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We revisit the global error bound for the generalized nonlinear complementarity problem over a polyhedral cone (GNCP). By
establishing a new equivalent formulation of the GNCP, we establish a sharper global error bound for the GNCP under weaker
conditions, which improves the existing error bound estimation for the problem.

1. Introduction

Let K = {V ∈ 𝑅𝑚 | 𝐴V ≥ 0, 𝐵V = 0} be a polyhedral cone in
𝑅

𝑚 for matrices 𝐴 ∈ 𝑅

𝑠×𝑚, 𝐵 ∈ 𝑅

𝑡×𝑚, and let K∘ be its dual
cone; that is,

K
∘

= {𝑢 ∈ 𝑅

𝑚

| 𝑢 = 𝐴

⊤

𝜆
1
+ 𝐵

⊤

𝜆
2
, 𝜆
1
∈ 𝑅

𝑠

+
, 𝜆
2
∈ 𝑅

𝑡

} .

(1)

For continuous mappings 𝐹, 𝐺 : 𝑅

𝑛

→ 𝑅

𝑚, the generalized
nonlinear complementarity problem, abbreviated as GNCP,
is to find vector 𝑥∗ ∈ 𝑅𝑛 such that

𝐹 (𝑥

∗

) ∈ K, 𝐺 (𝑥

∗

) ∈ K
∘

, 𝐹(𝑥

∗

)

⊤

𝐺 (𝑥

∗

) = 0.

(2)

Throughout this paper, the solution set of the GNCP, denoted
by𝑋∗, is assumed to be nonempty.

The GNCP is a direct generalization of the classical
nonlinear complementarity problem and a special case of
the general variational inequalities problem [1]. The GNCP
was deeply discussed [2–5] after the work in [6]. The GNCP
plays a significant role in economics, operation research,
nonlinear analysis, and so forth (see [7, 8]). For example, the
classical Walrasian law of competitive equilibria of exchange
economies can be formulated as a generalized nonlinear
complementarity problem in the price and excess demand
variables (see [8]).

For the GNCP, the solution existence and the numerical
solution methods for the GNCP were discussed [2, 3, 6]. As
an important tool for a mathematical problem, the global
error bound estimation for GNCP with the mapping being
𝛾-strongly monotone and Hölder continuous was discussed
in [5], and a global error bound for the GNCP for the linear
and monotonic case was established in [4].

In this paper, wewill establish a global error bound for the
problem (2) without the Hölder continuity of the underlying
mapping. To this end, we first develop some new equivalent
reformulations of the GNCP under weaker conditions and
then establish a sharper global error bound for the GNCP in
terms of some easier computed residual functions.The results
obtained in this paper can be taken as an improvement of
the existing results for GNCP and variational inequalities
problem [4, 5, 9–11].

To end this section, we give some notations used in this
paper. Vectors considered in this paper are taken in the
Euclidean space 𝑅𝑛 equipped with the usual inner product,
and the Euclidean 2-norm and 1-norm of vector in 𝑅

𝑛 are,
respectively, denoted by ‖ ⋅ ‖ and ‖ ⋅ ‖

1
. We use 𝑅𝑛

+
to denote

the nonnegative orthant in𝑅𝑛 and use𝑥
+
and𝑥
−
to denote the

vectors composed by elements (𝑥
+
)
𝑖
:= max{𝑥

𝑖
, 0}, (𝑥

−
)
𝑖
:=

max{−𝑥
𝑖
, 0}, 1 ≤ 𝑖 ≤ 𝑛, respectively. For simplicity, we use

(𝑥; 𝑦) to denote vector (𝑥⊤, 𝑦⊤)⊤, use 𝐼 to denote the identity
matrix with appropriate dimension, use 𝑥 ≥ 0 to denote
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a nonnegative vector 𝑥 ∈ 𝑅

𝑛, and use dist(𝑥, 𝑋∗) to denote
the distance from point 𝑥 to the solution set𝑋∗.

2. Global Error Bound for the GNCP

First, we give some concepts used in the subsequent.

Definition 1. Themapping 𝐹 : 𝑅𝑛 → 𝑅

𝑚 is said to be
(i) monotone with respect to 𝐺 : 𝑅

𝑛

→ 𝑅

𝑚 if

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝐺 (𝑥) − 𝐺 (𝑦)⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝑅

𝑛

; (3)

(ii) 𝛾-strongly𝐺-monotonewith respect to𝐺 : 𝑅

𝑛

→ 𝑅

𝑚

if there are constants 𝑐
1
> 0, 𝛾 > 0 such that

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝐺 (𝑥) − 𝐺 (𝑦)⟩ ≥ 𝑐
1






𝐺 (𝑥) − 𝐺 (𝑦)






1+𝛾

,

∀𝑥, 𝑦 ∈ 𝑅

𝑛

.

(4)

Remark 2. Based on this definition, 𝛾-strongly 𝐺-monotone
implies monotonicity, and if 𝐹(𝑥) = 𝑀𝑥 + 𝑝, 𝐺(𝑥) = 𝑁𝑥 + 𝑞
with𝑀,𝑁 ∈ 𝑅

𝑚×𝑛, 𝑝, 𝑞 ∈ 𝑅𝑚, then the above Definition 1(i)
is equivalent to that the matrix𝑀⊤𝑁 is positive semidefinite.

Now, we give some assumptions for our analysis based on
Definition 1.

