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We propose an iterative algorithm for solving the reflexive solution of the quaternion matrix equation 𝐴𝑋𝐵 + 𝐶𝑋
𝐻
𝐷 = 𝐹. When

the matrix equation is consistent over reflexive matrix X, a reflexive solution can be obtained within finite iteration steps in the
absence of roundoff errors. By the proposed iterative algorithm, the least Frobenius norm reflexive solution of the matrix equation
can be derived when an appropriate initial iterative matrix is chosen. Furthermore, the optimal approximate reflexive solution to a
given reflexive matrix𝑋

0
can be derived by finding the least Frobenius norm reflexive solution of a new corresponding quaternion

matrix equation. Finally, two numerical examples are given to illustrate the efficiency of the proposed methods.

1. Introduction

Throughout the paper, the notations R𝑚×𝑛 and H𝑚×𝑛 repre-
sent the set of all 𝑚 × 𝑛 real matrices and the set of all 𝑚 × 𝑛

matrices over the quaternion algebraH = {𝑎
1
+ 𝑎

2
𝑖+ 𝑎

3
𝑗+ 𝑎

4
𝑘 |

𝑖
2
= 𝑗

2
= 𝑘

2
= 𝑖𝑗𝑘 = −1, 𝑎

1
, 𝑎

2
, 𝑎

3
, 𝑎

4
∈ R}. We denote the

identity matrix with the appropriate size by 𝐼. We denote the
conjugate transpose, the transpose, the conjugate, the trace,
the column space, the real part, the 𝑚𝑛 × 1 vector formed
by the vertical concatenation of the respective columns
of a matrix 𝐴 by 𝐴

𝐻
, 𝐴

𝑇
, 𝐴, tr(𝐴), 𝑅(𝐴),Re(𝐴), and vec(𝐴),

respectively.The Frobenius norm of𝐴 is denoted by ‖𝐴‖, that
is, ‖𝐴‖ = √tr(𝐴𝐻𝐴). Moreover,𝐴⊗𝐵 and𝐴⊙𝐵 stand for the
Kronecker matrix product and Hadmard matrix product of
the matrices 𝐴 and 𝐵.

Let 𝑄 ∈ H𝑛×𝑛 be a generalized reflection matrix, that is,
𝑄

2
= 𝐼 and 𝑄

𝐻
= 𝑄. A matrix 𝐴 is called reflexive with

respect to the generalized reflection matrix 𝑄, if 𝐴 = 𝑄𝐴𝑄.
It is obvious that any matrix is reflexive with respect to 𝐼.
Let RH𝑛×𝑛

(𝑄) denote the set of order 𝑛 reflexive matrices
with respect to 𝑄. The reflexive matrices with respect to a
generalized reflection matrix 𝑄 have been widely used in
engineering and scientific computations [1, 2].

In the field of matrix algebra, quaternion matrix equa-
tions have received much attention. Wang et al. [3] gave
necessary and sufficient conditions for the existence and
the representations of P-symmetric and P-skew-symmetric
solutions of quaternion matrix equations 𝐴

𝑎
𝑋 = 𝐶

𝑎
and

𝐴
𝑏
𝑋𝐵

𝑏
= 𝐶

𝑏
. Yuan and Wang [4] derived the expressions of

the least squares 𝜂-Hermitian solution with the least norm
and the expressions of the least squares anti-𝜂-Hermitian
solution with the least norm for the quaternion matrix
equation 𝐴𝑋𝐵 + 𝐶𝑋𝐷 = 𝐸. Jiang and Wei [5] derived
the explicit solution of the quaternion matrix equation 𝑋 −

𝐴𝑋𝐵 = 𝐶. Li and Wu [6] gave the expressions of symmetric
and skew-antisymmetric solutions of the quaternion matrix
equations 𝐴

1
𝑋 = 𝐶

1
and 𝑋𝐵

3
= 𝐶

3
. Feng and Cheng [7]

gave a clear description of the solution set of the quaternion
matrix equation 𝐴𝑋 − 𝑋𝐵 = 0.

The iterative method is a very important method to
solve matrix equations. Peng [8] constructed a finite iteration
method to solve the least squares symmetric solutions of
linear matrix equation 𝐴𝑋𝐵 = 𝐶. Also Peng [9–11] presented
several efficient iteration methods to solve the constrained
least squares solutions of linear matrix equations 𝐴𝑋𝐵 =

𝐶 and 𝐴𝑋𝐵 + 𝐶𝑌𝐷 = 𝐸, by using Paige’s algorithm [12]
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as the frame method. Duan et al. [13–17] proposed iterative
algorithms for the (Hermitian) positive definite solutions
of some nonlinear matrix equations. Ding et al. proposed
the hierarchical gradient-based iterative algorithms [18] and
hierarchical least squares iterative algorithms [19] for solving
general (coupled) matrix equations, based on the hierarchi-
cal identification principle [20]. Wang et al. [21] proposed
an iterative method for the least squares minimum-norm
symmetric solution of 𝐴X𝐵 = 𝐸. Dehghan and Hajarian
constructed finite iterative algorithms to solve several linear
matrix equations over (anti)reflexive [22–24], generalized
centrosymmetric [25, 26], and generalized bisymmetric [27,
28] matrices. Recently, Wu et al. [29–31] proposed iterative
algorithms for solving various complex matrix equations.

However, to the best of our knowledge, there has been
little information on iterative methods for finding a solution
of a quaternionmatrix equation. Due to the noncommutative
multiplication of quaternions, the study of quaternionmatrix
equations is more complex than that of real and complex
equations. Motivated by the work mentioned above and
keeping the interests and wide applications of quaternion
matrices in view (e.g., [32–45]), we, in this paper, consider
an iterative algorithm for the following two problems.

Problem 1. For given matrices 𝐴,𝐶 ∈ H𝑚×𝑛
, 𝐵, 𝐷 ∈

H𝑛×𝑝
, 𝐹 ∈ H𝑚×𝑝 and the generalized reflectionmatrix𝑄, find

𝑋 ∈ RH𝑛×𝑛
(𝑄), such that

𝐴𝑋𝐵 + 𝐶𝑋
𝐻
𝐷 = 𝐹. (1)

Problem 2. When Problem 1 is consistent, let its solution
set be denoted by 𝑆

𝐻
. For a given reflexive matrix 𝑋

0
∈

RH𝑛×𝑛
(𝑄), find 𝑋̆ ∈ RH𝑛×𝑛

(𝑄), such that
󵄩󵄩󵄩󵄩󵄩
𝑋̆ − 𝑋

0

󵄩󵄩󵄩󵄩󵄩
= min

𝑋∈𝑆𝐻

󵄩󵄩󵄩󵄩𝑋 − 𝑋
0

󵄩󵄩󵄩󵄩 . (2)

The remainder of this paper is organized as follows.
In Section 2, we give some preliminaries. In Section 3, we
introduce an iterative algorithm for solving Problem 1. Then
we prove that the given algorithm can be used to obtain a
reflexive solution for any initial matrix within finite steps
in the absence of roundoff errors. Also we prove that the
least Frobenius norm reflexive solution can be obtained by
choosing a special kind of initial matrix. In addition, the
optimal reflexive solution of Problem 2 by finding the least
Frobenius norm reflexive solution of a new matrix equation
is given. In Section 4, we give two numerical examples to
illustrate our results. In Section 5, we give some conclusions
to end this paper.

2. Preliminary

In this section, we provide some results which will play
important roles in this paper. First, we give a real inner
product for the space H𝑚×𝑛 over the real field R.

Theorem 3. In the space H𝑚×𝑛 over the field R, a real inner
product can be defined as

⟨𝐴, 𝐵⟩ = Re [tr (𝐵𝐻
𝐴)] (3)

for 𝐴, 𝐵 ∈ H𝑚×𝑛. This real inner product space is denoted as
(H𝑚×𝑛

,R, ⟨⋅, ⋅⟩).

Proof. (1) For 𝐴 ∈ H𝑚×𝑛, let 𝐴 = 𝐴
1
+ 𝐴

2
𝑖 + 𝐴

3
𝑗 + 𝐴

4
𝑘, then

⟨𝐴, 𝐴⟩ = Re [tr (𝐴𝐻
𝐴)]

= tr (𝐴𝑇

1
𝐴

1
+ 𝐴

𝑇

2
𝐴

2
+ 𝐴

𝑇

3
𝐴

3
+ 𝐴

𝑇

4
𝐴

4
) .

(4)

It is obvious that ⟨𝐴, 𝐴⟩ > 0 and ⟨𝐴, 𝐴⟩ = 0 ⇔ 𝐴 = 0.
(2) For 𝐴, 𝐵 ∈ H𝑚×𝑛, let 𝐴 = 𝐴

1
+ 𝐴

2
𝑖 + 𝐴

3
𝑗 + 𝐴

4
𝑘 and

𝐵 = 𝐵
1
+ 𝐵

2
𝑖 + 𝐵

3
𝑗 + 𝐵

4
𝑘, then we have

⟨𝐴, 𝐵⟩ = Re [tr (𝐵𝐻
𝐴)]

= tr (𝐵𝑇

1
𝐴

1
+ 𝐵

𝑇

2
𝐴

2
+ 𝐵

𝑇

3
𝐴

3
+ 𝐵

𝑇

4
𝐴

4
)

= tr (𝐴𝑇

1
𝐵

1
+ 𝐴

𝑇

2
𝐵

2
+ 𝐴

𝑇

3
𝐵

3
+ 𝐴

𝑇

4
𝐵

4
)

= Re [tr (𝐴𝐻
𝐵)] = ⟨𝐵, 𝐴⟩ .

