛 denote the set of all 𝑛×𝑛 unitary matrices, hermitian

matrices, skew-hermitian matrices, respectively. Let 𝐴, 𝐴𝐻,
and𝐴

+ be the conjugate, conjugate transpose, and theMoore-
Penrose generalized inverse of 𝐴, respectively. For 𝐴, 𝐵 ∈

𝐶
𝑛×𝑚, ⟨𝐴, 𝐵⟩ = re(tr(𝐵𝐻𝐴)), where re(tr(𝐵𝐻𝐴)) denotes the

real part of tr(𝐵𝐻𝐴), the inner product of matrices 𝐴 and 𝐵.
The induced matrix norm is called Frobenius norm. That is,
‖𝐴‖ = ⟨𝐴, 𝐴⟩

1/2

= (tr(𝐴𝐻𝐴))
1/2.

Left and right inverse eigenpairs problem is a special
inverse eigenvalue problem. That is, giving partial left and
right eigenpairs (eigenvalue and corresponding eigenvector),
(𝜆
𝑖
, 𝑥
𝑖
), 𝑖 = 1, . . . , ℎ; (𝜇

𝑗
, 𝑦
𝑗
), 𝑗 = 1, . . . , 𝑙, a special matrix set

𝑆, finding a matrix 𝐴 ∈ 𝑆 such that

𝐴𝑥
𝑖
= 𝜆
𝑖
𝑥
𝑖
, 𝑖 = 1, . . . , ℎ,

𝑦
𝑇

𝑗
𝐴 = 𝜇

𝑗
𝑦
𝑇

𝑗
, 𝑗 = 1, . . . , 𝑙.

(1)

This problem, which usually arises in perturbation analysis
of matrix eigenvalues and in recursive matters, has profound
application background [1–6]. When the matrix set 𝑆 is
different, it is easy to obtain different left and right inverse

eigenpairs problem. For example, we studied the left and
right inverse eigenpairs problem of skew-centrosymmetric
matrices and generalized centrosymmetric matrices, respec-
tively [5, 6]. Based on the special properties of left and right
eigenpairs of these matrices, we derived the solvability condi-
tions of the problem and its general solutions. In this paper,
combining the special properties of 𝜅-hermitianmatrices and
a new inner product ofmatrices, we first obtain the equivalent
problem, then derive the necessary and sufficient conditions
for the solvability of the problem and its general solutions.

Hill and Waters [7] introduced the following matrices.

Definition 1. Let 𝜅 be a fixed product of disjoint transposi-
tions, and let𝐾 be the associated permutation matrix, that is,
𝐾 = 𝐾

𝐻

= 𝐾, 𝐾2 = 𝐼
𝑛
, a matrix 𝐴 ∈ 𝐶

𝑛×𝑛 is said to be 𝜅-
hermitian matrices (skew 𝜅-hermitian matrices) if and only
if 𝑎
𝑖𝑗
= 𝑎
𝑘(𝑗)𝑘(𝑖)

(𝑎
𝑖𝑗
= −𝑎
𝑘(𝑗)𝑘(𝑖)

), 𝑖, 𝑗 = 1, . . . , 𝑛. We denote the
set of 𝜅-hermitian matrices (skew 𝜅-hermitian matrices) by
𝐾𝐻𝐶
𝑛×𝑛

(𝑆𝐾𝐻𝐶
𝑛×𝑛

).

FromDefinition 1, it is easy to see that hermitianmatrices
and perhermitian matrices are special cases of 𝜅-hermitian
matrices, with 𝑘(𝑖) = 𝑖 and 𝑘(𝑖) = 𝑛 − 𝑖 + 1, respectively.
Hermitian matrices and perhermitian matrices, which are
one of twelve symmetry patterns of matrices [8], are applied
in engineering, statistics, and so on [9, 10].
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From Definition 1, it is also easy to prove the following
conclusions.

(1) 𝐴 ∈ 𝐾𝐻𝐶
𝑛×𝑛 if and only if 𝐴 = 𝐾𝐴

𝐻

𝐾.
(2) 𝐴 ∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛 if and only if 𝐴 = −𝐾𝐴
𝐻

𝐾.
(3) If 𝐾 is a fixed permutation matrix, then 𝐾𝐻𝐶

𝑛×𝑛 and
𝑆𝐾𝐻𝐶

𝑛×𝑛 are the closed linear subspaces of 𝐶𝑛×𝑛 and
satisfy

𝐶
𝑛×𝑛

= 𝐾𝐻𝐶
𝑛×𝑛

⨁𝑆𝐾𝐻𝐶
𝑛×𝑛

. (2)

The notation 𝑉
1
⊕ 𝑉
2
stands for the orthogonal direct sum of

linear subspace 𝑉
1
and 𝑉

2
.