Assumption 3. For mappings 𝐹, 𝐺 and matrix 𝐴 involved in
the GNCP, we assume that
(A1) mapping 𝐹 is monotone with respect to mapping 𝐺;
(A2) matrix 𝐴⊤ has full-column rank.

Remark 4. Under (A2) in the assumption, matrix 𝐴⊤ has left
inverse (𝐴𝐴⊤)−1𝐴, that is, its pseudoinverse of𝐴⊤. Certainly,
the assumption on matrix 𝐴⊤ is weaker than that on matrix
(𝐴

⊤

, 𝐵

⊤

) which has full-column rank [4]. In addition, when
the mappings 𝐹, 𝐺 are both linear, then Assumption 3(A1)
coincides with Assumption (A1) in [4].

In the following, we will establish a new equivalent
reformulation to the GNCP. First, we give the following
conclusion established in [2].

Theorem 5. A point 𝑥∗ ∈ 𝑅𝑛 is a solution of the GNCP if and
only if there exist 𝜆∗

1
∈ 𝑅

𝑠, 𝜆∗
2
∈ 𝑅

𝑡, such that

𝐴𝐹 (𝑥

∗

) ≥ 0,

𝐵𝐹 (𝑥

∗

) = 0,

𝜆

∗

1
≥ 0,

(𝐹 (𝑥

∗

))

⊤

𝐺 (𝑥

∗

) = 0,

𝐺 (𝑥

∗

) = 𝐴

⊤

𝜆

∗

1
+ 𝐵

⊤

𝜆

∗

2
.

(5)

FromTheorem 5, underAssumption 3(A2), we can trans-
form the system into a new system in which neither 𝜆

1
nor

𝜆
2
is involved. To this end, we need the following conclusion

[12].

Lemma 6. If the linear system𝐻𝑦 = 𝑏 is consistent, then 𝑦 =

𝐻

+

𝑏 is the solution with theminimum 2-norm, where𝐻+ is the
pesudo-inverse of𝐻.

Lemma 7. Suppose that Assumption 3(A2) holds. Then, for
any 𝑥 ∈ 𝑅𝑛, the following statements are equivalent.

(1) There exist 𝜆
1
∈ 𝑅

𝑠

+
, 𝜆
2
∈ 𝑅

𝑡 such that 𝐺(𝑥) = 𝐴⊤𝜆
1
+

𝐵

⊤

𝜆
2
.

(2) Consider

{−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}𝐺 (𝑥) ≥ 0,

{𝐴

⊤

{−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

+𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] − 𝐼}𝐺 (𝑥) = 0,

(6)

where 𝐴−1
𝐿
= (𝐴𝐴

⊤

)

−1

𝐴.

Proof. The proof follows that of Lemma 2.1 in [4], and for
completeness, we include it.

Set

𝑋
1
:= {𝑥 ∈ 𝑅

𝑛

| 𝐺 (𝑥) = 𝐴

⊤

𝜆
1
+ 𝐵

⊤

𝜆
2

for some 𝜆
1
∈ 𝑅

𝑠

+
, 𝜆
2
∈ 𝑅

𝑡

} ,

𝑋
2
:= {𝑥 ∈ 𝑅

𝑛

| { − 𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

× [𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}𝐺 (𝑥) ≥ 0,

{𝐴

⊤

{−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

× [𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

+ 𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

× [𝐴

⊤

𝐴

−1

𝐿
− 𝐼] − 𝐼}𝐺 (𝑥) = 0} .

(7)

Now, we show that these two sets are equal.
First, for any 𝑥 ∈ 𝑋

1
, there exist 𝜆

1
∈ 𝑅

𝑠

+
, 𝜆
2
∈ 𝑅

𝑡 such
that

𝐺 (𝑥) = 𝐴

⊤

𝜆
1
+ 𝐵

⊤

𝜆
2
. (8)

Premultiplying (8) by 𝐴−1
𝐿
:= (𝐴𝐴

⊤

)

−1

𝐴 gives

𝐴

−1

𝐿
𝐺 (𝑥) = 𝜆

1
+ 𝐴

−1

𝐿
𝐵

⊤

𝜆
2
. (9)

Combining this with (8) yields that

𝐺 (𝑥) = 𝐴

⊤

(𝐴

−1

𝐿
𝐺 (𝑥) − 𝐴

−1

𝐿
𝐵

⊤

𝜆
2
) + 𝐵

⊤

𝜆
2

= 𝐴

⊤

𝐴

−1

𝐿
𝐺 (𝑥) − [𝐴

⊤

𝐴

−1

𝐿
𝐵

⊤

− 𝐵

⊤

] 𝜆
2
;

(10)
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that is,

[𝐴

⊤

𝐴

−1

𝐿
𝐵

⊤

− 𝐵

⊤

] 𝜆
2
= [𝐴

⊤

𝐴

−1

𝐿
− 𝐼]𝐺 (𝑥) . (11)

Recalling Lemma 6, we further have

𝜆
2
= [(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼]𝐺 (𝑥) . (12)

Combining this with (9) yields that

𝜆
1
= {−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

× 𝐺 (𝑥) .

(13)

Using (8), (12), and (13), we have

{𝐴

⊤

{−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

+𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] − 𝐼}𝐺 (𝑥) = 0.

(14)

From the fact that 𝜆
1
≥ 0, by (13), one has

{−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}𝐺 (𝑥)

≥ 0.