(5)

(3) For 𝐴, 𝐵, 𝐶 ∈ H𝑚×𝑛

⟨𝐴 + 𝐵, 𝐶⟩ = Re {tr [𝐶𝐻
(𝐴 + 𝐵)]}

= Re [tr (𝐶𝐻
𝐴 + 𝐶

𝐻
𝐵)]

= Re [tr (𝐶𝐻
𝐴)] + Re [tr (𝐶𝐻

𝐵)]

= ⟨𝐴, 𝐶⟩ + ⟨𝐵, 𝐶⟩ .

(6)

(4) For 𝐴, 𝐵 ∈ H𝑚×𝑛 and 𝑎 ∈ R,

⟨𝑎𝐴, 𝐵⟩ = Re {tr [𝐵𝐻
(𝑎𝐴)]} = Re [tr (𝑎𝐵𝐻

𝐴)]

= 𝑎Re [tr (𝐵𝐻
𝐴)] = 𝑎 ⟨𝐴, 𝐵⟩ .

(7)

All the above arguments reveal that the space H𝑚×𝑛 over
field R with the inner product defined in (3) is an inner
product space.

Let ‖ ⋅ ‖
Δ
represent the matrix norm induced by the inner

product ⟨⋅, ⋅⟩. For an arbitrary quaternion matrix 𝐴 ∈ H𝑚×𝑛,
it is obvious that the following equalities hold:

‖𝐴‖Δ = √⟨𝐴,𝐴⟩ = √Re [tr (𝐴𝐻𝐴)] = √tr (𝐴𝐻𝐴) = ‖𝐴‖ ,

(8)

which reveals that the induced matrix norm is exactly the
Frobenius norm. For convenience, we still use ‖ ⋅ ‖ to denote
the induced matrix norm.

Let 𝐸
𝑖𝑗

denote the 𝑚 × 𝑛 quaternion matrix whose
(𝑖, 𝑗) entry is 1, and the other elements are zeros. In inner
product space (H𝑚×𝑛

,R, ⟨⋅, ⋅⟩), it is easy to verify that 𝐸
𝑖𝑗
, 𝐸

𝑖𝑗
𝑖,

𝐸
𝑖𝑗
𝑗, 𝐸

𝑖𝑗
𝑘, 𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛, is an orthonormal

basis, which reveals that the dimension of the inner product
space (H𝑚×𝑛

,R, ⟨⋅, ⋅⟩) is 4𝑚𝑛.
Next, we introduce a real representation of a quaternion

matrix.
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For an arbitrary quaternion matrix 𝑀 = 𝑀
1
+ 𝑀

2
𝑖 +

𝑀
3
𝑗+ 𝑀

4
𝑘, a map 𝜙(⋅), fromH𝑚×𝑛 toR4𝑚×4𝑛, can be defined

as

𝜙 (𝑀) =

[
[
[

[

𝑀
1

−𝑀
2

−𝑀
3

−𝑀
4

𝑀
2

𝑀
1

−𝑀
4

𝑀
3

𝑀
3

𝑀
4

𝑀
1

−𝑀
2

𝑀
4

−𝑀
3

𝑀
2

𝑀
1

]
]
]

]

. (9)

Lemma4 (see [41]). Let𝑀 and𝑁 be two arbitrary quaternion
matrices with appropriate size. The map 𝜙(⋅) defined by (9)
satisfies the following properties.

(a) 𝑀 = 𝑁 ⇔ 𝜙(𝑀) = 𝜙(𝑁).

(b) 𝜙(𝑀 + 𝑁) = 𝜙(𝑀) + 𝜙(𝑁), 𝜙(𝑀𝑁) = 𝜙(𝑀)𝜙(𝑁),

𝜙(𝑘𝑀) = 𝑘𝜙(𝑀), 𝑘 ∈ R.

(c) 𝜙(𝑀
𝐻
) = 𝜙

𝑇
(𝑀).

(d) 𝜙(𝑀) = 𝑇
−1

𝑚
𝜙(𝑀)𝑇

𝑛
= 𝑅

−1

𝑚
𝜙(𝑀)𝑅

𝑛
= 𝑆

−1

𝑚
𝜙(𝑀)𝑆

𝑛
,

where

𝑇
𝑡
=

[
[
[

[

0 −𝐼
𝑡

0 0

𝐼
𝑡

0 0 0

0 0 0 𝐼
𝑡

0 0 −𝐼
𝑡

0

]
]
]

]

, 𝑅
𝑡
= [

0 −𝐼
2𝑡

𝐼
2𝑡

0
] ,

𝑆
𝑡
=

[
[
[

[

0 0 0 −𝐼
𝑡

0 0 𝐼
𝑡

0

0 −𝐼
𝑡

0 0

𝐼
𝑡

0 0 0

]
]
]

]

, 𝑡 = 𝑚, 𝑛.

(10)

By (9), it is easy to verify that

󵄩󵄩󵄩󵄩𝜙 (𝑀)
󵄩󵄩󵄩󵄩 = 2 ‖𝑀‖ . (11)

Finally, we introduce the commutation matrix.
A commutation matrix 𝑃(𝑚, 𝑛) is a 𝑚𝑛 × 𝑚𝑛 matrix

which has the following explicit form:

𝑃 (𝑚, 𝑛) =

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝐸
𝑖𝑗
⊗ 𝐸

𝑇

𝑖𝑗
= [𝐸

𝑇

𝑖𝑗
] 𝑖=1,...,𝑚

𝑗=1,...,𝑛

. (12)

Moreover, 𝑃(𝑚, 𝑛) is a permutation matrix and 𝑃(𝑚, 𝑛) =

𝑃
𝑇
(𝑛,𝑚) = 𝑃

−1
(𝑛,𝑚). We have the following lemmas on the

commutation matrix.

Lemma 5 (see [46]). Let 𝐴 be a 𝑚 × 𝑛 matrix. There is a
commutation matrix 𝑃(𝑚, 𝑛) such that

vec (𝐴𝑇
) = 𝑃 (𝑚, 𝑛) vec (𝐴) . (13)

Lemma 6 (see [46]). Let 𝐴 be a 𝑚 × 𝑛 matrix and 𝐵 a 𝑝 ×

𝑞 matrix. There exist two commutation matrices 𝑃(𝑚, 𝑝) and
𝑃(𝑛, 𝑞) such that

𝐵 ⊗ 𝐴 = 𝑃
𝑇
(𝑚, 𝑝) (𝐴 ⊗ 𝐵) 𝑃 (𝑛, 𝑞) . (14)

3. Main Results

3.1. The Solution of Problem 1. In this subsection, we will
construct an algorithm for solving Problem 1. Then some
lemmaswill be given to analyse the properties of the proposed
algorithm. Using these lemmas, we prove that the proposed
algorithm is convergent.

Algorithm 7 (Iterative algorithm for Problem 1).

(1) Choose an initial matrix𝑋(1) ∈ RH𝑛×𝑛
(𝑄).

(2) Calculate

𝑅 (1) = 𝐹 − 𝐴𝑋 (1) 𝐵 − 𝐶𝑋
𝐻
(1)𝐷;

𝑃 (1) =
1

2
(𝐴

𝐻
𝑅 (1) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(1) 𝐶

+ 𝑄𝐴
𝐻
𝑅 (1) 𝐵

𝐻
𝑄 + 𝑄𝐷𝑅

𝐻
(1) 𝐶𝑄) ;

𝑘 := 1.

(15)

(3) If 𝑅(𝑘) = 0, then stop and 𝑋(𝑘) is the solution of
Problem 1; else if 𝑅(𝑘) ̸= 0 and 𝑃(𝑘) = 0, then stop
and Problem 1 is not consistent; else 𝑘 := 𝑘 + 1.

(4) Calculate

𝑋 (𝑘) = 𝑋 (𝑘 − 1) +
‖𝑅 (𝑘 − 1)‖

2

‖𝑃 (𝑘 − 1)‖
2
𝑃 (𝑘 − 1) ;

𝑅 (𝑘) = 𝑅 (𝑘 − 1) −
‖𝑅 (𝑘 − 1)‖

2

‖𝑃 (𝑘 − 1)‖
2

× (𝐴𝑃 (𝑘 − 1) 𝐵 + 𝐶𝑃
𝐻
(𝑘 − 1)𝐷) ;

𝑃 (𝑘) =
1

2
(𝐴

𝐻
𝑅 (𝑘) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(𝑘) 𝐶

+ 𝑄𝐴
𝐻
𝑅 (𝑘) 𝐵

𝐻
𝑄 +𝑄𝐷𝑅

𝐻
(𝑘) 𝐶𝑄)

+
‖𝑅 (𝑘)‖

2

‖𝑅 (𝑘 − 1)‖
2
𝑃 (𝑘 − 1) .

(16)

(5) Go to Step (3).

Lemma 8. Assume that the sequences {𝑅(𝑖)} and {𝑃(𝑖)}

are generated by Algorithm 7, then ⟨𝑅(𝑖), 𝑅(𝑗)⟩ =

0 and ⟨𝑃(𝑖), 𝑃(𝑗)⟩ = 0 for 𝑖, 𝑗 = 1, 2, . . . ,

𝑖 ̸= 𝑗.