(4) 𝐴 ∈ 𝐾𝐻𝐶
𝑛×𝑛 if and only if there is a matrix 𝐴̃ ∈

𝐻𝐶
𝑛×𝑛 such that 𝐴̃ = 𝐾𝐴.

(5) 𝐴 ∈ 𝑆𝐾𝐻𝐶
𝑛×𝑛 if and only if there is a matrix 𝐴̃ ∈

𝑆𝐻𝐶
𝑛×𝑛 such that 𝐴̃ = 𝐾𝐴.

Proof. (1) From Definition 1, if 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐾𝐻𝐶

𝑛×𝑛, then
𝑎
𝑖𝑗
= 𝑎
𝑘(𝑗)𝑘(𝑖)

, this implies𝐴 = 𝐾𝐴
𝐻

𝐾, for𝐾𝐴
𝐻

𝐾 = (𝑎
𝑘(𝑗)𝑘(𝑖)

).
(2)With the samemethod, we can prove (2). So, the proof

is omitted.

(3) (a) For any 𝐴 ∈ 𝐶
𝑛×𝑛, there exist 𝐴

1
∈ 𝐾𝐻𝐶

𝑛×𝑛,
𝐴
2
∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛 such that

𝐴 = 𝐴
1
+ 𝐴
2
, (3)

where 𝐴
1
= (1/2)(A + 𝐾𝐴

𝐻

𝐾), 𝐴
2
= (1/2)(𝐴 −

𝐾𝐴
𝐻

𝐾).
(b) If there exist another 𝐴

1
∈ 𝐾𝐻𝐶

𝑛×𝑛, 𝐴
2

∈

𝑆𝐾𝐻𝐶
𝑛×𝑛 such that

𝐴 = 𝐴
1
+ 𝐴
2
, (4)

(3)-(4) yields

𝐴
1
− 𝐴
1
= − (𝐴

2
− 𝐴
2
) . (5)

Multiplying (5) on the left and on the right by
𝐾, respectively, and according to (1) and (2), we
obtain

𝐴
1
− 𝐴
1
= 𝐴
2
− 𝐴
2
. (6)

Combining (5) and (6) gives𝐴
1
= 𝐴
1
,𝐴
2
= 𝐴
2
.

(c) For any𝐴
1
∈ 𝐾𝐻𝐶

𝑛×𝑛,𝐴
2
∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛, we have

⟨𝐴
1
, 𝐴
2
⟩ = re (tr (𝐴𝐻

2
𝐴
1
)) = re (tr (𝐾𝐴

𝐻

2
𝐾𝐾𝐴
1
𝐾))

= re (tr (−𝐴𝐻
2
𝐴
1
)) = − ⟨𝐴

1
, 𝐴
2
⟩ .

(7)

This implies ⟨𝐴
1
, 𝐴
2
⟩ = 0. Combining (a), (b),

and (c) gives (3).

(4) Let 𝐴̃ = 𝐾𝐴, if 𝐴 ∈ 𝐾𝐻𝐶
𝑛×𝑛, then 𝐴̃

𝐻

= 𝐴̃ ∈ 𝐻𝐶
𝑛×𝑛.

If 𝐴̃𝐻 = 𝐴̃ ∈ 𝐻𝐶
𝑛×n, then 𝐴 = 𝐾𝐴̃ and 𝐾𝐴

𝐻

𝐾 = 𝐾𝐴̃

𝐻

𝐾𝐾 =

𝐾𝐴̃ = 𝐴 ∈ 𝐾𝐻𝐶
𝑛×𝑛.

(5)With the samemethod, we can prove (5). So, the proof
is omitted.