(15)

Combining this with (14) leads to that 𝑥 ∈ 𝑋
2
. This shows

that𝑋
1
⊆ 𝑋
2
.

Second, for any 𝑥 ∈ 𝑋
2
, let

𝜆
1
= {−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

× 𝐺 (𝑥) ,

𝜆
2
= {[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼]}𝐺 (𝑥) .

(16)

Then, 𝜆
1
∈ 𝑅

𝑠

+
, 𝜆
2
∈ 𝑅

𝑡. From (14), one has

𝐺 (𝑥) = 𝐴

⊤

{−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

× 𝐺 (𝑥)

+𝐵

⊤

{[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼]}𝐺 (𝑥)

= 𝐴

⊤

𝜆
1
+ 𝐵

⊤

𝜆
2
;

(17)

that is, 𝑥 ∈ 𝑋
1
. Hence, 𝑋

2
⊆ 𝑋
1
, and the desired result

follows.

Combining this conclusion with Theorem 5, we can
establish the following equivalent formulation of the GNCP:

𝐴𝐹 (𝑥) ≥ 0,

𝐵𝐹 (𝑥) = 0,

(𝐹 (𝑥))

⊤

𝐺 (𝑥) = 0,

𝑈𝐺 (𝑥) ≥ 0,

𝑉𝐺 (𝑥) = 0,

(18)

where

𝑈 = {−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
} ,

𝑉 = {𝐴

⊤

{−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

× [𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

+𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼] − 𝐼} .

(19)

For the ease of description, we denote 𝜇 = 𝐹(𝑥), ] = 𝐺(𝑥).
Thus, system (18) can be written as

𝐴𝜇 ≥ 0,

𝐵𝜇 = 0,

𝜇

⊤] = 0,

𝑈] ≥ 0,

𝑉] = 0.

(20)

For system (20), one has

𝜇

⊤] = 𝜇

⊤

{𝐴

⊤

{−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

× [𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
}

+𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼]} ]

= [𝐴𝜇]

⊤

{−𝐴

−1

𝐿
𝐵

⊤

[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

× [𝐴

⊤

𝐴

−1

𝐿
− 𝐼] + 𝐴

−1

𝐿
} ]

+ [𝐵𝜇]

⊤

{[(𝐴

⊤

𝐴

−1

𝐿
− 𝐼) 𝐵

⊤

]

+

[𝐴

⊤

𝐴

−1

𝐿
− 𝐼]} ]

= [𝐴𝜇]

⊤

[𝑈]] ,

(21)

where the first equality follows from the last equality in (20),
and the last equality uses the second equality in (20). Thus,
system (20) can be further written as

𝐴𝜇 ≥ 0, 𝐵𝜇 = 0,

(𝐴𝜇)

⊤

(𝑈]) = 0,

𝑈] ≥ 0, 𝑉] = 0.

(22)
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Furthermore, for any (𝜇, ]) ∈ 𝑅𝑚 × 𝑅𝑚 with 𝐴𝜇 ≥ 0, 𝑈] ≥ 0,
it holds from (21) that

𝜇

⊤] ≥ 0. (23)

Now, consider the following optimization problem:

min 𝑓 (𝜔) = [(𝐼, 0) 𝜔]

⊤

[(0, 𝐼) 𝜔]

s.t. 𝜔 ∈ Ω,

(24)

where 𝜔 = (𝜇, ]), Ω = {𝜔 ∈ 𝑅

2𝑚

| 𝐴(𝐼, 0)𝜔 ≥ 0, 𝐵(𝐼, 0)𝜔 = 0,

𝑈(0, 𝐼)𝜔 ≥ 0, 𝑉(0, 𝐼)𝜔 = 0}. Denote the solution set of (24)
by Ω∗.

Lemma 8. Under Assumption 3(A1), 𝑓(𝜔) is a convex func-
tion.

Proof. For any 𝜔
1
, 𝜔
2
∈ 𝑅

2𝑚, 𝜏 ∈ [0, 1], we have

𝑓 (𝜏𝜔
1
+ (1 − 𝜏) 𝜔

2
) − 𝜏𝑓 (𝜔

1
) − (1 − 𝜏) 𝑓 (𝜔

2
)

= [(𝐼, 0) (𝜏𝜔
1
+ (1 − 𝜏) 𝜔

2
)]

⊤

× [(0, 𝐼) (𝜏𝜔
1
+ (1 − 𝜏) 𝜔

2
)]

− 𝜏[(𝐼, 0) 𝜔
1
]

⊤

[(0, 𝐼) 𝜔
1
]

− (1 − 𝜏) [(𝐼, 0) 𝜔
2
]

⊤

[(0, 𝐼) 𝜔
2
]

= 𝜏

2

[(𝐼, 0) 𝜔
1
]

⊤

[(0, 𝐼) 𝜔
1
]

+ (1 − 𝜏)

2

[(𝐼, 0) 𝜔
2
]

⊤

[(0, 𝐼) 𝜔
2
]

+ 𝜏 (1 − 𝜏) [(𝐼, 0) 𝜔
1
]

⊤

[(0, 𝐼) 𝜔
2
]

+ 𝜏 (1 − 𝜏) [(𝐼, 0) 𝜔
2
]

⊤

[(0, 𝐼) 𝜔
1
]

− 𝜏[(𝐼, 0) 𝜔
1
]

⊤

[(0, 𝐼) 𝜔
1
]