Proof. Since ⟨𝑅(𝑖), 𝑅(𝑗)⟩ = ⟨𝑅(𝑗), 𝑅(𝑖)⟩ and
⟨𝑃(𝑖), 𝑃(𝑗)⟩ = ⟨𝑃(𝑗), 𝑃(𝑖)⟩ for 𝑖, 𝑗 = 1,

2, . . ., we only need to prove that ⟨𝑅(𝑖),

𝑅(𝑗)⟩ = 0 and ⟨𝑃(𝑖), 𝑃(𝑗)⟩ = 0 for 1 ≤ 𝑖 < 𝑗.
Now we prove this conclusion by induction.

Step 1. We show that

⟨𝑅 (𝑖) , 𝑅 (𝑖 + 1)⟩ = 0,

⟨𝑃 (𝑖) , 𝑃 (𝑖 + 1)⟩ = 0 for 𝑖 = 1, 2, . . . .

(17)
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We also prove (17) by induction. When 𝑖 = 1, we have

⟨𝑅 (1) , 𝑅 (2)⟩

= Re {tr [𝑅𝐻
(2) 𝑅 (1)]}

= Re{tr[(𝑅 (1) −
‖𝑅 (1)‖

2

‖𝑃 (1)‖
2
(𝐴𝑃 (1) 𝐵 + 𝐶𝑃

𝐻
(1)𝐷))

𝐻

× 𝑅 (1) ]}

= ‖𝑅 (1)‖
2
−

‖𝑅 (1)‖
2

‖𝑃 (1)‖
2

× Re {tr [𝑃𝐻
(1) (𝐴

𝐻
𝑅 (1) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(1) 𝐶)]}

= ‖𝑅(1)‖
2
−

‖𝑅(1)‖
2

‖𝑃(1)‖
2

×Re{tr [𝑃𝐻
(1) ((𝐴

𝐻
𝑅 (1) 𝐵

𝐻
+𝐷𝑅

𝐻
(1) 𝐶+𝑄𝐴

𝐻
𝑅 (1)

× 𝐵
𝐻
𝑄 + 𝑄𝐷𝑅

𝐻
(1) 𝐶𝑄) × (2)

−1
)]}

= ‖𝑅 (1)‖
2
−

‖𝑅 (1)‖
2

‖𝑃 (1)‖
2
‖𝑃 (1)‖

2

= 0.

(18)

Also we can write

⟨𝑃 (1) , 𝑃 (2)⟩

= Re {tr [𝑃𝐻
(2) 𝑃 (1)]}

= Re{tr[(1

2
(𝐴

𝐻
𝑅 (2) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(2) 𝐶

+ 𝑄𝐴
𝐻
𝑅 (2) 𝐵

𝐻
𝑄 + 𝑄𝐷𝑅

𝐻
(2) 𝐶𝑄)

+
‖𝑅 (2)‖

2

‖𝑅 (1)‖
2
𝑃 (1))

𝐻

𝑃 (1)]}

=
‖𝑅 (2)‖

2

‖𝑅 (1)‖
2
‖𝑃 (1)‖

2

+ Re {tr [𝑃𝐻
(1) × ((𝐴

𝐻
𝑅 (2) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(2) 𝐶

+ 𝑄𝐴
𝐻
𝑅 (2) 𝐵

𝐻
𝑄

+𝑄𝐷𝑅
𝐻
(2) 𝐶𝑄) × (2)

−1
)]}

=
‖𝑅 (2)‖

2

‖𝑅 (1)‖
2
‖𝑃 (1)‖

2

+ Re {tr [𝑃𝐻
(1) (𝐴

𝐻
𝑅 (2) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(2) 𝐶)]}

=
‖𝑅 (2)‖

2

‖𝑅 (1)‖
2
‖𝑃 (1)‖

2

+ Re {tr [𝑅𝐻
(2) (𝐴𝑃 (1) 𝐵 + 𝐶𝑃

𝐻
(1)𝐷)]}

=
‖𝑅 (2)‖

2

‖𝑅 (1)‖
2
‖𝑃 (1)‖

2

+
‖𝑃 (1)‖

2

‖𝑅 (1)‖
2
Re {tr [𝑅𝐻

(2) (𝑅 (1) − 𝑅 (2))]}

=
‖𝑅 (2)‖

2

‖𝑅 (1)‖
2
‖𝑃 (1)‖

2
−

‖𝑃 (1)‖
2

‖𝑅 (1)‖
2
‖𝑅 (2)‖

2

= 0.

(19)

Now assume that conclusion (17) holds for 1 ≤ 𝑖 ≤ 𝑠 − 1, then

⟨𝑅 (𝑠) , 𝑅 (𝑠 + 1)⟩

= Re {tr [𝑅𝐻
(𝑠 + 1) 𝑅 (𝑠)]}

= Re{tr[(𝑅 (𝑠) −
‖𝑅 (𝑠)‖

2

‖𝑃 (𝑠)‖
2
(𝐴𝑃 (𝑠) 𝐵 + 𝐶𝑃

𝐻
(𝑠)𝐷))

𝐻

× 𝑅 (𝑠) ]}

= ‖𝑅 (s)‖2 −
‖𝑅 (𝑠)‖

2

‖𝑃 (𝑠)‖
2

× Re {tr [𝑃𝐻
(𝑠) (𝐴

𝐻
𝑅 (𝑠) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(𝑠) 𝐶)]}

= ‖𝑅 (𝑠)‖
2
−

‖𝑅 (𝑠)‖
2

‖𝑃 (𝑠)‖
2

× Re {tr [𝑃𝐻
(𝑠) × ((𝐴

𝐻
𝑅 (𝑠) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(𝑠) 𝐶

+ 𝑄𝐴
𝐻
𝑅 (𝑠) 𝐵

𝐻
𝑄

+ 𝑄𝐷𝑅
𝐻
(𝑠) 𝐶𝑄) × (2)

−1
)]}

= ‖𝑅 (𝑠)‖
2
−

‖𝑅 (𝑠)‖
2

‖𝑃 (𝑠)‖
2

× Re{tr[𝑃𝐻
(𝑠) (𝑃 (𝑠) −

‖𝑅 (𝑠)‖
2

‖𝑅 (𝑠 − 1)‖
2
𝑃 (𝑠 − 1))]}

= 0.

(20)



Journal of Applied Mathematics 5

And it can also be obtained that

⟨𝑃 (𝑠) , 𝑃 (𝑠 + 1)⟩

= Re {tr [𝑃𝐻
(𝑠 + 1) 𝑃 (𝑠)]}

= Re{tr[(((𝐴𝐻
𝑅 (𝑠 + 1) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(𝑠 + 1) 𝐶

+ 𝑄𝐴
𝐻
𝑅 (𝑠 + 1) 𝐵

𝐻
𝑄

+ 𝑄𝐷𝑅
𝐻
(𝑠 + 1) 𝐶𝑄) × (2)

−1
)

+
‖𝑅 (𝑠 + 1)‖

2

‖𝑅 (𝑠)‖
2

𝑃(𝑠))

𝐻

𝑃 (𝑠)]}

=
‖𝑅 (𝑠 + 1)‖

2

‖𝑅 (𝑠)‖
2

‖𝑃 (𝑠)‖
2

+ Re {tr [𝑃𝐻
(𝑠) (𝐴

𝐻
𝑅 (𝑠 + 1) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(𝑠 + 1) 𝐶)]}

=
‖𝑅 (𝑠 + 1)‖

2

‖𝑅 (𝑠)‖
2

‖𝑃 (𝑠)‖
2

+ Re {tr [𝑅𝐻
(𝑠 + 1) (𝐴𝑃 (𝑠) 𝐵 + 𝐶𝑃

𝐻
(𝑠)𝐷)]}

=
‖𝑅 (𝑠 + 1)‖

2

‖𝑅 (𝑠)‖
2

‖𝑃 (𝑠)‖
2

+
‖𝑃 (𝑠)‖

2

‖𝑅 (𝑠)‖
2
Re {tr [𝑅𝐻

(𝑠 + 1) (𝑅 (𝑠) − 𝑅 (𝑠 + 1))]}

= 0.

(21)

Therefore, the conclusion (17) holds for 𝑖 = 1, 2, . . ..
Step 2. Assume that ⟨𝑅(𝑖), 𝑅(𝑖+𝑟)⟩ = 0 and ⟨𝑃(𝑖), 𝑃(𝑖+𝑟)⟩ = 0

for 𝑖 ≥ 1 and 𝑟 ≥ 1. We will show that

⟨𝑅 (𝑖) , 𝑅 (𝑖 + 𝑟 + 1)⟩ = 0, ⟨𝑃 (𝑖) , 𝑃 (𝑖 + 𝑟 + 1)⟩ = 0.

(22)

We prove the conclusion (22) in two substeps.
Substep 2.1. In this substep, we show that

⟨𝑅 (1) , 𝑅 (𝑟 + 2)⟩ = 0, ⟨𝑃 (1) , 𝑃 (𝑟 + 2)⟩ = 0. (23)

It follows from Algorithm 7 that

⟨𝑅 (1) , 𝑅 (𝑟 + 2)⟩

= Re {tr [𝑅𝐻
(𝑟 + 2) 𝑅 (1)]}

= Re{tr[(𝑅 (𝑟 + 1) −
‖𝑅 (𝑟 + 1)‖

2

‖𝑃 (𝑟 + 1)‖
2

× (𝐴𝑃 (𝑟 + 1) 𝐵+𝐶𝑃
𝐻
(𝑟 + 1)𝐷))

𝐻

𝑅 (1)]}

= Re {tr [𝑅𝐻
(𝑟 + 1) 𝑅 (1)]} −

‖𝑅 (𝑟 + 1)‖
2

‖𝑃 (𝑟 + 1)‖
2

× Re {tr [𝑃𝐻
(𝑟 + 1) (𝐴

𝐻
𝑅 (1) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(1) 𝐶)]}

= Re {tr [𝑅𝐻
(𝑟 + 1) 𝑅 (1)]} −

‖𝑅 (𝑟 + 1)‖
2

‖𝑃 (𝑟 + 1)‖
2

× Re {tr [𝑃𝐻
(𝑟 + 1) ((𝐴

𝐻
𝑅 (1) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(1) 𝐶

+ 𝑄𝐴
𝐻
𝑅 (1) 𝐵

𝐻
𝑄

+ 𝑄𝐷𝑅
𝐻
(1) 𝐶𝑄) × (2)

−1
)]}

= Re {tr [𝑅𝐻
(𝑟 + 1) 𝑅 (1)]}

−
‖𝑅 (𝑟 + 1)‖

2

‖𝑃 (𝑟 + 1)‖
2
Re {tr [𝑃𝐻

(𝑟 + 1) 𝑃 (1)]}

= 0.

