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We prove that a dynamical system is chaotic in the sense of Martelli and Wiggins, when it is a transitive distributively chaotic in a
sequence.Then, we give a sufficient condition for the dynamical system to be chaotic in the strong sense of Li-Yorke. We also prove
that a dynamical system is distributively chaotic in a sequence, when it is chaotic in the strong sense of Li-Yorke.

1. Introduction

Since Li and Yorke first gave the definition of chaos by using
strict mathematical language in 1975 [1], the research on
chaos has greatly influenced modern science, not just natural
sciences but also several social sciences, such as economics,
sociology, and philosophy. The theory of chaos convinced
scientists that a simple definite system can produce compli-
cated features and a complex system instead possibly follows
a simple law. However, scientists in different fields, finding
different chaotic connotations, gave different definitions of
chaos such as Li-Yorke chaos, distributional chaos, and
Devaney chaos. In order to establish a satisfactory defini-
tional and terminological framework for complex dynamical
systems that are based on strict mathematical definitions,
these concepts with less ambiguous are necessary, and their
interdependence has to be clarified. There is no doubt that
the mathematical definition of Li-Yorke chaos has a large
influence than any other one, whereas distributional chaos
possesses some statistical connotations besides the uncer-
tainty of long-term behaviors. So, comparing distributional
chaos with Li-Yorke chaos is a meaningful and significant
problem.

In order to reveal the inner relations between Li-Yorke
chaos and distributional chaos, the author brought up the
definition of distributional chaos in a sequence in [2]. In this
paper, we mainly prove the relations between some different
chaoses in discrete dynamical systems.

The main theorems are stated as follows.

Theorem 1. If a dynamical system (𝑋, 𝑓) exhibits transitive
distributional chaos in a sequence, then,

(1) it is chaotic in the sense of Martelli;
(2) it is chaotic in the sense of Wiggins.

Theorem 2. Let 𝑎, 𝑏 ∈ 𝑋 with 𝑎 ̸= 𝑏 and 𝑝𝑘 → ∞ be a seq-
uence of positive integers. If for any sequence 𝐶 = 𝐶1 ⋅ ⋅ ⋅ 𝐶𝑘 ⋅ ⋅ ⋅

where 𝐶𝐾 = 𝐵(𝑎, 1/𝑘) or 𝐵(𝑏, 1/𝑘)(𝐵(𝑎, 1/𝑘) = {𝑥 | 𝑑(𝑎, 𝑥) <

(1/𝑘)}) there exists 𝑥(𝐶) ∈ 𝑋, such that for each 𝑘 ≥

1, 𝑓
𝑝𝑘(𝑥(𝐶)) ∈ 𝐶𝑘 then system (𝑋, 𝑓) is chaotic in the strong

sense of Li-Yorke.

Theorem 3. If a dynamical system (𝑋, 𝑓) exhibits chaotic in
the strong sense of Li-Yorke, then it is distributively chaotic in
a sequence.

2. Problem Statement and Preliminaries

Throughout this paper𝑋 will denote a compact metric space
with metric 𝑑.

2.1. Several Definitions and Lemmas. 𝐷 ⊂ 𝑋 is said to be a
chaotic set of 𝑓 if for any pair (𝑥, 𝑦) ∈ 𝐷 × 𝐷, 𝑥 ̸= 𝑦, we have

lim
𝑛→∞

inf 𝑑 (𝑓𝑛 (𝑥) , 𝑓𝑛 (𝑦)) = 0,

lim
𝑛→∞

sup 𝑑 (𝑓𝑛 (𝑥) , 𝑓𝑛 (𝑦)) > 0.
(1)
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Definition 4. 𝑓 is said to be chaotic in the sense of Li and
Yorke (for short: Li-Yorke chaotic), if it has a chaotic set 𝐷
which is uncountable.