− (1 − 𝜏) [(𝐼, 0) 𝜔
2
]

⊤

[(0, 𝐼) 𝜔
2
]

= −𝜏 (1 − 𝜏) [(𝐼, 0) 𝜔
1
]

⊤

[(0, 𝐼) 𝜔
1
]

− 𝜏 (1 − 𝜏) [(𝐼, 0) 𝜔
2
]

⊤

[(0, 𝐼) 𝜔
2
]

+ 𝜏 (1 − 𝜏) [(𝐼, 0) 𝜔
1
]

⊤

[(0, 𝐼) 𝜔
2
]

+ 𝜏 (1 − 𝜏) [(𝐼, 0) 𝜔
2
]

⊤

[(0, 𝐼) 𝜔
1
]

= −𝜏 (1 − 𝜏) ([(𝐼, 0) 𝜔
1
] − [(𝐼, 0) 𝜔

2
])

⊤

× ((0, 𝐼) 𝜔
1
− (0, 𝐼) 𝜔

2
) ≤ 0,

(25)

where the first inequality uses Assumption 3(A1).The desired
result follows.

Based on (20), combining (23) with Lemma 8, we can
obtain the following conclusion.

Lemma 9. A point 𝜔∗ = (𝜇

∗

, ]∗) ∈ 𝑅2𝑚 is a solution of (20)
if and only if 𝜔∗ is a global optimal solution with the objective
vanishing of (24).

In the following, we give the error bound for a polyhedral
cone from [13] and error bound for a convex optimization
from [14] to reach our aims.

Lemma 10. For polyhedral cone 𝑃 = {𝑥 ∈ 𝑅

𝑛

| 𝐷
1
𝑥 =

𝑑
1
, 𝐵
1
𝑥 ≤ 𝑏

1
} with 𝐷

1
∈ 𝑅

𝑙×𝑛, 𝐵
1
∈ 𝑅

𝑚×𝑛, 𝑑
1
∈ 𝑅

𝑙, and 𝑏
1
∈

𝑅

𝑚, there exists a constant 𝑐
2
> 0 such that

dist (𝑥, 𝑃) ≤ 𝑐
2
[






𝐷
1
𝑥 − 𝑑
1






+






(𝐵
1
𝑥 − 𝑏
1
)

+






] ,

∀𝑥 ∈ 𝑅

𝑛

.

(26)

Lemma 11. Let 𝑃 be a convex polyhedron in 𝑅𝑛, and let 𝜃 be a
convex quadratic function defined on𝑅𝑛. Let 𝑆 be the nonempty
set of globally optimal solutions of the programming:

min 𝜃 (𝑥)

𝑠.𝑡. 𝑥 ∈ 𝑃

(27)

with 𝜃
𝑜𝑝𝑡

being the optimal value of 𝜃 on 𝑆. There exists a scalar
𝑐
3
> 0 such that

dist (𝑥, 𝑆) ≤ 𝑐
3
max { dist (𝑥, 𝑃) , 




[𝜃 (𝑥) − 𝜃
𝑜𝑝𝑡
]

+







,







[𝜃 (𝑥) − 𝜃
𝑜𝑝𝑡
]

+







1/2

} ,

∀𝑥 ∈ 𝑅

𝑛

.

(28)

Before proceeding, we present the following definition
introduced in [15].

Definition 12. The mapping 𝐺 : 𝑅

𝑛

→ 𝑅

𝑚 is said to be
strongly nonexpanding with a constant 𝛼 > 0 if ‖𝐺(𝑥) −
𝐺(𝑦)‖ ≥ 𝛼‖𝑥 − 𝑦‖.

By Lemma 8, 𝑓(𝜔) is a convex function and the feasible
setΩ is a polyhedral. Combining this with Lemmas 10 and 11,
we immediately obtain the following conclusion.

Theorem 13. Suppose that 𝐹 is 𝛾-strongly 𝐺-monotone with
positive constants 𝑐

1
, 𝛾, respectively, and 𝐺 is strongly nonex-

panding with constant 𝛼 > 0.Then, there exists constant 𝜌
1
> 0

such that

dist (𝑥,𝑋∗) ≤ 𝜌
1
{






[𝐴𝐹 (𝑥)]
−






+ ‖𝐵𝐹 (𝑥)‖

+






[𝑈𝐺 (𝑥)]
−






+ ‖𝑉𝐺 (𝑥)‖

+







[𝐹(𝑥)

⊤

𝐺 (𝑥)]

+







+







[𝐹(𝑥)

⊤

𝐺 (𝑥)]

+







1/2

}

2/(1+𝛾)

,

∀𝑥 ∈ 𝑅

𝑛

.