(24)

Also we can write

⟨𝑃 (1) , 𝑃 (𝑟 + 2)⟩

= Re {tr [𝑃𝐻
(𝑟 + 2) 𝑃 (1)]}

= Re{tr[( ((𝐴
𝐻
𝑅 (𝑟 + 2) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(𝑟 + 2) 𝐶

+𝑄𝐴
𝐻
𝑅 (𝑟 + 2) 𝐵

𝐻
𝑄 + 𝑄𝐷𝑅

𝐻
(𝑟 + 2) 𝐶𝑄)

× (2)
−1
) +

‖𝑅(𝑟 + 2)‖
2

‖𝑅(𝑟 + 1)‖
2
𝑃(𝑟 + 1))

𝐻

𝑃 (1)]}

= Re {tr [(𝐴𝐻
𝑅 (𝑟 + 2) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(𝑟 + 2) 𝐶)

𝐻

𝑃 (1)]}

+
‖𝑅 (𝑟 + 2)‖

2

‖𝑅 (𝑟 + 1)‖
2
Re {tr [𝑃𝐻

(𝑟 + 1) 𝑃 (1)]}

= Re {tr [𝑅𝐻
(𝑟 + 2) (𝐴𝑃 (1) 𝐵 + 𝐶𝑃

𝐻
(1)𝐷)]}

+
‖𝑅 (𝑟 + 2)‖

2

‖𝑅 (𝑟 + 1)‖
2
Re {tr [𝑃𝐻

(𝑟 + 1) 𝑃 (1)]}
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=
‖𝑃 (1)‖

2

‖𝑅 (1)‖
2
Re {tr [𝑅𝐻

(𝑟 + 2) (𝑅 (1) − 𝑅 (2))]}

+
‖𝑅 (𝑟 + 2)‖

2

‖𝑅 (𝑟 + 1)‖
2
Re {tr [𝑃𝐻

(𝑟 + 1) 𝑃 (1)]}

= 0.

(25)

Substep 2.2. In this substep, we prove the conclusion (22) in
Step 2. It follows from Algorithm 7 that

⟨𝑅 (𝑖) , 𝑅 (𝑖 + 𝑟 + 1)⟩

= Re {tr [𝑅𝐻
(𝑖 + 𝑟 + 1) 𝑅 (𝑖)]}

= Re{tr[(𝑅 (𝑖 + 𝑟) −
‖𝑅 (𝑖 + 𝑟)‖

2

‖𝑃 (𝑖 + 𝑟)‖
2

× (𝐴𝑃 (𝑖 + 𝑟) 𝐵 + 𝐶𝑃
𝐻
(𝑖 + 𝑟)𝐷))

𝐻

𝑅 (𝑖) ]}

= Re {tr [𝑅𝐻
(𝑖 + 𝑟) 𝑅 (𝑖)]} −

‖𝑅 (𝑖 + 𝑟)‖
2

‖𝑃 (𝑖 + 𝑟)‖
2

× Re {tr [𝑃𝐻
(𝑖 + 𝑟) (𝐴

𝐻
𝑅 (𝑖) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(𝑖) 𝐶)]}

= −
‖𝑅 (𝑖 + 𝑟)‖

2

‖𝑃 (𝑖 + 𝑟)‖
2

× Re {tr [𝑃𝐻
(𝑖 + 𝑟) ((𝐴

𝐻
𝑅 (𝑖) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(𝑖) 𝐶

+ 𝑄𝐴
𝐻
𝑅 (𝑖) 𝐵

𝐻
𝑄

+ 𝑄𝐷𝑅
𝐻
(𝑖) 𝐶𝑄) × (2)

−1
)]}

= −
‖𝑅 (𝑖 + 𝑟)‖

2

‖𝑃 (𝑖 + 𝑟)‖
2

× Re{tr[𝑃𝐻
(𝑖 + 𝑟) (𝑃 (𝑖) −

‖𝑅 (𝑖)‖
2

‖𝑅 (𝑖 − 1)‖
2
𝑃 (𝑖 − 1))]}

=
‖𝑅 (𝑖 + 𝑟)‖

2
‖𝑅 (𝑖)‖

2

‖𝑃 (𝑖 + 𝑟)‖
2
‖𝑅 (𝑖 − 1)‖

2
Re {tr [𝑃𝐻

(𝑖 + 𝑟) 𝑃 (𝑖 − 1)]} ,

⟨𝑃 (𝑖) , 𝑃 (𝑖 + 𝑟 + 1)⟩

= Re {tr [𝑃𝐻
(𝑖 + 𝑟 + 1) 𝑃 (𝑖)]}

= Re{tr[(1

2
(𝐴

𝐻
𝑅 (𝑖 + 𝑟 + 1) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(𝑖 + 𝑟 + 1) 𝐶

+ 𝑄𝐴
𝐻
𝑅 (𝑖 + 𝑟 + 1) 𝐵

𝐻
𝑄

+ 𝑄𝐷𝑅
𝐻
(𝑖 + 𝑟 + 1) 𝐶𝑄)

+
‖𝑅(𝑖 + 𝑟 + 1)‖

2

‖𝑅(𝑖 + 𝑟)‖
2

𝑃(𝑖 + 𝑟))

𝐻

𝑃 (𝑖)]}

= Re {tr [(𝐴𝐻
𝑅 (𝑖 + 𝑟 + 1) 𝐵

𝐻
+𝐷𝑅

𝐻
(𝑖+𝑟+1) 𝐶)

𝐻

𝑃 (𝑖)]}

= Re {tr [𝑅𝐻
(𝑖 + 𝑟 + 1) (𝐴𝑃 (𝑖)B + 𝐶𝑃

𝐻
(𝑖) 𝐷)]}

=
‖𝑃 (𝑖)‖

2

‖𝑅 (𝑖)‖
2
Re {tr [𝑅𝐻

(𝑖 + 𝑟 + 1) (𝑅 (𝑖) − 𝑅 (𝑖 + 1))]}

=
‖𝑃 (𝑖)‖

2

‖𝑅 (𝑖)‖
2
Re {tr [𝑅𝐻

(𝑖 + 𝑟 + 1) 𝑅 (𝑖)]}

−
‖𝑃 (𝑖)‖

2

‖𝑅 (𝑖)‖
2
Re {tr [𝑅𝐻

(𝑖 + 𝑟 + 1) 𝑅 (𝑖 + 1)]}

=
‖𝑃 (𝑖)‖

2
‖𝑅 (𝑖 + 𝑟)‖

2
‖𝑅 (𝑖)‖

2

‖𝑅 (𝑖)‖
2
‖𝑃 (𝑖 + 𝑟)‖

2
‖𝑅 (𝑖 − 1)‖

2

× Re {tr [𝑃𝐻
(𝑖 + 𝑟) 𝑃 (𝑖 − 1)]} .

(26)

Repeating the above process (26), we can obtain

⟨𝑅 (𝑖) , 𝑅 (𝑖 + 𝑟 + 1)⟩ = ⋅ ⋅ ⋅ = 𝛼Re {tr [𝑃𝐻
(𝑟 + 2) 𝑃 (1)]} ;

⟨𝑃 (𝑖) , 𝑃 (𝑖 + 𝑟 + 1)⟩ = ⋅ ⋅ ⋅ = 𝛽Re {tr [𝑃𝐻
(𝑟 + 2) 𝑃 (1)]} .

(27)

Combining these two relations with (24) and (25), it implies
that (22) holds. So, by the principle of induction, we know
that Lemma 8 holds.

Lemma 9. Assume that Problem 1 is consistent, and let 𝑋 ∈

RH𝑛×𝑛
(𝑄) be its solution. Then, for any initial matrix 𝑋(1) ∈

RH𝑛×𝑛
(𝑄), the sequences {𝑅(𝑖)}, {𝑃(𝑖)}, and {𝑋(𝑖)} generated

by Algorithm 7 satisfy

⟨𝑃 (𝑖) , 𝑋 − 𝑋 (𝑖)⟩ = ‖𝑅 (𝑖)‖
2
, 𝑖 = 1, 2, . . . . (28)

Proof. We also prove this conclusion by induction.
When 𝑖 = 1, it follows from Algorithm 7 that

⟨𝑃 (1) , 𝑋 − 𝑋 (1)⟩

= Re {tr [(𝑋 − 𝑋 (1))
𝐻

𝑃 (1)]}

= Re {tr [(𝑋 − 𝑋 (1))
𝐻

× ((𝐴
𝐻
𝑅 (1) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(1) 𝐶+𝑄𝐴

𝐻
𝑅 (1) 𝐵

𝐻
𝑄

+ 𝑄𝐷𝑅
𝐻
(1) 𝐶𝑄) × (2)

−1
) ]}
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= Re {tr [(𝑋 − 𝑋 (1))
𝐻

(𝐴
𝐻
𝑅 (1) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(1) 𝐶)]}

= Re{tr[𝑅𝐻
(1) (𝐴 (𝑋 − 𝑋 (1)) 𝐵+𝐶 (𝑋 − 𝑋 (1))

𝐻

𝐷)]}

= Re {tr [𝑅𝐻
(1) 𝑅 (1)]}

= ‖𝑅 (1)‖
2
.