Let {𝑝𝑖} be an increasing sequence of positive integers,
𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0. Let

𝐹𝑥𝑦 (𝑡, {𝑝𝑖}) = lim
𝑛→∞

inf 1
𝑛

𝑛

∑
𝑘=1

𝜒[0,𝑡) (𝑑 (𝑓
𝑝𝑘 (𝑥) , 𝑓

𝑝𝑘 (𝑦))) ,

𝐹
∗

𝑥𝑦
(𝑡, {𝑝𝑖}) = lim

𝑛→∞
sup 1

𝑛

𝑛

∑
𝑘=1

𝜒[0,𝑡) (𝑑 (𝑓
𝑝𝑘 (𝑥) , 𝑓

𝑝𝑘 (𝑦))) ,

(2)

where 𝜒𝐴(𝑦) is 1 if 𝑦 ∈ 𝐴 and 0 otherwise. Obviously, 𝐹𝑥𝑦
and 𝐹

∗

𝑥𝑦
are both nondecreasing functions. If for 𝑡 ≤ 0 we

define 𝐹𝑥𝑦(𝑡) = 𝐹∗
𝑥𝑦
(𝑡) = 0, then 𝐹𝑥𝑦 and 𝐹

∗

𝑥𝑦
are probability

distributional functions.

Definition 5. Let𝐷 ⊂ 𝑋, If ∀𝑥, 𝑦 ∈ 𝐷, 𝑥 ̸= 𝑦, we have

(1) ∃𝛿 > 0, 𝐹𝑥𝑦 = (𝛿, {𝑝𝑖}) = 0,

(2) ∀𝑡 > 0, 𝐹
∗

𝑥𝑦
(𝑡, {𝑝𝑖}) = 1,

(3)

then𝐷 is said to be a distributively chaotic set in a sequence.
The two points are said to be distributively chaotic point
pair in a sequence. 𝑓 is said to be distributively chaotic in a
sequence, if 𝑓 has a distributively chaotic set in a sequence
which is uncountable.

Definition 6. Let 𝑆 ⊂ 𝑋. If there exist two strictly increasing
sequences of positive integers {𝑝𝑖} and {𝑞𝑖} such that for any
𝑥, 𝑦 ∈ 𝑆, 𝑥 ̸= 𝑦,

lim
𝑖→∞

𝑑 (𝑓
𝑝𝑖 (𝑥) , 𝑓

𝑝𝑖 (𝑦)) = 0,

lim
𝑖→∞

𝑑 (𝑓
𝑞𝑖 (𝑥) , 𝑓

𝑞𝑖 (𝑦)) > 0,
(4)

then 𝑆 is said to be a strong scrambled set. 𝑓 is said to be
chaotic in the strong sense of Li-Yorke, if 𝑓 has an uncount-
able strong scrambled set.

Definition 7. Let {𝑝𝑖} be an increasing sequence of positive
integers, then,

PR (𝑓, {𝑝𝑖})

= {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 | ∀𝜀 > 0,

∃𝑖 ∈ 𝑁 such that𝑑 (𝑓𝑝𝑖 (𝑥) , 𝑓𝑝𝑖 (𝑦)) < 𝜀}

(5)

is called proximal relation with respect to {𝑝𝑖}.
Thus

AR (𝑓, {𝑝𝑖})

= {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 | lim
𝑖→∞

𝑑 (𝑓
𝑝𝑖 (𝑥) , 𝑓

𝑝𝑖 (𝑦)) = 0}
(6)

is called asymptotic relation with respect to {𝑝𝑖}.

Thus

DR (𝑓, {𝑝𝑖}) = 𝑋 × 𝑋 − PR (𝑓, {𝑝𝑖}) (7)

is called distal relation with respect to {𝑝𝑖}.
So

DCR (𝑓, {𝑝𝑖})

= {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 | (𝑥, 𝑦)

is a distributively chaotic point pair of𝑓 in𝑝𝑖}
(8)

is called distributively chaotic respect to {𝑝𝑖}.

Definition 8 (see [3]). 𝑓 is (topologically) transitive if for any
two nonempty open sets 𝑈,𝑉 ⊂ 𝑋 there exists 𝑛 > 0 such
that 𝑓𝑛(𝑈) ∩ 𝑉 ̸= 0. 𝑓 is (topologically) weakly mixing if for
any three nonempty open sets 𝑈,𝑉,𝑊 ⊂ 𝑋 there exists 𝑛 > 0

such that 𝑓𝑛(𝑊) ∩ 𝑉 ̸= 0 and 𝑓𝑛(𝑊) ∩ 𝑈 ̸= 0.

Definition 9 (see [4–6]). Let 𝑓 be a continuous map from a
compact metric space (𝑋, 𝑑) into itself. The orbit of a point
𝑥 ∈ 𝑋 is said to be unstable if there exists 𝑟 > 0 such that for
every 𝜖 > 0 there are 𝑦 ∈ 𝑋 and 𝑛 ≥ 1 satisfying inequalities
𝑑(𝑥, 𝑦) < 𝜖 and 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) > 𝑟. The map 𝑓 is said to be
chaotic in the sense ofMartelli if there exists 𝑥0 ∈ 𝑋 such that
𝑥0 has dense orbit which is unstable.