(29)
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Proof. For any 𝑥 ∈ 𝑅

𝑛, let 𝜔 = (𝜇, ]) = (𝐹(𝑥), 𝐺(𝑥)) ∈ 𝑅

2𝑚.
Then, there exists 𝜔∗ = (𝜇

∗

, ]∗) = (𝐹(𝑥

∗

), 𝐺(𝑥

∗

)) ∈ Ω

∗ such
that dist(𝜔,Ω∗) = ‖𝜔 −𝜔∗‖. A direct computation yields that

dist1+𝛾 (𝑥,𝑋∗)

≤






𝑥 − 𝑥

∗




1+𝛾

≤

1

𝛼

1+𝛾






𝐺 (𝑥) − 𝐺 (𝑥

∗

)






1+𝛾

≤

1

𝑐
1
𝛼

1+𝛾
[(𝐹 (𝑥) − 𝐹 (𝑥

∗

))

⊤

(𝐺 (𝑥) − 𝐺 (𝑥

∗

))]

≤

1

𝑐
1
𝛼

1+𝛾






𝐹 (𝑥) − 𝐹 (𝑥

∗

)











𝐺 (𝑥) − 𝐺 (𝑥

∗

)






≤

1

2𝑐
1
𝛼

1+𝛾
{






𝐹 (𝑥) − 𝐹 (𝑥

∗

)






2

+






𝐺 (𝑥) − 𝐺 (𝑥

∗

)






2

}

=

1

2𝑐
1
𝛼

1+𝛾






𝜔 − 𝜔

∗




2

=

1

2𝑐
1
𝛼

1+𝛾
dist2 (𝜔,Ω∗)

≤

1

2𝑐
1
𝛼

1+𝛾
𝑐

2

3

×max {dist (𝜔, Ω) , 


[𝑓 (𝜔)]

+






,






[𝑓 (𝜔)]

+






1/2

}

2

≤

1

2𝑐
1
𝛼

1+𝛾
𝑐

2

3

×max {𝑐
2
{






[𝐴 (𝐼, 0) 𝜔]
−






+ ‖𝐵 (𝐼, 0) 𝜔‖

+






[𝑈 (0, 𝐼) 𝜔]
−






+ ‖𝑉 (0, 𝐼) 𝜔‖} ,






[𝑓 (𝜔)]

+






,






[𝑓 (𝜔)]

+






1/2

}

2

≤

1

2𝑐
1
𝛼

1+𝛾
𝑐

2

3

×max {𝑐
2
, 1}

2

{






[𝐴𝜇]

−






+






𝐵𝜇






+






[𝑈]]
−






+ ‖𝑉]‖

+







[𝜇

⊤]]
+







+







[𝜇

⊤]]
+







1/2

}

2

,

(30)

where the second inequality follows from Definition 12
with constant 𝛼 > 0, the third inequality follows from
Definition 1(ii) with constants 𝑐

1
> 0, 𝛾 > 0, the fourth

inequality follows from the Cauchy-Schwarz inequality, the
fifth inequality follows from the fact that (1/2)(𝑎2 + 𝑏2) ≥ 𝑎𝑏,
for all 𝑎, 𝑏 ∈ 𝑅, the sixth inequality follows from Lemma 11
with constant 𝑐

3
> 0 and Lemma 9, and the seventh inequality

follows from Lemma 10 with constant 𝑐
2

> 0. By (30)
and letting 𝜌

1
= {(1/2𝑐

1
𝛼

1+𝛾

)𝑐

2

3
max{𝑐

2
, 1}

2

}

1/(1+𝛾), then the
desired result follows.

Remark 14. It is clear that if 𝐹 is 𝛾-strongly 𝐺-monotone and
𝐺 is strongly nonexpanding, then

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝐺 (𝑥) − 𝐺 (𝑦)⟩ ≥ 𝑐
1






𝐺 (𝑥) − 𝐺 (𝑦)






1+𝛾

≥ 𝑐
1
𝛼

1+𝛾




𝑥 − 𝑦






1+𝛾

,

∀𝑥, 𝑦 ∈ 𝑅

𝑛

.

(31)

Moreover, the conditions which both 𝐹 and 𝐺 are Hölder
continuous (or both 𝐹 and 𝐺 are Lipschitz continuous) in
Theorem 13 are removed. Thus, Theorem 13 is stronger than
Theorem 2.5 in [5]. Furthermore, by Theorem 2.1 in [5], the
GNCP can be reformulated as general variational inequalities
problem, and the conditions in Theorem 13 are also weaker
than those in Theorem 3.1 in [15], Theorem 3.1 in [11],
Theorem 3.1 in [10], andTheorem 2 in [9], respectively.

On the other hand, the condition that 𝐹 is 𝛾-strongly 𝐺-
monotone and 𝐺 is strongly nonexpanding in Theorem 13
is extended compared with the condition that 𝐹 is strongly
monotone with respect to 𝐺 (i.e., 𝛾 = 1) inTheorems 3.4 and
3.6 in [15], and it is also extended than compared with the
condition 𝐹 is strongly monotone with respect to 𝐺 (i.e., 𝛾 =
1) in Theorem 3.1 in [11], and compared with the condition
that 𝐹(𝑥) = 𝑥, 𝐺(𝑥) is strongly monotone (i.e., 𝛾 = 1) in
Theorem 3.1 in [10].

Using the following Definition 15 developed from the
complementarity conditions in (22), we can further detect the
error bound of the GNCP.

Definition 15. A solution 𝑥
0
of the GNCP is said to be non-

degenerate if it satisfies

𝐴𝐹 (𝑥
0
) + 𝑈𝐺 (𝑥

0
) > 0. (32)

Lemma 16. Suppose that Assumptions 3(A1) and 3(A2) hold,
and the GNCP has a nondegenerate solution, say 𝑥

0
. Then,

Ω

∗

= {𝜔 ∈ Ω | [(𝐼, 0) 𝜔]

⊤

[(0, 𝐼) 𝜔
0
]

+[(0, 𝐼) 𝜔]

⊤

[(𝐼, 0) 𝜔
0
] = 0} ,

(33)

where 𝜔
0
= (𝜇
0
, ]
0
) = (𝐹(𝑥

0
), 𝐺(𝑥

0
)).