(29)

This implies that (28) holds for 𝑖 = 1.
Now it is assumed that (28) holds for 𝑖 = 𝑠, that is

⟨𝑃 (𝑠) , 𝑋 − 𝑋 (𝑠)⟩ = ‖𝑅 (𝑠)‖
2
. (30)

Then, when 𝑖 = 𝑠 + 1

⟨𝑃 (𝑠 + 1) , 𝑋 − 𝑋 (𝑠 + 1)⟩

= Re {tr [(𝑋 − 𝑋 (𝑠 + 1))
𝐻

𝑃 (𝑠 + 1)]}

= Re{tr[(𝑋 − 𝑋 (𝑠 + 1))
𝐻

× (
1

2
(𝐴

𝐻
𝑅 (𝑠 + 1) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(𝑠 + 1) 𝐶

+ 𝑄𝐴
𝐻
𝑅 (𝑠 + 1) 𝐵

𝐻
𝑄

+ 𝑄𝐷𝑅
𝐻
(𝑠 + 1) 𝐶𝑄)

+
‖𝑅(𝑠 + 1)‖

2

‖𝑅(𝑠)‖
2

𝑃 (𝑠))]}

= Re {tr [(𝑋 − 𝑋 (𝑠 + 1))
𝐻

× (𝐴
𝐻
𝑅 (𝑠 + 1) 𝐵

𝐻
+ 𝐷𝑅

𝐻
(𝑠 + 1) 𝐶) ]}

+
‖𝑅 (𝑠 + 1)‖

2

‖𝑅 (𝑠)‖
2

Re {tr [(𝑋 − 𝑋 (𝑠 + 1))
𝐻

𝑃 (𝑠)]}

= Re {tr [𝑅𝐻
(𝑠 + 1)

× (𝐴 (𝑋 − 𝑋 (𝑠 + 1)) 𝐵

+ 𝐶 (𝑋 − 𝑋 (𝑠 + 1))
𝐻

𝐷)]}

+
‖𝑅 (𝑠 + 1)‖

2

‖𝑅 (𝑠)‖
2

{Re {tr [(𝑋 − 𝑋 (𝑠))
𝐻

𝑃 (𝑠)]}

− Re {tr [(𝑋 (𝑠 + 1) − 𝑋 (𝑠))
𝐻
𝑃 (𝑠)]} }

= ‖𝑅 (𝑠 + 1)‖
2
+

‖𝑅 (𝑠 + 1)‖
2

‖𝑅 (𝑠)‖
2

× {‖𝑅 (𝑠)‖
2
−

‖𝑅 (𝑠)‖
2

‖𝑃 (𝑠)‖
2
Re {tr [𝑃𝐻

(𝑠) 𝑃 (𝑠)]}}

= ‖𝑅 (𝑠 + 1)‖
2
.

(31)

Therefore, Lemma 9 holds by the principle of induction.

From the above two lemmas, we have the following
conclusions.

Remark 10. If there exists a positive number 𝑖 such that
𝑅(𝑖) ̸= 0 and 𝑃(𝑖) = 0, then we can get from Lemma 9 that
Problem 1 is not consistent. Hence, the solvability of Problem
1 can be determined by Algorithm 7 automatically in the
absence of roundoff errors.

Theorem 11. Suppose that Problem 1 is consistent.Then for any
initial matrix𝑋(1) ∈ RH𝑛×𝑛

(𝑄), a solution of Problem 1 can be
obtained within finite iteration steps in the absence of roundoff
errors.

Proof. In Section 2, it is known that the inner product
space (H𝑚×𝑝

, 𝑅, ⟨⋅, ⋅⟩) is 4𝑚𝑝-dimensional. According to
Lemma 9, if 𝑅(𝑖) ̸= 0, 𝑖 = 1, 2, . . . , 4𝑚𝑝, then we have
𝑃(𝑖) ̸= 0, 𝑖 = 1, 2, . . . , 4𝑚𝑝. Hence 𝑅(4𝑚𝑝+1) and 𝑃(4𝑚𝑝+1)

can be computed. From Lemma 8, it is not difficult to get

⟨𝑅 (𝑖) , 𝑅 (𝑗)⟩ = 0 for 𝑖, 𝑗 = 1, 2, . . . , 4𝑚𝑝, 𝑖 ̸= 𝑗. (32)

Then 𝑅(1), 𝑅(2), . . . , 𝑅(4𝑚𝑝) is an orthogonal basis of the
inner product space (H𝑚×𝑝

, 𝑅, ⟨⋅, ⋅⟩). In addition, we can get
from Lemma 8 that

⟨𝑅 (𝑖) , 𝑅 (4𝑚𝑝 + 1)⟩ = 0 for 𝑖 = 1, 2, . . . , 4𝑚𝑝. (33)

It follows that 𝑅(4𝑚𝑝+1) = 0, which implies that𝑋(4𝑚𝑝+1)

is a solution of Problem 1.

3.2. The Solution of Problem 2. In this subsection, firstly we
introduce some lemmas. Then, we will prove that the least
Frobenius norm reflexive solution of (1) can be derived by
choosing a suitable initial iterative matrix. Finally, we solve
Problem 2 by finding the least Frobenius norm reflexive
solution of a new-constructed quaternion matrix equation.

Lemma 12 (see [47]). Assume that the consistent system of
linear equations𝑀𝑦 = 𝑏 has a solution 𝑦

0
∈ 𝑅(𝑀

𝑇
) then 𝑦

0
is

the unique least Frobenius norm solution of the system of linear
equations.

Lemma 13. Problem 1 is consistent if and only if the system of
quaternion matrix equations

𝐴𝑋𝐵 + 𝐶𝑋
𝐻
𝐷 = 𝐹,

𝐴𝑄𝑋𝑄𝐵 + 𝐶𝑄𝑋
𝐻
𝑄𝐷 = 𝐹

(34)
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is consistent. Furthermore, if the solution sets of Problem 1 and
(34) are denoted by 𝑆

𝐻
and 𝑆

1

𝐻
, respectively, then, we have 𝑆

𝐻
⊆

𝑆
1

𝐻
.

Proof. First, we assume that Problem 1 has a solution 𝑋. By
𝐴𝑋𝐵 + 𝐶𝑋

𝐻
𝐷 = 𝐹 and 𝑄𝑋𝑄 = 𝑋, we can obtain 𝐴𝑋𝐵 +

𝐶𝑋
𝐻
𝐷 = 𝐹 and 𝐴𝑄𝑋𝑄𝐵 + 𝐶𝑄𝑋

𝐻
𝑄𝐷 = 𝐹, which implies

that 𝑋 is a solution of quaternion matrix equations (34), and
𝑆
𝐻

⊆ 𝑆
1

𝐻
.

Conversely, suppose (34) is consistent. Let𝑋 be a solution
of (34). Set 𝑋

𝑎
= (𝑋 + 𝑄𝑋𝑄)/2. It is obvious that 𝑋

𝑎
∈

RH𝑛×𝑛
(𝑄). Now we can write

𝐴𝑋
𝑎
𝐵 + 𝐶𝑋

𝐻

𝑎
𝐷

=
1

2
[𝐴 (𝑋 + 𝑄𝑋𝑄)𝐵 + 𝐶(𝑋 + 𝑄𝑋𝑄)

𝐻
𝐷]

=
1

2
[𝐴𝑋𝐵 + 𝐶𝑋

𝐻
𝐷 + 𝐴𝑄𝑋𝑄𝐵 + 𝐶𝑄𝑋

𝐻
𝑄𝐷]

=
1

2
[𝐹 + 𝐹]

= 𝐹.

(35)

Hence 𝑋
𝑎
is a solution of Problem 1. The proof is completed.

Lemma 14. The system of quaternion matrix equations (34) is
consistent if and only if the system of real matrix equations

𝜙 (𝐴) [𝑋𝑖𝑗
]
4 × 4

𝜙 (𝐵) + 𝜙 (𝐶) [𝑋𝑖𝑗
]
𝑇

4 × 4
𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝜙 (𝑄) [𝑋𝑖𝑗
]
4 × 4

𝜙 (𝑄) 𝜙 (𝐵)

+ 𝜙 (𝐶) 𝜙 (𝑄) [𝑋𝑖𝑗
]
𝑇

4 × 4
𝜙 (𝑄) 𝜙 (𝐷) = 𝜙 (𝐹)

(36)

is consistent, where 𝑋
𝑖𝑗

∈ H𝑛×𝑛
, 𝑖, 𝑗 = 1, 2, 3, 4, are submatri-

ces of the unknown matrix. Furthermore, if the solution sets of
(34) and (36) are denoted by 𝑆

1

𝐻
and 𝑆

2

𝑅
, respectively, then, we

have 𝜙(𝑆1

𝐻
) ⊆ 𝑆

2

𝑅
.