Definition 10 (see [7]). Let 𝑓 be a continuous map from a
compact metric space (𝑋, 𝑑) into itself.We say𝑓 has sensitive
dependence on initial conditions if there exists 𝑟 > 0 such that
for any 𝑥 ∈ 𝑋 and 𝜖 > 0, there is some 𝑦 ∈ 𝑋 and a nonneg-
ative integer 𝑛 satisfying 𝑑(𝑥, 𝑦) < 𝜖 and 𝑑(𝑓𝑛(𝑥), 𝑓𝑛(𝑦)) >
𝑟. 𝑓 is said to be chaotic in the sense of Wiggins, if 𝑓
is transitive and has sensitive dependence on initial condi-
tions.

Definition 11. Let (𝑋, 𝑑) be a compact metric space, 𝑓 :

𝑋 → 𝑋 be a continuous map, and𝐷 be an uncountable dis-
tributively scrambled set in a sequence.

We say that𝑓 exhibits dense distributional chaos in a seq-
uence if the set𝐷may be chosen to be dense. If𝐷 is not only
dense but additionally consists of points with dense orbits,
then we say that 𝑓 exhibits transitive distributional chaos in
a sequence.

Lemma 12. Let Σ be an infinite sequence set of {0, 1}. Then,
there exists an uncountable subset 𝐸 ⊂ Σ such that for any
different points 𝑠 = 𝑠1𝑠2, . . . , 𝑡 = 𝑡1𝑡2, . . . , 𝑠𝑚 ̸= 𝑡𝑚 for infinitely
many𝑚 and 𝑠𝑛 = 𝑡𝑛 for infinitely many 𝑛.

Proof. For a proof, see [8].

Lemma 13. If {𝑝𝑖} and {𝑞𝑖} are both infinite increasing subse-
quences of {𝑚𝑖} which is a sequence of positive integers, then
there exists an infinite increasing subsequence {𝑡𝑖} ⊂ {𝑚𝑖} such
that

AR (𝑓, {𝑝𝑖}) ∩ DR (𝑓, {𝑞𝑖}) ⊂ DCR (𝑓, {𝑡𝑖}) . (9)
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Proof. For a proof, see [9].

Lemma 14. 𝑓 is weakly mixing if and only if for any𝑚 ≥ 2, 𝑓𝑚
is transitive.

Proof. For a proof, see [10].

3. Proof of Main Theorem

Proof of Theorem 1. (1) There is no isolated points in 𝑋 as
otherwise the set of points with dense orbit is at most count-
able. But in the case of compact set without isolated points,
the existence of dense orbit implies transitivity.

Let 𝐷 be a dense scrambled set in the sequence {𝑝𝑘}

consisting of transitive points, and let 𝑟 > 0 be such that
𝐹𝑥𝑦(𝑟, {𝑝𝑘}) = 0 for all distinct 𝑥, 𝑦 ∈ 𝐷. Let us fix any
𝑥0 ∈ 𝐷. Because orbit of 𝑥0 is dense, for any 𝜖 > 0, there exists
𝑦 ∈ 𝐷 and 𝑘 ≥ 1 satisfying the inequalities 𝑑(𝑥0, 𝑦) < 𝜖 and
𝐹𝑥0𝑦(𝑟, {𝑝𝑘}) = 0. This implies that 𝑑(𝑓𝑝𝑘(𝑥0), 𝑓

𝑝𝑘(𝑦)) > 𝑟 for
some 𝑘 ≥ 1. This shows that the orbit of 𝑥0 is unstable. So,
(𝑋, 𝑓) is chaotic in the sense of Martelli.

(2) Fix any 𝜖 > 0. In 𝜖-neighborhood of any point 𝑥, we
can find points 𝑦, 𝑧 ∈ 𝐷 such that 𝑑(𝑓𝑝𝑘(𝑦), 𝑓𝑝𝑘(𝑧)) > 𝑟.
Then, 𝑑(𝑓𝑝𝑘(𝑥), 𝑓𝑝𝑘(𝑦)) > 𝑟/2 or 𝑑(𝑓𝑝𝑘(𝑥), 𝑓𝑝𝑘(𝑧)) > 𝑟/2.