Proof. Since

[(𝐼, 0) 𝜔
0
]

⊤

[(0, 𝐼) 𝜔
0
] = 0, (34)

by Assumption 3(A1), for any 𝜔 ∈ Ω, we have

0 ≤ (𝜇 − 𝜇
0
)

⊤

(] − ]
0
)

= [(𝐼, 0) 𝜔 − (𝐼, 0) 𝜔
0
]

⊤

[(0, 𝐼) 𝜔 − (0, 𝐼) 𝜔
0
]

= [(𝐼, 0) 𝜔]

⊤

[(0, 𝐼) 𝜔] − [(𝐼, 0) 𝜔]

⊤

[(0, 𝐼) 𝜔
0
]

− [(0, 𝐼) 𝜔]

⊤

[(𝐼, 0) 𝜔
0
] ;

(35)

that is,

[(𝐼, 0) 𝜔]

⊤

[(0, 𝐼) 𝜔
0
] + [(0, 𝐼) 𝜔]

⊤

[(𝐼, 0) 𝜔
0
]

≤ [(𝐼, 0) 𝜔]

⊤

[(0, 𝐼) 𝜔] .

(36)
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To prove the assertion, we only need to show that the solution
set Ω∗ is equal to the set

𝑊 := {𝜔 ∈ Ω | [(𝐼, 0) 𝜔]

⊤

[(0, 𝐼) 𝜔
0
]

+[(0, 𝐼) 𝜔]

⊤

[(𝐼, 0) 𝜔
0
] = 0} .

(37)

For any �̃� ∈ Ω

∗, combining Lemma 9 with (20) yields
that

[(𝐼, 0) �̃�]

⊤

[(0, 𝐼) �̃�] = 0. (38)

Letting 𝜔 = �̃� in (36) yields that

[(𝐼, 0) �̃�]

⊤

[(0, 𝐼) 𝜔
0
] + [(0, 𝐼) �̃�]

⊤

[(𝐼, 0) 𝜔
0
] ≤ 0. (39)

Since �̃�, 𝜔
0
∈ Ω, using the similar technique to that of (21),

we can obtain

[(𝐼, 0) �̃�]

⊤

[(0, 𝐼) 𝜔
0
] + [(0, 𝐼) �̃�]

⊤

[(𝐼, 0) 𝜔
0
]

= 𝜇

⊤]
0
+ ]̃⊤𝜇

0

= (𝐴𝜇)

⊤

(𝑈]
0
) + (𝑈]̃)⊤ (𝐴𝜇

0
)

≥ 0,

(40)

where �̃� = (𝜇, ]̃). Combining (39) with (40), we have Ω∗ ⊆
𝑊.

On the other hand, for any 𝜔 ∈ 𝑊, one has

[(𝐼, 0) 𝜔]

⊤

[(0, 𝐼) 𝜔
0
] + [(0, 𝐼) 𝜔]

⊤

[(𝐼, 0) 𝜔
0
] = 0. (41)

Since 𝜔, 𝜔
0
∈ Ω, using the similar arguments to that of (21),

one has

[(𝐼, 0) 𝜔]

⊤

[(0, 𝐼) 𝜔
0
] = [𝐴𝜇]

⊤

[𝑈]
0
] ,

[(0, 𝐼) 𝜔]

⊤

[(𝐼, 0) 𝜔
0
] = [𝑈]]⊤ [𝐴𝜇

0
] .

(42)

Combining this with (41) yields that

[𝐴𝜇]

⊤

[𝑈]
0
] + [𝑈]]⊤ [𝐴𝜇

0
] = 0. (43)

From (32), we deduce that

[𝐴𝜇]

⊤

[𝑈]] = 0. (44)

Thus, using (21), one has

𝜇

⊤] = 0. (45)

Hence, 𝜔 ∈ Ω

∗.

Based on Lemma 16, we obtain the following conclusion.

Corollary 17. Suppose that the hypotheses of Lemma 16 hold.
Then,

Ω

∗

= {𝜔 ∈ Ω | [(𝐼, 0) 𝜔]

⊤

[(0, 𝐼) 𝜔
0
]

+[(0, 𝐼) 𝜔]

⊤

[(𝐼, 0) 𝜔
0
] ≤ 0} .

(46)

Theorem 18. Suppose that the hypotheses of Theorem 13 hold,
and the GNCP has a nondegenerate solution.Then, there exists
constant 𝜌

2
> 0 such that

dist (𝑥, 𝑋∗)

≤ 𝜌
2
{






[𝐴𝐹 (𝑥)]
−






+ ‖𝐵𝐹 (𝑥)‖ +






[𝑈𝐺 (𝑥)]
−






+ ‖𝑉𝐺 (𝑥)‖ +







[𝐹(𝑥)

⊤

𝐺 (𝑥)]

+







}

2/(1+𝛾)

, ∀𝑥 ∈ 𝑅

𝑛

.