Proof. Suppose that (34) has a solution

𝑋 = 𝑋
1
+ 𝑋

2
𝑖 + 𝑋

3
𝑗 + 𝑋

4
𝑘. (37)

Applying (𝑎), (𝑏), and (𝑐) in Lemma 4 to (34) yields

𝜙 (𝐴) 𝜙 (𝑋) 𝜙 (𝐵) + 𝜙 (𝐶) 𝜙
𝑇
(𝑋) 𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝜙 (𝑄) 𝜙 (𝑋) 𝜙 (𝑄) 𝜙 (𝐵)

+ 𝜙 (𝐶) 𝜙 (𝑄) 𝜙
𝑇
(𝑋) 𝜙 (𝑄) 𝜙 (𝐷) = 𝜙 (𝐹) ,

(38)

which implies that 𝜙(𝑋) is a solution of (36) and 𝜙(𝑆
1

𝐻
) ⊆ 𝑆

2

𝑅
.

Conversely, suppose that (36) has a solution

𝑋̆ = [𝑋
𝑖𝑗
]
4 × 4

. (39)

By (𝑑) in Lemma 4, we have that

𝑇
−1

𝑚
𝜙 (𝐴) 𝑇𝑛

𝑋̆𝑇
−1

𝑛
𝜙 (𝐵) 𝑇𝑝

+ 𝑇
−1

𝑚
𝜙 (𝐶) 𝑇𝑛

𝑋̆
𝑇
𝑇

−1

𝑛
𝜙 (𝐷)𝑇𝑝

= 𝑇
−1

𝑚
𝜙 (𝐹) 𝑇𝑝

,

𝑅
−1

𝑚
𝜙 (𝐴) 𝑅𝑛

𝑋̆𝑅
−1

𝑛
𝜙 (𝐵) 𝑅𝑝

+ 𝑅
−1

𝑚
𝜙 (𝐶) 𝑅𝑛

𝑋̆
𝑇
𝑅

−1

𝑛
𝜙 (𝐷) 𝑅𝑝

= 𝑅
−1

𝑚
𝜙 (𝐹) 𝑅𝑝

,

𝑆
−1

𝑚
𝜙 (𝐴) 𝑆𝑛

𝑋̆𝑆
−1

𝑛
𝜙 (𝐵) 𝑆𝑝

+ S−1

𝑚
𝜙 (𝐶) 𝑆𝑛

𝑋̆
𝑇
𝑆
−1

𝑛
𝜙 (𝐷) 𝑆𝑝

= 𝑆
−1

𝑚
𝜙 (𝐹) 𝑆𝑝

,

𝑇
−1

𝑚
𝜙 (𝐴) 𝜙 (𝑄) 𝑇𝑛

𝑋̆𝑇
−1

𝑛
𝜙 (𝑄) 𝜙 (𝐵) 𝑇𝑝

+ 𝑇
−1

𝑚
𝜙 (𝐶) 𝜙 (𝑄) 𝑇𝑛

𝑋̆
𝑇
𝑇

−1

𝑛
𝜙 (𝑄) 𝜙 (𝐷) 𝑇𝑝

= 𝑇
−1

𝑚
𝜙 (𝐹) 𝑇𝑝

,

𝑅
−1

𝑚
𝜙 (𝐴) 𝜙 (𝑄) 𝑅𝑛

𝑋̆𝑅
−1

𝑛
𝜙 (𝑄) 𝜙 (𝐵) 𝑅𝑝

+ 𝑅
−1

𝑚
𝜙 (𝐶) 𝜙 (𝑄) 𝑅𝑛

𝑋̆
𝑇
𝑅

−1

𝑛
𝜙 (𝑄) 𝜙 (𝐷) 𝑅𝑝

= 𝑅
−1

𝑚
𝜙 (𝐹) 𝑅𝑝

,

𝑆
−1

𝑚
𝜙 (𝐴) 𝜙 (𝑄) 𝑆𝑛

𝑋̆𝑆
−1

𝑛
𝜙 (𝑄) 𝜙 (𝐵) 𝑆𝑝

+ 𝑆
−1

𝑚
𝜙 (𝐶) 𝜙 (𝑄) 𝑆𝑛

𝑋̆
𝑇
𝑆
−1

𝑛
𝜙 (𝑄) 𝜙 (𝐷) 𝑆𝑝

= 𝑆
−1

𝑚
𝜙 (𝐹) 𝑆𝑝

.

(40)

Hence

𝜙 (𝐴) 𝑇𝑛
𝑋̆𝑇

−1

𝑛
𝜙 (𝐵) + 𝜙 (𝐶) (𝑇𝑛

𝑋̆𝑇
−1

𝑛
)
𝑇

𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝑅𝑛
𝑋̆𝑅

−1

𝑛
𝜙 (𝐵) + 𝜙 (𝐶) (R𝑛

𝑋̆𝑅
−1

𝑛
)
𝑇

𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝑆𝑛
𝑋̆𝑆

−1

𝑛
𝜙 (𝐵) + 𝜙 (𝐶) (𝑆𝑛

𝑋̆𝑆
−1

𝑛
)
𝑇

𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝜙 (𝑄) 𝑇𝑛
𝑋̆𝑇

−1

𝑛
𝜙 (𝑄) 𝜙 (𝐵)

+ 𝜙 (𝐶) 𝜙 (𝑄) (𝑇𝑛
𝑋̆𝑇

−1

𝑛
)
𝑇

𝜙 (𝑄) 𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝜙 (𝑄) 𝑅𝑛
𝑋̆𝑅

−1

𝑛
𝜙 (𝑄) 𝜙 (𝐵)

+ 𝜙 (𝐶) 𝜙 (𝑄) (𝑅𝑛
𝑋̆𝑅

−1

𝑛
)
𝑇

𝜙 (𝑄) 𝜙 (𝐷) = 𝜙 (𝐹) ,

𝜙 (𝐴) 𝜙 (𝑄) 𝑆𝑛
𝑋̆𝑆

−1

𝑛
𝜙 (𝑄) 𝜙 (𝐵)

+ 𝜙 (𝐶) 𝜙 (𝑄) (𝑆𝑛
𝑋̆𝑆

−1

𝑛
)
𝑇

𝜙 (𝑄) 𝜙 (𝐷) = 𝜙 (𝐹) ,

(41)

which implies that 𝑇
𝑛
𝑋̆𝑇

−1

𝑛
, 𝑅

𝑛
𝑋̆𝑅

−1

𝑛
, and 𝑆

𝑛
𝑋̆𝑆

−1

𝑛
are also

solutions of (36). Thus,

1

4
(𝑋̆ + 𝑇

𝑛
𝑋̆𝑇

−1

𝑛
+ 𝑅

𝑛
𝑋̆𝑅

−1

𝑛
+ 𝑆

𝑛
𝑋̆𝑆

−1

𝑛
) (42)
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is also a solution of (36), where

𝑋̆ + 𝑇
𝑛
𝑋̆𝑇

−1

𝑛
+ 𝑅

𝑛
𝑋̆𝑅

−1

𝑛
+ 𝑆

𝑛
𝑋̆𝑆

−1

𝑛

= [𝑋
𝑖𝑗
]
4 × 4

, 𝑖, 𝑗 = 1, 2, 3, 4,

𝑋
11

= 𝑋
11

+ 𝑋
22

+ 𝑋
33

+ 𝑋
44
,

𝑋
12

= 𝑋
12

− 𝑋
21

+ 𝑋
34

− 𝑋
43
,

𝑋
13

= 𝑋
13

− 𝑋
24

− 𝑋
31

+ 𝑋
42
,

𝑋
14

= 𝑋
14

+ 𝑋
23

− 𝑋
32

− 𝑋
41
,

𝑋
21

= −𝑋
12

+ 𝑋
21

− 𝑋
34

+ 𝑋
43
,

𝑋
22

= 𝑋
11

+ 𝑋
22

+ 𝑋
33

+ 𝑋
44
,

𝑋
23

= 𝑋
14

+ 𝑋
23

− 𝑋
32

− 𝑋
41
,

𝑋
24

= −𝑋
13

+ 𝑋
24

+ 𝑋
31

− 𝑋
42
,

𝑋
31

= −𝑋
13

+ 𝑋
24

+ 𝑋
31

− 𝑋
42
,

𝑋
32

= −𝑋
14

− 𝑋
23

+ 𝑋
32

+ 𝑋
41
,

𝑋
33

= 𝑋
11

+ 𝑋
22

+ 𝑋
33

+ 𝑋
44
,

𝑋
34

= 𝑋
12

− 𝑋
21

+ 𝑋
34

− 𝑋
43
,

𝑋
41

= −𝑋
14

− 𝑋
23

+ 𝑋
32

+ 𝑋
41
,

𝑋
42

= 𝑋
13

− 𝑋
24

− 𝑋
31

+ 𝑋
42
,

𝑋
43

= −𝑋
12

+ 𝑋
21

− 𝑋
34

+ 𝑋
43
,

𝑋
44

= 𝑋
11

+ 𝑋
22

+ 𝑋
33

+ 𝑋
44
.

(43)

Let

𝑋 =
1

4
(𝑋

11
+ 𝑋

22
+ 𝑋

33
+ 𝑋

44
)

+
1

4
(−𝑋

12
+ 𝑋

21
− 𝑋

34
+ 𝑋

43
) 𝑖

+
1

4
(−𝑋

13
+ 𝑋

24
+ 𝑋

31
− 𝑋

42
) 𝑗

+
1

4
(−𝑋

14
− 𝑋

23
+ 𝑋

32
+ 𝑋

41
) 𝑘.