In this paper, we suppose that 𝐾 is a fixed permutation
matrix and assume (𝜆

𝑖
, 𝑥
𝑖
), 𝑖 = 1, . . . , ℎ, be right eigenpairs

of 𝐴; (𝜇
𝑗
, 𝑦
𝑗
), 𝑗 = 1, . . . , 𝑙, be left eigenpairs of 𝐴. If we let

𝑋 = (𝑥
1
, . . . , 𝑥

ℎ
) ∈ 𝐶

𝑛×ℎ, Λ = diag (𝜆
1
, . . . , 𝜆

ℎ
) ∈ 𝐶

ℎ×ℎ;
𝑌 = (𝑦

1
, . . . , 𝑦

𝑙
) ∈ 𝐶
𝑛×𝑙, Γ = diag(𝜇

1
, . . . , 𝜇

𝑙
) ∈ 𝐶
𝑙×𝑙, then the

problems studied in this paper can be described as follows.

Problem 2. Giving 𝑋 ∈ 𝐶
𝑛×ℎ, Λ = diag(𝜆

1
, . . . , 𝜆

ℎ
) ∈ 𝐶

ℎ×ℎ;
𝑌 ∈ 𝐶

𝑛×𝑙, Γ = diag(𝜇
1
, . . . , 𝜇

𝑙
) ∈ 𝐶
𝑙×𝑙, find 𝐴 ∈ 𝐾𝐻𝐶

𝑛×𝑛 such
that

𝐴𝑋 = 𝑋Λ,

𝑌
𝑇

𝐴 = Γ𝑌
𝑇

.

(8)

Problem 3. Giving 𝐵 ∈ 𝐶
𝑛×𝑛, find 𝐴̂ ∈ 𝑆

𝐸
such that

󵄩
󵄩
󵄩
󵄩
󵄩
𝐵 − 𝐴̂

󵄩
󵄩
󵄩
󵄩
󵄩
= min
∀𝐴∈𝑆𝐸

‖𝐵 − 𝐴‖ , (9)

where 𝑆
𝐸
is the solution set of Problem 2.

This paper is organized as follows. In Section 2, we first
obtain the equivalent problemwith the properties of𝐾𝐻𝐶

𝑛×𝑛

and then derive the solvability conditions of Problem 2 and its
general solution’s expression. In Section 3, we first attest the
existence and uniqueness theorem of Problem 3 then present
the unique approximation solution. Finally, we provide a
calculation procedure to compute the unique approximation
solution and numerical experiment to illustrate the results
obtained in this paper correction.

2. Solvability Conditions of Problem 2

We first discuss the properties of𝐾𝐻𝐶
𝑛×𝑛

Lemma 4. Denoting 𝑀 = 𝐾𝐸𝐾𝐺𝐸, and 𝐸 ∈ 𝐻𝐶
𝑛×𝑛, one has

the following conclusions.
(1) If 𝐺 ∈ 𝐾𝐻𝐶

𝑛×𝑛, then𝑀 ∈ 𝐾𝐻𝐶
𝑛×𝑛.

(2) If 𝐺 ∈ 𝑆𝐾𝐻𝐶
𝑛×𝑛, then𝑀 ∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛.
(3) If 𝐺 = 𝐺

1
+ 𝐺
2
, where 𝐺

1
∈ 𝐾𝐻𝐶

𝑛×𝑛, 𝐺
2
∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛,
then 𝑀 ∈ 𝐾𝐻𝐶

𝑛×𝑛 if and only if 𝐾𝐸𝐾𝐺
2
𝐸 = 0. In

addition, one has𝑀 = 𝐾𝐸𝐾𝐺
1
𝐸.

Proof. (1) 𝐾𝑀
𝐻

𝐾 = 𝐾𝐸𝐺
𝐻

𝐾𝐸𝐾𝐾 = 𝐾𝐸(𝐾𝐺𝐾)𝐾𝐸 =

𝐾𝐸𝐾𝐺𝐸 = 𝑀.
Hence, we have𝑀 ∈ 𝐾𝐻𝐶

𝑛×𝑛.
(2) 𝐾𝑀

𝐻

𝐾 = 𝐾𝐸𝐺
𝐻

𝐾𝐸𝐾𝐾 = 𝐾𝐸(−𝐾𝐺𝐾)𝐾𝐸 =

−𝐾𝐸𝐾𝐺𝐸 = −𝑀.
Hence, we have𝑀 ∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛.
(3) 𝑀 = 𝐾𝐸𝐾(𝐺

1
+ 𝐺
2
)𝐸 = 𝐾𝐸𝐾𝐺

1
𝐸 + 𝐾𝐸𝐾𝐺

2
𝐸, we

have 𝐾𝐸𝐾𝐺
1
𝐸 ∈ 𝐾𝐻𝐶

𝑛×𝑛, 𝐾𝐸𝐾𝐺
2
𝐸 ∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛 from (1)
and (2). If 𝑀 ∈ 𝐾𝐻𝐶