(47)

Proof. For any 𝑥 ∈ 𝑅

𝑛, let 𝜔 = (𝜇, ]) = (𝐹(𝑥), 𝐺(𝑥)) ∈ 𝑅

2𝑚.
Then, there exists 𝜔∗ = (𝜇

∗

, ]∗) = (𝐹(𝑥

∗

), 𝐺(𝑥

∗

)) ∈ Ω

∗ such
that dist(𝜔,Ω∗) = ‖𝜔 − 𝜔

∗

‖. Letting 𝑥
0
be a nondegenerate

solution of GNCP and letting𝜔
0
= (𝐹(𝑥

0
),𝐺(𝑥

0
)) ∈ Ω

∗, then

dist1+𝛾 (𝑥,𝑋∗)

≤






𝑥 − 𝑥

∗




1+𝛾

≤

1

2𝑐
1
𝛼

1+𝛾
dist2 (𝜔,Ω∗)

≤

1

2𝑐
1
𝛼

1+𝛾
𝑐

2

4

× {






[𝐴 (𝐼, 0) 𝜔]
−






+






[𝑈 (0, 𝐼) 𝜔]
−






+ ‖𝐵 (𝐼, 0) 𝜔‖ + ‖𝑉 (0, 𝐼) 𝜔‖

+







{[(𝐼, 0) 𝜔]

⊤

[(0, 𝐼) 𝜔
0
]

+[(0, 𝐼) 𝜔]

⊤

[(𝐼, 0) 𝜔
0
]}

+







}

2

≤

1

2𝑐
1
𝛼

1+𝛾
𝑐

2

4

× {






[𝐴 (𝐼, 0) 𝜔]
−






+






[𝑈 (0, 𝐼) 𝜔]
−






+ ‖𝐵 (𝐼, 0) 𝜔‖ + ‖𝑉 (0, 𝐼) 𝜔‖

+







{ [(𝐼, 0) 𝜔]

⊤

[(0, 𝐼) 𝜔]}

+







}

2

=

1

2𝑐
1
𝛼

1+𝛾
𝑐

2

4

× {






[𝐴𝜇]

−






+






[𝑈]]
−






+






𝐵𝜇






+ ‖𝑉]‖ +






{𝜇

⊤]}
+







}

2

,

(48)

where the second equality uses the similar technique to that
of (30), the third inequality follows from Corollary 17 and
Lemma 10 with constant 𝑐

4
> 0, and the last inequality is

based on (36). By (48) and letting 𝜌
2
= {(1/2𝑐

1
𝛼

1+𝛾

)𝑐

2

4
}

1/(1+𝛾),
the desired result follows.

In the following, we give an error bound of the Hölderian
type [14].

Lemma 19. For 𝑖 = 1, 2, . . . , 𝑚, let 𝑔
𝑖
(𝑥) be a convex quadratic

function. If the set 𝑆 := {𝑥 ∈ 𝑅

𝑛

| 𝑔
1
(𝑥) ≤ 0,
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𝑔
2
(𝑥) ≤ 0, . . . , 𝑔

𝑚
(𝑥) ≤ 0} is nonempty, then there exist a

positive integer 𝑑 ≤ 𝑛 + 1 (called the degree of singularity of
the inequality system) and a positive scalar 𝑐

5
such that

dist (𝑥, 𝑆) ≤ 𝑐
5
max {



[𝑔 (𝑥)]

+






,






[𝑔 (𝑥)]

+






1/2
𝑑

} , ∀𝑥 ∈ 𝑅

𝑛

,

(49)

where [𝑔(𝑥)]
+
= ([𝑔
1
(𝑥)]
+
, [𝑔
2
(𝑥)]
+
, . . . , [𝑔

𝑚
(𝑥)]
+
). Further-

more, if 𝑆 contains an interior point, then 𝑑 = 0.

Based on (18) and (21), the GNCP can also be written as

𝐴𝐹 (𝑥) ≥ 0,

𝐵𝐹 (𝑥) = 0,

(𝐹 (𝑥))

⊤

𝐺 (𝑥) ≤ 0,

𝑈𝐺 (𝑥) ≥ 0,

𝑉𝐺 (𝑥) = 0.

(50)

From Lemma 19, we can establish the following global
error bound for GNCP.

Theorem 20. Suppose that the hypotheses ofTheorem 13 hold,
and there exists point 𝑥 ∈ 𝑅𝑛 such that

𝐹(𝑥)

⊤

𝐺 (𝑥) < 0. (51)

Then, there exists constant 𝜌
3
> 0 such that

dist (𝑥,𝑋∗) ≤ 𝜌
3
{






[𝐴𝐹 (𝑥)]
−






+ ‖𝐵𝐹 (𝑥)‖

+






[𝑈𝐺 (𝑥)]
−






+ ‖𝑉𝐺 (𝑥)‖

+







[𝐹(𝑥)

⊤

𝐺 (𝑥)]

+







}

2/(1+𝛾)

, ∀𝑥 ∈ 𝑅

𝑛

.

(52)

Proof. Let 𝑆
1

:= {𝜔 ∈ 𝑅

2𝑚

| 𝑓(𝜔) ≤ 0}, where
𝑓(𝜔) = [(𝐼, 0)𝜔]

⊤

[(0, 𝐼)𝜔]. By Lemma 8, we have 𝑓(𝜔) is a
convex quadratic function. Combining this with (51), using
Lemma 19 with 𝑑 = 0, this yields the following result

dist (𝜔, 𝑆
1
) ≤ 𝑐
6






[𝑓 (𝜔)]

+






, ∀𝜔 ∈ 𝑅

2𝑚

, (53)

where 𝑐
6
is a positive constant.