Proof ofTheorem 2. Let𝐸 be an uncountable subset ofΣ, as in
Lemma 12. For each 𝑠 = 𝑠0𝑠1 ⋅ ⋅ ⋅ 𝑠𝑛 ⋅ ⋅ ⋅ ∈ 𝐸, by the hypotheses,
we can choose a point 𝑥(𝑠) ∈ 𝑋 such that for any 𝑘, if 𝑛! <
𝑘 ≤ (𝑛 + 1)! then,

𝑥
𝑠

𝑝𝑘
∈

{{{

{{{

{

𝐵(𝑎,
1

𝑘
) if 𝑠𝑛 = 0,

𝐵 (𝑏,
1

𝑘
) if 𝑠𝑛 = 1.

(10)

Put 𝐷 = {𝑥𝑠 | 𝑠 ∈ 𝐸}. Clearly, if 𝑠 ̸= 𝑡 then 𝑥𝑠 ̸= 𝑥𝑡. It follows
that 𝐸 being uncountable implies so is𝐷.

Let 𝑥𝑠, 𝑥𝑡 ∈ 𝐷 be any different points, where 𝑠 = 𝑠0𝑠1
⋅ ⋅ ⋅ 𝑠𝑖 ⋅ ⋅ ⋅ , 𝑡 = 𝑡0𝑡1 ⋅ ⋅ ⋅ 𝑡𝑖 ⋅ ⋅ ⋅ ∈ 𝐸. By the property of 𝐸, we
know that there exist sequences of positive integers 𝑚𝑖 →
∞, 𝑛𝑖 → ∞ such that 𝑠𝑚𝑖 ̸= 𝑡𝑚𝑖 , 𝑠𝑛𝑖 = 𝑡𝑛𝑖 for all 𝑖, and for 𝑚𝑖
large enough 1/𝑚 < 𝑑(𝑎, 𝑏)/4 = 𝛿, we have 𝑑(𝑥𝑠

𝑚𝑖
, 𝑥𝑡
𝑚𝑖
) > 𝛿.

Thus,

lim
𝑖→∞

𝑑 (𝑥
𝑠

𝑚𝑖
, 𝑥
𝑡

𝑚𝑖
) ≥ 𝛿, (11)

this shows

lim
𝑖→∞

sup 𝑑 (𝑥𝑠
𝑚𝑖
, 𝑥
𝑡

𝑚𝑖
) ≥ 𝛿. (12)

Meanwhile, for 𝑛𝑖 large enough, 𝑥
𝑠

𝑛𝑖
and 𝑥𝑡
𝑛𝑖
lie in the same ball

of diameter less than 1/𝑛𝑖. Thus, 𝑑(𝑥𝑠
𝑛𝑖
, 𝑥𝑡
𝑛𝑖
) < 1/𝑛, so

lim
𝑖→∞

𝑑 (𝑥
𝑠

𝑛𝑖
, 𝑥
𝑡

𝑛𝑖
) = 0. (13)

This shows

lim
𝑖→∞

inf 𝑑 (𝑥𝑠
𝑛𝑖
, 𝑥
𝑡

𝑛𝑖
) = 0. (14)

Above all, (𝑋, 𝑓) is chaotic in the strong sense of Li-Yorke.

Proof ofTheorem 3. Because𝑓 is chaotic in the strong sense of
Li-Yorke, there exists an infinite increasing sequence {𝑝𝑖} ⊂ N

and uncountable set 𝑆 ⊂ 𝑋, such that for any 𝑥, 𝑦 ∈ 𝑆 with
𝑥 ̸= 𝑦, we have

lim
𝑖→∞

𝑑 (𝑓
𝑝𝑖 (𝑥) , 𝑓

𝑝𝑖 (𝑦)) = 0, (15)

so that (𝑥, 𝑦) ∈ AR(𝑓, {𝑝𝑖}).
Again, by the definition of chaos in the strong sense of

Li-Yorke, there exists {𝑞𝑖} ⊂ N, such that

lim
𝑖→∞

𝑑 (𝑓
𝑞𝑖 (𝑥) , 𝑓

𝑞𝑖 (𝑦)) > 0, (16)

so that (𝑥, 𝑦) ∈ DR(𝑓, {𝑞𝑖}).
Hence, 𝑆 × 𝑆 − Δ ⊂ AR(𝑓, {𝑝𝑖}) ∩ DR(𝑓, {𝑞𝑖}), where

Δ = {(𝑥, 𝑥); 𝑥 ∈ 𝑋}. Then by Lemma 13, there exists a sub-
sequence {𝑡𝑖} ⊂ N such that 𝑆 × 𝑆 ⊂ DCR(𝑓, {𝑡𝑖}). This shows
that 𝑆 is a distributively chaotic set in the sequence {𝑡𝑖} of 𝑓.