𝑛×𝑛, then 𝑀 − 𝐾𝐸𝐾𝐺
1
𝐸 ∈ 𝐾𝐻𝐶

𝑛×𝑛,
while𝑀−𝐾𝐸𝐾𝐺

1
𝐸 = 𝐾𝐸𝐾𝐺

2
𝐸 ∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛.Therefore from
the conclusion (3) of Definition 1, we have𝐾𝐸𝐾𝐺

2
𝐸 = 0, that

is,𝑀 = 𝐾𝐸𝐾𝐺
1
𝐸. On the contrary, if𝐾𝐸𝐾𝐺

2
𝐸 = 0, it is clear

that𝑀 = 𝐾𝐸𝐾𝐺
1
𝐸 ∈ 𝐾𝐻𝐶

𝑛×𝑛. The proof is completed.

Lemma 5. Let 𝐴 ∈ 𝐾𝐻𝐶
𝑛×𝑛, if (𝜆, 𝑥) is a right eigenpair of 𝐴,

then (𝜆, 𝐾𝑥) is a left eigenpair of 𝐴.
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Proof. If (𝜆, 𝑥) is a right eigenpair of 𝐴, then we have

𝐴𝑥 = 𝜆𝑥. (10)

From the conclusion (1) of Definition 1, it follows that

𝐾𝐴
𝐻

𝐾𝑥 = 𝜆𝑥. (11)

This implies

(𝐾𝑥)
𝑇

𝐴 = 𝜆(𝐾𝑥)
𝑇

. (12)

So (𝜆, 𝐾𝑥) is a left eigenpair of 𝐴.

From Lemma 5, without loss of the generality, we may
assume that Problem 2 is as follows.

𝑋 ∈ 𝐶
𝑛×ℎ

, Λ = diag (𝜆
1
, . . . , 𝜆

ℎ
) ∈ 𝐶
ℎ×ℎ

,

𝑌 = 𝐾𝑋 ∈ 𝐶
𝑛×ℎ

, Γ = Λ ∈ 𝐶
ℎ×ℎ

.

(13)

Combining (13) and the conclusion (4) of Definition 1, it
is easy to derive the following lemma.

Lemma 6. If 𝑋, Λ, 𝑌, Γ are given by (13), then Problem 2 is
equivalent to the following problem. If 𝑋, Λ, 𝑌, Γ are given by
(13), find 𝐾𝐴 ∈ 𝐻𝐶

𝑛×𝑛 such that

𝐾𝐴𝑋 = 𝐾𝑋Λ. (14)

Lemma 7 (see [11]). If giving𝑋 ∈ 𝐶
𝑛×ℎ,𝐵 ∈ 𝐶

𝑛×ℎ, thenmatrix
equation 𝐴̃𝑋 = 𝐵 has solution 𝐴̃ ∈ 𝐻𝐶

𝑛×𝑛 if and only if

𝐵 = 𝐵𝑋
+

𝑋, 𝐵
𝐻

𝑋 = 𝑋
𝐻

𝐵. (15)

Moreover, the general solution 𝐴̃ can be expressed as

𝐴̃ = 𝐵𝑋
+

+ (𝐵𝑋
+

)

𝐻

(𝐼
𝑛
− 𝑋𝑋

+

)

+ (𝐼
𝑛
− 𝑋𝑋

+

) 𝐺̃ (𝐼
𝑛
− 𝑋𝑋

+

) , ∀𝐺̃ ∈ 𝐻𝐶
𝑛×𝑛

.

(16)

Theorem 8. If𝑋,Λ,𝑌, Γ are given by (13), then Problem 2 has
a solution in 𝐾𝐻𝐶

𝑛×𝑛 if and only if

𝑋
𝐻

𝐾𝑋Λ = Λ𝑋
𝐻

𝐾𝑋, 𝑋Λ = 𝑋Λ𝑋
+

𝑋. (17)

Moreover, the general solution can be expressed as

𝐴 = 𝐴
0
+ 𝐾𝐸𝐾𝐺𝐸, ∀𝐺 ∈ 𝐾𝐻𝐶

𝑛×𝑛

, (18)

where

𝐴
0
= 𝑋Λ𝑋

+

+ 𝐾(𝑋Λ𝑋
+

)

𝐻

𝐾𝐸, 𝐸 = 𝐼
𝑛
− 𝑋𝑋

+

. (19)