(44)

Then it is not difficult to verify that

𝜙 (𝑋) =
1

4
(𝑋̆ + 𝑇

𝑛
𝑋̆𝑇

−1

𝑛
+ 𝑅

𝑛
𝑋̆𝑅

−1

𝑛
+ 𝑆

𝑛
𝑋̆𝑆

−1

𝑛
) . (45)

We have that 𝑋 is a solution of (34) by (𝑎) in Lemma 4. The
proof is completed.
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Figure 1: The convergence curve for the Frobenius norm of the
residuals from Example 18.
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Figure 2: The convergence curve for the Frobenius norm of the
residuals from Example 19.

Lemma 15. There exists a permutation matrix P(4n,4n) such
that (36) is equivalent to

[
𝜙

𝑇
(𝐵) ⊗ 𝜙 (𝐴) + (𝜙

𝑇
(𝐷) ⊗ 𝜙 (𝐶)) 𝑃 (4𝑛, 4𝑛)

𝜙
𝑇
(𝐵) 𝜙 (𝑄) ⊗ 𝜙 (𝐴) 𝜙 (𝑄) + (𝜙

𝑇
(𝐷) 𝜙 (𝑄) ⊗ 𝜙 (𝐶) 𝜙 (𝑄)) 𝑃 (4𝑛, 4𝑛)

]

× vec ([𝑋
𝑖𝑗
]
4 × 4

) = [
vec (𝜙 (𝐹))

vec (𝜙 (𝐹))
] .

(46)

Lemma 15 is easily proven through Lemma 5. So we omit
it here.
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Theorem 16. When Problem 1 is consistent, let its solution set
be denoted by 𝑆

𝐻
. If

∘

𝑋 ∈ 𝑆
𝐻
, and

∘

𝑋 can be expressed as

∘

𝑋 = 𝐴
𝐻
𝐺𝐵

𝐻
+ 𝐷𝐺

𝐻
𝐶 + 𝑄𝐴

𝐻
𝐺𝐵

𝐻
𝑄

+ 𝑄𝐷𝐺
𝐻
𝐶𝑄, 𝐺 ∈ H

𝑚×𝑝
,

(47)

then,
∘

𝑋 is the least Frobenius norm solution of Problem 1.

Proof. By (𝑎), (𝑏), and (𝑐) in Lemmas 4, 5, and 6, we have that

vec(𝜙(

∘

𝑋))

= vec (𝜙𝑇
(𝐴) 𝜙 (𝐺) 𝜙

𝑇
(𝐵) + 𝜙 (𝐷) 𝜙

𝑇
(𝐺) 𝜙 (𝐶)

+ 𝜙 (𝑄) 𝜙
𝑇
(𝐴) 𝜙 (𝐺) 𝜙

𝑇
(𝐵) 𝜙 (𝑄)

+ 𝜙 (𝑄) 𝜙 (𝐷) 𝜙
𝑇
(𝐺) 𝜙 (𝐶) 𝜙 (𝑄))

= [𝜙 (𝐵) ⊗ 𝜙
𝑇
(𝐴) + (𝜙

𝑇
(𝐶) ⊗ 𝜙 (𝐷)) 𝑃 (4𝑚, 4𝑝) ,

𝜙 (𝑄) 𝜙 (𝐵) ⊗ 𝜙 (𝑄) 𝜙
𝑇
(𝐴)

+ (𝜙 (𝑄) 𝜙
𝑇
(𝐶) ⊗ 𝜙 (𝑄) 𝜙 (𝐷)) 𝑃 (4𝑚, 4𝑝)]

× [
vec (𝜙 (𝐺))

vec (𝜙 (𝐺))
]

= [
𝜙

𝑇
(𝐵) ⊗ 𝜙(𝐴) + (𝜙

𝑇
(𝐷) ⊗ 𝜙(𝐶))𝑃(4𝑛, 4𝑛)

𝜙
𝑇
(𝐵)𝜙(𝑄) ⊗ 𝜙(𝐴)𝜙(𝑄) + (𝜙

𝑇
(𝐷)𝜙(𝑄) ⊗ 𝜙(𝐶)𝜙(𝑄))𝑃(4𝑛, 4𝑛)

]

𝑇

× [
vec (𝜙 (𝐺))

vec (𝜙 (𝐺))
]

∈ 𝑅 [
𝜙

𝑇
(𝐵) ⊗ 𝜙 (𝐴)

𝜙
𝑇
(𝐵) 𝜙 (𝑄) ⊗ 𝜙 (𝐴) 𝜙 (𝑄)

+ (𝜙
𝑇
(𝐷) ⊗ 𝜙 (𝐶)) 𝑃 (4𝑛, 4𝑛)

+ (𝜙
𝑇
(𝐷) 𝜙 (𝑄) ⊗ 𝜙 (𝐶) 𝜙 (𝑄)) 𝑃 (4𝑛, 4𝑛)

]

𝑇

.

(48)

By Lemma 12, 𝜙(
∘

𝑋) is the least Frobenius norm solution of
matrix equations (46).

Noting (11), we derive from Lemmas 13, 14, and 15 that
∘

𝑋

is the least Frobenius norm solution of Problem 1.

From Algorithm 7, it is obvious that, if we consider

𝑋(1) = 𝐴
𝐻
𝐺𝐵

𝐻
+ 𝐷𝐺

𝐻
𝐶 + 𝑄𝐴

𝐻
𝐺𝐵

𝐻
𝑄

+ 𝑄𝐷𝐺
𝐻
𝐶𝑄, 𝐺 ∈ H

𝑚×𝑝
,

(49)

then all𝑋(𝑘) generated by Algorithm 7 can be expressed as

𝑋 (𝑘) = 𝐴
𝐻
𝐺

𝑘
𝐵

𝐻
+ 𝐷𝐺

𝐻

𝑘
𝐶 + 𝑄𝐴

𝐻
𝐺

𝑘
𝐵

𝐻
𝑄

+ 𝑄𝐷𝐺
𝐻

𝑘
𝐶𝑄, 𝐺

𝑘
∈ H

𝑚×𝑝
.

(50)

Using the above conclusion and consideringTheorem 16,
we propose the following theorem.

Theorem 17. Suppose that Problem 1 is consistent. Let the
initial iteration matrix be

𝑋 (1) = 𝐴
𝐻
𝐺𝐵

H
+ 𝐷𝐺

𝐻
𝐶 + 𝑄𝐴

𝐻
𝐺𝐵

𝐻
𝑄 + 𝑄𝐷𝐺

𝐻
𝐶𝑄, (51)

where 𝐺 is an arbitrary quaternion matrix, or especially,
𝑋(1) = 0, then the solution 𝑋

∗, generated by Algorithm 7, is
the least Frobenius norm solution of Problem 1.

Now we study Problem 2. When Problem 1 is consistent,
the solution set of Problem 1 denoted by 𝑆

𝐻
is not empty.

Then, For a given reflexive matrix𝑋
0
∈ RH𝑛×𝑛

(𝑄),

𝐴𝑋𝐵 + 𝐶𝑋
𝐻
𝐷 = 𝐹 ⇐⇒ 𝐴(𝑋 − 𝑋

0
) 𝐵 + 𝐶(𝑋 − 𝑋

0
)
𝐻
𝐷

= 𝐹 − 𝐴𝑋
0
𝐵 − 𝐶𝑋

𝐻

0
𝐷.

(52)

Let 𝑋̇ = 𝑋 − 𝑋
0
and 𝐹̇ = 𝐹 − 𝐴𝑋

0
𝐵 − 𝐶𝑋

𝐻

0
𝐷, then Problem

2 is equivalent to finding the least Frobenius norm reflexive
solution of the quaternion matrix equation

𝐴𝑋̇𝐵 + 𝐶𝑋̇
𝐻
𝐷 = 𝐹̇. (53)

By using Algorithm 7, let the initial iteration matrix 𝑋̇(1) =

𝐴
𝐻
𝐺𝐵

𝐻
+ 𝐷𝐺

𝐻
𝐶 + 𝑄𝐴

𝐻
𝐺𝐵

𝐻
𝑄 + 𝑄𝐷𝐺

𝐻
𝐶Q, where 𝐺 is an

arbitrary quaternion matrix in H𝑚×𝑝, or especially, 𝑋̇(1) = 0,
we can obtain the least Frobenius norm reflexive solution 𝑋̇

∗

of (53). Then we can obtain the solution of Problem 2, which
is

𝑋̆ = 𝑋̇
∗
+ 𝑋

0
. (54)
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4. Examples

In this section, we give two examples to illustrate the effi-
ciency of the theoretical results.