Corollary 15. If system (𝑋, 𝑓) satisfies conditions of
Theorem 2. then it is distributively chaotic in the sequence.

Proof. ByTheorems 2 and 3, we can easily prove it.

Corollary 16. Let (𝑋, 𝑑) be a locally compact metric space
containing at least two points. If system (𝑋, 𝑓) is weaklymixing,
then it must be chaotic in the strong sense of Li-Yorke.

Proof. Let 𝑓 be weakly mixing, 𝑎, 𝑏 ∈ 𝑋 with 𝑎 ̸= 𝑏. Take
arbitrarily a nonempty open set 𝑉0 ⊂ 𝑋 such that 𝑉0 is com-
pact. Since 𝑓 is weakly mixing, there exists 𝑝1 > 0 such that
𝑓
𝑝1(𝑉0) ∩ 𝐵(𝑎, 1/𝑘) ̸= 0 and 𝑓𝑝1(𝑉0) ∩ 𝐵(𝑏, 1/𝑘) ̸= 0. Thus, we

find points 𝑥1, 𝑥2 such that 𝑓𝑝1(𝑥1) ∈ 𝐵(𝑎, 1/𝑘), 𝑓𝑝1(𝑥2) ∈

𝐵(𝑏, 1/𝑘). Assume that there exist positive integers 𝑝1 < 𝑝2 <

⋅ ⋅ ⋅ < 𝑝𝑘 such that for each finite sequence𝐴1𝐴2 ⋅ ⋅ ⋅ 𝐴𝑘, where
𝐴 𝑖 ∈ {𝐵(𝑎, 1/𝑖), 𝐵(𝑏, 1/𝑖)}, there is a point 𝑥 ∈ 𝑉0 satisfying
𝑓𝑝𝑖(𝑥) ∈ 𝐴 𝑖 for 𝑖 = 1, 2, . . . , 𝑘, the set of all such points will
denoted by 𝑆𝑘. By continuity of 𝑓, each 𝑥 ∈ 𝑆𝑘 has an open
nonempty neighborhood𝑊𝑥 ⊂ 𝑉0 such that 𝑓

𝑝𝑖(𝑊𝑥) ⊂ 𝐴 𝑖, if
𝑓𝑝𝑖(𝑥) ∈ 𝐴 𝑖, it follows fromLemma 14 that there exists𝑝𝑘+1 >
𝑝𝑘 such that for each𝑥 ∈ 𝑆𝑘, 𝑓

𝑝𝑘+1(𝑊𝑥)∩𝐵(𝑎, 1/(𝑘+1)) ̸= 0 and
𝑓𝑝𝑘+1(𝑊𝑥) ∩ 𝐵(𝑏, 1/(𝑘 + 1)) ̸= 0. Thus by induction, we know
that there exists a sequence𝑝𝑘 → ∞ of positive integers such
that for any finite sequence 𝐴1 ⋅ ⋅ ⋅ 𝐴𝑘, there is a point 𝑥 ∈ 𝑉0
satisfying 𝑓𝑝𝑖(𝑥) ∈ 𝐴 𝑖, 1 ≤ 𝑖 ≤ 𝑘.

Let 𝐶 = 𝐶1𝐶2 ⋅ ⋅ ⋅ be an infinite sequence, where

𝐶𝑘 ∈ {𝐵(𝑎,
1

𝑘
), 𝐵 (𝑏,

1

𝑘
)} . (17)

For each 𝑘, we can take a point 𝑥𝑘 ∈ 𝐶𝑘 such that

𝑓
𝑝𝑖 (𝑥𝑘) ∈ 𝐶𝑖, 1 ≤ 𝑖 ≤ 𝑘. (18)

Since 𝑉0 is compact, the infinite sequence {𝑥𝑖} has a limit
point in 𝑉0, say 𝑥𝐶, it is not difficult to show 𝑓𝑝𝑘(𝑥𝐶) ⊂ 𝐶𝑘.

Thus byTheorem 2, 𝑓 is a strong chaos in the sense of Li-
Yorke.
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