Proof. Necessity: If there is a matrix 𝐴 ∈ 𝐾𝐻𝐶
𝑛×𝑛 such that

(𝐴𝑋 = 𝑋Λ, 𝑌𝑇𝐴 = Γ𝑌
𝑇

), then from Lemma 6, there exists a
matrix 𝐾𝐴 ∈ 𝐻𝐶

𝑛×𝑛 such that 𝐾𝐴𝑋 = 𝐾𝑋Λ, and according
to Lemma 7, we have

𝐾𝑋Λ = 𝐾𝑋Λ𝑋
+

𝑋, (𝐾𝑋Λ)
𝐻

𝑋 = 𝑋
𝐻

(𝐾𝑋Λ) . (20)

It is easy to see that (20) is equivalent to (17).

Sufficiency: If (17) holds, then (20) holds. Hence, matrix
equation𝐾𝐴𝑋 = 𝐾𝑋Λ has solution𝐾𝐴 ∈ 𝐻𝐶

𝑛×𝑛. Moreover,
the general solution can be expressed as follows:

𝐾𝐴 = 𝐾𝑋Λ𝑋
+

+ (𝐾𝑋Λ𝑋
+

)

𝐻

(𝐼
𝑛
− 𝑋𝑋

+

)

+ (𝐼
𝑛
− 𝑋𝑋

+

) 𝐺̃ (𝐼
𝑛
− 𝑋𝑋

+

) , ∀𝐺̃ ∈ 𝐻𝐶
𝑛×𝑛

.

(21)

Let

𝐴
0
= 𝑋Λ𝑋

+

+ 𝐾(𝑋Λ𝑋
+

)

𝐻

𝐾𝐸, 𝐸 = 𝐼
𝑛
− 𝑋𝑋

+

. (22)

This implies 𝐴 = 𝐴
0
+ 𝐾𝐸𝐺̃𝐸. Combining the definition of

𝐾, 𝐸 and the first equation of (17), we have

𝐾𝐴
𝐻

0
𝐾 = 𝐾(𝑋Λ𝑋

+

)

𝐻

𝐾 + 𝑋Λ𝑋
+

− 𝐾(𝑋𝑋
+

)

𝐻

𝐾(𝑋Λ𝑋
+

)

= 𝑋Λ𝑋
+

+ 𝐾(𝑋Λ𝑋
+

)

𝐻

𝐾 − 𝐾(𝑋Λ𝑋
+

)

𝑇

𝐾𝑋𝑋
+

= 𝐴
0
.

(23)

Hence,𝐴
0
∈ 𝐾𝐻𝐶

𝑛×𝑛. Combining the definition of𝐾, 𝐸, (13)
and (17), we have

𝐴
0
𝑋 = 𝑋Λ𝑋

+

𝑋 + 𝐾(𝑋Λ𝑋
+

)

𝐻

𝐾(𝐼
𝑛
− 𝑋𝑋

+

)𝑋 = 𝑋Λ,

𝑌
𝑇

𝐴
0
= 𝑋
𝐻

𝐾𝑋Λ𝑋
+

+ 𝑋
𝐻

𝐾𝐾(𝑋Λ𝑋
+

)

𝐻

𝐾𝐸

= Λ𝑋
𝐻

𝐾𝑋𝑋
+

+ (𝐾𝑋Λ𝑋
+

𝑋)

𝐻

(𝐼
𝑛
− 𝑋𝑋

+

)

= Λ𝑋
𝐻

𝐾𝑋𝑋
+

+ Λ𝑋
𝐻

𝐾(𝐼
𝑛
− 𝑋𝑋

+

)

= Λ𝑋
𝐻

𝐾 = Γ𝑌
𝑇

.

(24)

Therefore, 𝐴
0
is a special solution of Problem 2. Combining

the conclusion (4) of Definition 1, Lemma 4, and 𝐸 = 𝐼
𝑛
−

𝑋𝑋
+

∈ 𝐻𝐶
𝑛×𝑛, it is easy to prove that 𝐴 = 𝐴

0
+ 𝐾𝐸𝐾𝐺𝐸 ∈

𝐾𝐻𝐶
𝑛×𝑛 if and only if 𝐺 ∈ 𝐾𝐻𝐶

𝑛×𝑛. Hence, the solution set
of Problem 2 can be expressed as (18).