Example 18. Consider the quaternion matrix equation

𝐴𝑋𝐵 + 𝐶𝑋
𝐻
𝐷 = 𝐹, (55)

with

𝐴 = [
1 + 𝑖 + 𝑗 + 𝑘 2 + 2𝑗 + 2𝑘 𝑖 + 3𝑗 + 3𝑘 2 + 𝑖 + 4𝑗 + 4𝑘

3 + 2 𝑖 + 2 𝑗 + 𝑘 3 + 3𝑖 + 𝑗 1 + 7𝑖 + 3𝑗 + 𝑘 6 − 7𝑖 + 2𝑗 − 4𝑘
] ,

𝐵 =

[
[
[

[

−2 + 𝑖 + 3𝑗 + 𝑘 3 + 3𝑖 + 4𝑗 + 𝑘

5 − 4𝑖 − 6𝑗 − 5𝑘 −1 − 5𝑖 + 4𝑗 + 3𝑘

−1 + 2𝑖 + 𝑗 + 𝑘 2 + 2𝑗 + 6𝑘

3 − 2𝑖 + 𝑗 + 𝑘 4 + 𝑖 − 2𝑗 − 4𝑘

]
]
]

]

,

𝐶 = [
1 + 𝑖 + 𝑗 + 𝑘 2 + 2𝑖 + 2𝑗 𝑘 2 + 2𝑖 + 2𝑗 + 𝑘

−1 + 𝑖 + 3𝑗 + 3𝑘 −2 + 3𝑖 + 4𝑗 + 2𝑘 6 − 2𝑖 + 6𝑗 + 4𝑘 3 + 𝑖 + 𝑗 + 5𝑘
] ,

𝐷 =

[
[
[

[

−1 + 4𝑗 + 2𝑘 1 + 2𝑖 + 3𝑗 + 3𝑘

7 + 6𝑖 + 5𝑗 + 6𝑘 3 + 7𝑖 − 𝑗 + 9𝑘

4 + 𝑖 + 6𝑗 + 𝑘 7 + 2𝑖 + 9𝑗 + 𝑘

1 + 𝑖 + 3𝑗 − 3𝑘 1 + 3𝑖 + 2𝑗 + 2𝑘

]
]
]

]

,

𝐹 = [
1 + 3𝑖 + 2𝑗 + 𝑘 2 − 2𝑖 + 3𝑗 + 3𝑘

−1 + 4𝑖 + 2𝑗 + 𝑘 −2 + 2𝑖 − 1𝑗
] .

(56)

We apply Algorithm 7 to find the reflexive solution with res-
pect to the generalized reflection matrix.

𝑄 =

[
[
[

[

0.28 0 0.96𝑘 0

0 −1 0.0 0

−0.96𝑘 0 −0.28 0

0 0 0 −1

]
]
]

]

. (57)

For the initial matrix𝑋(1) = 𝑄, we obtain a solution, that is

𝑋
∗
= 𝑋 (20)

=
[
[

[

0.27257 − 0.23500𝑖 + 0.034789𝑗 + 0.054677𝑘 0.085841 − 0.064349𝑖 + 0.10387𝑗 − 0.26871𝑘

0.028151 − 0.013246𝑖 − 0.091097𝑗 + 0.073137𝑘 −0.46775 + 0.048363𝑖 − 0.015746𝑗 + 0.21642𝑘

0.043349 + 0.079178𝑖 + 0.085167𝑗 − 0.84221𝑘 0.35828 − 0.13849𝑖 − 0.085799𝑗 + 0.11446𝑘

0.13454 − 0.028417𝑖 − 0.063010𝑗 − 0.10574𝑘 0.10491 − 0.039417𝑖 + 0.18066𝑗 − 0.066963𝑘

−0.043349 + 0.079178𝑖 + 0.085167𝑗 + 0.84221𝑘 −0.014337 − 0.14868𝑖 − 0.011146𝑗 − 0.00036397𝑘

0.097516 + 0.12146𝑖 − 0.017662𝑗 − 0.037534𝑘 −0.064483 + 0.070885𝑖 − 0.089331𝑗 + 0.074969𝑘

−0.21872 + 0.18532𝑖 + 0.011399𝑗 + 0.029390𝑘 0.00048529 + 0.014861𝑖 − 0.19824𝑗 − 0.019117𝑘

−0.14099 + 0.084013𝑖 − 0.037890𝑗 − 0.17938𝑘 −0.63928 − 0.067488𝑖 + 0.042030𝑗 + 0.10106𝑘

]
]

]

,

(58)

with corresponding residual ‖𝑅(20)‖ = 2.2775 × 10
−11. The

convergence curve for the Frobenius norm of the residuals
𝑅(𝑘) is given in Figure 1, where 𝑟(𝑘) = ‖𝑅(𝑘)‖.

Example 19. In this example, we choose the matrices
𝐴, 𝐵, 𝐶, 𝐷, 𝐹, and 𝑄 as same as in Example 18. Let

𝑋
0
= [

[

1 −0.36𝑖 − 0.75𝑘 0 −0.5625𝑖 − 0.48𝑘

0.36𝑖 1.28 0.48𝑗 −0.96𝑗

0 1 − 0.48𝑗 1 0.64 − 0.75𝑗

0.48𝑘 0.96𝑗 0.64 0.72

]

]

∈ RH
𝑛×𝑛

(𝑄) .

(59)

In order to find the optimal approximation reflexive solution
to the given matrix 𝑋

0
, let 𝑋̇ = 𝑋 − 𝑋

0
and 𝐹̇ = 𝐹 −

𝐴𝑋
0
𝐵 − 𝐶𝑋

𝐻

0
𝐷. Now we can obtain the least Frobenius

norm reflexive solution 𝑋̇
∗ of the quaternionmatrix equation

𝐴𝑋̇𝐵 + 𝐶𝑋̇
𝐻
𝐷 = 𝐹̇, by choosing the initial matrix 𝑋̇(1) = 0,

that is
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𝑋̇
∗
= 𝑋̇ (20)

=

[
[
[

[

−0.47933 + 0.021111𝑖 + 0.11703𝑗 − 0.066934𝑘 −0.52020 − 0.19377𝑖 + 0.17420𝑗 − 0.59403𝑘

−0.31132 − 0.11705𝑖 − 0.33980𝑗 + 0.11991𝑘 −0.86390 − 0.21715𝑖 − 0.037089𝑗 + 0.40609𝑘

−0.24134 − 0.025941𝑖 − 0.31930𝑗 − 0.26961𝑘 −0.44552 + 0.13065𝑖 + 0.14533𝑗 + 0.39015𝑘

−0.11693 − 0.27043𝑖 + 0.22718𝑗 − 0.0000012004𝑘 −0.44790 − 0.31260𝑖 − 1.0271𝑗 + 0.27275𝑘

0.24134 − 0.025941𝑖 − 0.31930𝑗 + 0.26961𝑘 0.089010 − 0.67960𝑖 + 0.43044𝑗 − 0.045772𝑘

−0.089933 − 0.25485𝑖 + 0.087788𝑗 − 0.23349𝑘 −0.17004 − 0.37655𝑖 + 0.80481𝑗 + 0.37636𝑘

−0.63660 + 0.16515𝑖 − 0.13216𝑗 + 0.073845𝑘 −0.034329 + 0.32283𝑖 + 0.50970𝑗 − 0.066757𝑘

0.00000090029 + 0.17038𝑖 + 0.20282𝑗 − 0.087697𝑘 −0.44735 + 0.21846𝑖 − 0.21469𝑗 − 0.15347𝑘

]
]
]

]

,

(60)

with corresponding residual ‖𝑅̇(20)‖ = 4.3455 × 10
−11. The

convergence curve for the Frobenius norm of the residuals
𝑅̇(𝑘) is given in Figure 2, where 𝑟(𝑘) = ‖𝑅̇(𝑘)‖.

Therefore, the optimal approximation reflexive solution
to the given matrix𝑋

0
is

𝑋̆ = 𝑋̇
∗
+ 𝑋

0

=

[
[
[

[

0.52067 + 0.021111𝑖 + 0.11703𝑗 − 0.066934𝑘 −0.52020 − 0.55377𝑖 + 0.17420𝑗 − 1.3440𝑘

−0.31132 + 0.24295𝑖 − 0.33980𝑗 + 0.11991𝑘 0.41610 − 0.21715𝑖 − 0.037089𝑗 + 0.40609𝑘

−0.24134 − 0.025941𝑖 − 0.31930𝑗 − 0.26961𝑘 0.55448 + 0.13065𝑖 − 0.33467𝑗 + 0.39015𝑘

−0.11693 − 0.27043𝑖 + 0.22718𝑗 + 0.48000𝑘 −0.44790 − 0.31260𝑖 − 0.067117𝑗 + 0.27275𝑘

0.24134 − 0.025941𝑖 − 0.31930𝑗 + 0.26961𝑘 0.089010 − 1.2421𝑖 + 0.43044𝑗 − 0.52577𝑘

−0.089933 − 0.25485𝑖 + 0.56779𝑗 − 0.23349𝑘 −0.17004 − 0.37655𝑖 − 0.15519𝑗 + 0.37636𝑘

0.36340 + 0.16515𝑖 − 0.13216𝑗 + 0.073845𝑘 0.60567 + 0.32283𝑖 − 0.24030𝑗 − 0.066757𝑘

0.64000 + 0.17038𝑖 + 0.20282𝑗 − 0.087697𝑘 0.27265 + 0.21846𝑖 − 0.21469𝑗 − 0.15347𝑘

]
]
]

]

.

(61)

The results show that Algorithm 7 is quite efficient.

5. Conclusions

In this paper, an algorithm has been presented for solving the
reflexive solution of the quaternion matrix equation 𝐴𝑋𝐵 +

𝐶𝑋
𝐻
𝐷 = 𝐹. By this algorithm, the solvability of the problem

can be determined automatically. Also, when the quaternion
matrix equation 𝐴𝑋𝐵 + 𝐶𝑋

𝐻
𝐷 = 𝐹 is consistent over

reflexive matrix 𝑋, for any reflexive initial iterative matrix,
a reflexive solution can be obtained within finite iteration
steps in the absence of roundoff errors. It has been proven
that by choosing a suitable initial iterative matrix, we can
derive the least Frobenius norm reflexive solution of the
quaternion matrix equation 𝐴𝑋𝐵 + 𝐶𝑋

𝐻
𝐷 = 𝐹 through

Algorithm 7. Furthermore, by using Algorithm 7, we solved
Problem 2. Finally, two numerical examples were given to
show the efficiency of the presented algorithm.
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