3. An Expression of the Solution of Problem 3

From (18), it is easy to prove that the solution set 𝑆
𝐸
of

Problem 2 is a nonempty closed convex set if Problem 2 has
a solution in 𝐾𝐻𝐶

𝑛×𝑛. We claim that for any given 𝐵 ∈ 𝑅
𝑛×𝑛,

there exists a unique optimal approximation for Problem 3.

Theorem9. Giving𝐵 ∈ 𝐶
𝑛×𝑛, if the conditions of𝑋,𝑌,Λ, Γ are

the same as those in Theorem 8, then Problem 3 has a unique
solution 𝐴̂ ∈ 𝑆

𝐸
. Moreover, 𝐴̂ can be expressed as

𝐴̂ = 𝐴
0
+ 𝐾𝐸𝐾𝐵

1
𝐸, (25)

where 𝐴
0
, 𝐸 are given by (19) and 𝐵

1
= (1/2)(𝐵 + 𝐾𝐵

𝐻

𝐾).

Proof. Denoting𝐸
1
= 𝐼
𝑛
−𝐸, it is easy to prove thatmatrices𝐸

and𝐸
1
are orthogonal projectionmatrices satisfying𝐸𝐸

1
= 0.

It is clear that matrices 𝐾𝐸𝐾 and 𝐾𝐸
1
𝐾 are also orthogonal
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projection matrices satisfying (𝐾𝐸𝐾)(𝐾𝐸
1
𝐾) = 0. According

to the conclusion (3) of Definition 1, for any 𝐵 ∈ 𝐶
𝑛×𝑛, there

exists unique

𝐵
1
∈ 𝐾𝐻𝐶

𝑛×𝑛

, 𝐵
2
∈ 𝑆𝐾𝐻𝐶

𝑛×𝑛 (26)

such that

𝐵 = 𝐵
1
+ 𝐵
2
, ⟨𝐵

1
, 𝐵
2
⟩ = 0, (27)

where

𝐵
1
=

1

2

(𝐵 + 𝐾𝐵
𝐻

𝐾) , 𝐵
2
=

1

2

(𝐵 − 𝐾𝐵
𝐻

𝐾) . (28)

CombiningTheorem 8, for any 𝐴 ∈ 𝑆
𝐸
, we have

‖𝐵 − 𝐴‖
2

=
󵄩
󵄩
󵄩
󵄩
𝐵 − 𝐴

0
− 𝐾𝐸𝐾𝐺𝐸

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝐵
1
+ 𝐵
2
− 𝐴
0
− 𝐾𝐸𝐾𝐺𝐸

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝐵
1
− 𝐴
0
− 𝐾𝐸𝐾𝐺𝐸

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝐵
2

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
(𝐵
1
− 𝐴
0
) (𝐸 + 𝐸

1
) − 𝐾𝐸𝐾𝐺𝐸

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝐵
2

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
(𝐵
1
− 𝐴
0
) 𝐸 − 𝐾𝐸𝐾𝐺𝐸

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
(𝐵
1
− 𝐴
0
) 𝐸
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝐵
2

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝐾 (𝐸 + 𝐸

1
)𝐾 (𝐵

1
− 𝐴
0
) 𝐸 − 𝐾𝐸𝐾𝐺𝐸

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
(𝐵
1
− 𝐴
0
) 𝐸
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝐵
2

󵄩
󵄩
󵄩
󵄩

2

=
󵄩
󵄩
󵄩
󵄩
𝐾𝐸𝐾 (𝐵

1
− 𝐴
0
) 𝐸 − 𝐾𝐸𝐾𝐺𝐸

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝐾𝐸
1
𝐾(𝐵
1
− 𝐴
0
) 𝐸

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
(𝐵
1
− 𝐴
0
)𝐸
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝐵
2

󵄩
󵄩
󵄩
󵄩

2

.

(29)

It is easy to prove that 𝐾𝐸𝐾𝐴
0
𝐸 = 0 according to the

definitions of 𝐴
0
, 𝐸. So we have

‖𝐵 − 𝐴‖
2

=
󵄩
󵄩
󵄩
󵄩
𝐾𝐸𝐾𝐵

1
𝐸 − 𝐾𝐸𝐾𝐺𝐸

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝐾𝐸
1
𝐾(𝐵
1
− 𝐴
0
) 𝐸

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
(𝐵
1
− 𝐴
0
)𝐸
1

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝐵
2

󵄩
󵄩
󵄩
󵄩

2

.

(30)

Obviously, min
𝐴∈𝑆𝐸

‖𝐵 − 𝐴‖ is equivalent to

min
𝐺∈𝐾𝐻𝐶

𝑛×𝑛

󵄩
󵄩
󵄩
󵄩
𝐾𝐸𝐾𝐵

1
𝐸 − 𝐾𝐸𝐾𝐺𝐸

󵄩
󵄩
󵄩
󵄩
. (31)

Since 𝐸𝐸
1

= 0, (𝐾𝐸𝐾)(𝐾𝐸
1
𝐾) = 0, it is clear that 𝐺 =

𝐵
1
+ 𝐾𝐸
1
𝐾𝐺̂𝐸
1
, for any 𝐺̂ ∈ 𝐾𝐻𝐶

𝑛×𝑛, is a solution of (31).
Substituting this result to (18), we can obtain (25).

Algorithm 10. (1) Input 𝑋, Λ, 𝑌, Γ according to (13). (2)
Compute 𝑋

𝐻

𝐾𝑋Λ, Λ𝑋
𝐻

𝐾𝑋, 𝑋Λ𝑋
+

𝑋, 𝑋Λ, if (17) holds,
then continue; otherwise stop. (3) Compute 𝐴

0
according to

(19), and compute 𝐵
1
according to (28). (4) According to (25)

calculate 𝐴̂.

Example 11 (𝑛 = 8, ℎ = 𝑙 = 4).

𝑋 =

(

(

(

(

(

0.5661 −0.2014 − 0.1422𝑖 0.1446 + 0.2138𝑖 0.524

−0.2627 + 0.1875𝑖 0.5336 −0.2110 − 0.4370𝑖 −0.0897 + 0.3467𝑖

−0.4132 + 0.2409𝑖 0.0226 − 0.0271𝑖 −0.1095 + 0.2115𝑖 −0.3531 − 0.0642𝑖

−0.0306 + 0.2109𝑖 −0.3887 − 0.0425𝑖 0.2531 + 0.2542𝑖 0.0094 + 0.2991𝑖

0.0842 − 0.1778𝑖 −0.0004 − 0.3733𝑖 0.3228 − 0.1113𝑖 0.1669 + 0.1952𝑖

0.0139 − 0.3757𝑖 −0.2363 + 0.3856𝑖 0.2583 + 0.0721𝑖 0.1841 − 0.2202𝑖

0.0460 + 0.3276𝑖 −0.1114 + 0.0654𝑖 −0.0521 − 0.2556𝑖 −0.2351 + 0.3002𝑖

0.0085 − 0.1079𝑖 0.0974 + 0.3610𝑖 0.5060 −0.2901 − 0.0268𝑖

)

)

)

)

)

,

Λ = (

−0.3967 − 0.4050𝑖 0 0 0

0 −0.3967 + 0.4050𝑖 0 0

0 0 0.0001 0

0 0 0 −0.0001𝑖

) ,

𝐾 =

(

(

(

(

(

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

)

)

)

)

)

,

𝑌 = 𝐾𝑋, Γ = Λ

(32)
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𝐵 =

From the first column to the fourth column

(

(

(

(

(

−0.5218 + 0.0406𝑖 0.2267 − 0.0560𝑖 −0.1202 + 0.0820𝑖 −0.0072 − 0.3362𝑖

0.3909 − 0.3288𝑖 0.2823 − 0.2064𝑖 −0.0438 − 0.0403𝑖 0.2707 + 0.0547𝑖

0.2162 − 0.1144𝑖 −0.4307 + 0.2474𝑖 −0.0010 − 0.0412𝑖 0.2164 − 0.1314𝑖

−0.1872 − 0.0599𝑖 −0.0061 + 0.4698𝑖 0.3605 − 0.0247𝑖 0.4251 + 0.1869𝑖

−0.1227 − 0.0194𝑖 0.2477 − 0.0606𝑖 0.3918 + 0.6340𝑖 0.1226 + 0.0636𝑖

−0.0893 + 0.4335𝑖 0.0662 + 0.0199𝑖 −0.0177 − 0.1412𝑖 0.4047 + 0.2288𝑖

0.1040 − 0.2015𝑖 0.1840 + 0.2276𝑖 0.2681 − 0.3526𝑖 −0.5252 + 0.1022𝑖

0.1808 + 0.2669𝑖 0.2264 + 0.3860𝑖 −0.1791 + 0.1976𝑖 −0.0961 − 0.0117𝑖

(33)

From the fifth column to the eighth column

−0.2638 − 0.4952𝑖 −0.0863 − 0.1664𝑖 0.2687 + 0.1958𝑖 −0.2544 − 0.1099𝑖

−0.2741 − 0.1656𝑖 −0.0227 + 0.2684𝑖 0.1846 + 0.2456𝑖 −0.0298 + 0.5163𝑖

−0.1495 − 0.3205𝑖 0.1391 + 0.2434𝑖 0.1942 − 0.5211𝑖 −0.3052 − 0.1468𝑖

−0.2554 + 0.2690𝑖 −0.4222 − 0.1080𝑖 0.2232 + 0.0774𝑖 0.0965 − 0.0421𝑖

0.3856 − 0.0619𝑖 0.1217 − 0.0270𝑖 0.1106 − 0.3090𝑖 −0.1122 + 0.2379𝑖

−0.1130 + 0.0766𝑖 0.7102 − 0.0901𝑖 0.1017 + 0.1397𝑖 −0.0445 + 0.0038𝑖

0.1216 + 0.0076𝑖 0.2343 − 0.1772𝑖 0.5242 − 0.0089𝑖 −0.0613 + 0.0258𝑖

−0.0750 − 0.3581𝑖 0.0125 + 0.0964𝑖 0.0779 − 0.1074𝑖 0.6735 − 0.0266𝑖

)

)

)

)

)

. (34)

It is easy to see that matrices 𝑋, Λ, 𝑌, Γ satisfy (17). Hence,
there exists the unique solution for Problem 3. Using the

software “MATLAB”, we obtain the unique solution 𝐴̂ of
Problem 3.

From the first column to the fourth column

(

(

(

(

(

−0.1983 + 0.0491𝑖 0.1648 + 0.0032𝑖 0.0002 + 0.1065𝑖 0.1308 + 0.2690𝑖

0.1071 − 0.2992𝑖 0.2106 + 0.2381𝑖 −0.0533 − 0.3856𝑖 −0.0946 + 0.0488𝑖

0.1935 − 0.1724𝑖 −0.0855 − 0.0370𝑖 0.0200 − 0.0665𝑖 −0.2155 − 0.0636𝑖

0.0085 − 0.2373𝑖 −0.0843 − 0.1920𝑖 0.0136 + 0.0382𝑖 −0.0328 − 0.0000𝑖

−0.0529 + 0.1703𝑖 0.1948 − 0.0719𝑖 0.1266 + 0.1752𝑖 0.0232 − 0.2351𝑖

0.0855 + 0.1065𝑖 0.0325 − 0.2068𝑖 0.2624 + 0.0000𝑖 0.0136 − 0.0382𝑖

0.1283 − 0.1463𝑖 −0.0467 + 0.0000𝑖 0.0325 + 0.2067𝑖 −0.0843 + 0.1920𝑖

0.2498 + 0.0000𝑖 0.1283 + 0.1463𝑖 0.0855 − 0.1065𝑖 0.0086 + 0.2373𝑖

(35)

From the fifth column to the eighth column

0.2399 − 0.1019𝑖 0.1928 − 0.1488𝑖 −0.3480 − 0.2574𝑖 0.1017 − 0.0000𝑖

−0.1955 + 0.0644𝑖 0.2925 + 0.1872𝑖 0.3869 + 0.0000𝑖 −0.3481 + 0.2574𝑖

0.0074 + 0.0339𝑖 −0.3132 − 0.0000𝑖 0.2926 − 0.1872𝑖 0.1928 + 0.1488𝑖

0.0232 + 0.2351𝑖 −0.2154 + 0.0636𝑖 −0.0946 − 0.0489𝑖 0.1309 − 0.2691𝑖

−0.0545 − 0.0000𝑖 0.0074 − 0.0339𝑖 −0.1955 − 0.0643𝑖 0.2399 + 0.1019𝑖

0.1266 − 0.1752𝑖 0.0200 + 0.0665𝑖 −0.0533 + 0.3857𝑖 0.0002 − 0.1065𝑖

0.1949 + 0.0719𝑖 −0.0855 + 0.0370𝑖 0.2106 − 0.2381𝑖 0.1648 − 0.0032𝑖

−0.0529 − 0.1703𝑖 0.1935 + 0.1724𝑖 0.1071 + 0.2992𝑖 −0.1983 − 0.0491𝑖

)

)

)

)

)

. (36)
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