Obviously, 𝑆
1
is a closed convex set.Thus, for any𝜔 ∈ 𝑅

2𝑚,
there exists a vector 𝜔 ∈ 𝑆

1
such that

‖𝜔 − 𝜔‖ = dist (𝜔, 𝑆
1
) . (54)

For convenience, we also let

Ψ (𝜔) = (−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

−𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)
+
.

(55)

From (50), we haveΩ∗ = Ω⋂𝑆
1
, whereΩ is defined in (24),

so for any 𝜔 ∈ 𝑆
1
, combining Lemma 10, one has

dist (𝜔,Ω∗) ≤ 𝑐
7
[






(−𝐴 (𝐼, 0) 𝜔)
+






+






(−𝑈 (0, 𝐼) 𝜔)
+






+ ‖𝐵 (𝐼, 0) 𝜔‖ + ‖𝑉 (0, 𝐼) 𝜔‖ ]

= 𝑐
7
[






(−𝐴 (𝐼, 0) 𝜔)
+






+






(−𝑈 (0, 𝐼) 𝜔)
+






+






(𝐵 (𝐼, 0) 𝜔)
+






+






(−𝐵 (𝐼, 0) 𝜔)
+






+






(𝑉 (0, 𝐼) 𝜔)
+






+






(−𝑉 (0, 𝐼) 𝜔)
+






]

≤ 𝑐
7
{






(−𝐴 (𝐼, 0) 𝜔)
+




1
+






(−𝑈 (0, 𝐼) 𝜔)
+




 1

+






(𝐵 (𝐼, 0) 𝜔)
+




1
+






(−𝐵 (𝐼, 0) 𝜔)
+




1

+






(𝑉 (0, 𝐼) 𝜔)
+




1
+






− (𝑉 (0, 𝐼) 𝜔)
+




1
}

= 𝑐
7
‖Ψ (𝜔)‖

1

≤ 𝑐
7
√
2𝑠 + 2𝑡 + 2𝑚 ‖Ψ (𝜔)‖ ,

(56)

where 𝑐
7
is a positive constant, and the second and third

inequalities follow from the fact that ‖𝑥‖ ≤ ‖𝑥‖
1
≤ √𝑛‖𝑥‖,

for all 𝑥 ∈ 𝑅𝑛.
Furthermore,

‖Ψ (𝜔) − Ψ (𝜔)‖

= ‖(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

−𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)
+

− (−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

−𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)
+






=







𝑃
𝑅
2𝑠+2𝑡+2𝑚
+

{(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔,

− 𝑈 (0, 𝐼) 𝜔, −𝑉 (0, 𝐼) 𝜔,

𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)}

− 𝑃
𝑅
2𝑠+2𝑡+2𝑚
+

{(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔,

− 𝑈 (0, 𝐼) 𝜔, −𝑉 (0, 𝐼) 𝜔,

𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)}







≤ ‖{(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

−𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔)}

− {(−𝐴 (𝐼, 0) 𝜔, −𝐵 (𝐼, 0) 𝜔, −𝑈 (0, 𝐼) 𝜔,

−𝑉 (0, 𝐼) 𝜔, 𝐵 (𝐼, 0) 𝜔, 𝑉 (0, 𝐼) 𝜔}‖

≤ ‖𝐴 (𝐼, 0) 𝜔 − 𝐴 (𝐼, 0) 𝜔‖

+ 2 ‖𝐵 (𝐼, 0) 𝜔 − 𝐵 (𝐼, 0) 𝜔‖

+ ‖𝑈 (0, 𝐼) 𝜔 − 𝑈 (0, 𝐼) 𝜔‖

+ 2 ‖𝑉 (0, 𝐼) 𝜔 − 𝑉 (0, 𝐼) 𝜔‖
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≤ (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖ + ‖𝑈 (0, 𝐼)‖ + 2 ‖𝑉 (0, 𝐼)‖)

× ‖𝜔 − 𝜔‖

= (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖ + ‖𝑈 (0, 𝐼)‖ + 2 ‖𝑉 (0, 𝐼)‖)

× dist (𝜔, 𝑆
1
) ,

(57)

where the second equality follows from the fact that

min {𝑎, 𝑏} = 𝑎 − 𝑃
𝑅+
(𝑎 − 𝑏) , ∀𝑎, 𝑏 ∈ 𝑅, (58)

and the first inequality is by nonexpanding property of
projection operator. Thus,

‖Ψ (𝜔)‖ ≤ ‖Ψ (𝜔)‖

+ (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖

+ ‖𝑈 (0, 𝐼)‖ + 2 ‖𝑉 (0, 𝐼)‖) dist (𝜔, 𝑆
1
) .

(59)

Combining (56) with (59), for any 𝜔 ∈ 𝑅

2𝑚, we have

dist (𝜔,Ω∗) ≤ dist (𝜔, 𝑆
1
) + dist (𝜔,Ω∗)

≤ dist (𝜔, 𝑆
1
) + 𝜎 ‖Ψ (𝜔)‖ ≤ dist (𝜔, 𝑆

1
)

+ 𝜎 ( ‖Ψ (𝜔)‖

+ (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖ + ‖𝑈 (0, 𝐼)‖

+2 ‖𝑉 (0, 𝐼)‖) dist (𝜔, 𝑆
1
))

≤ 𝜎 ‖Ψ (𝜔)‖

+ [𝜎 (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖

+ ‖𝑈 (0, 𝐼)‖ + 2 ‖𝑉 (0, 𝐼)‖) + 1]

× dist (𝜔, 𝑆
1
)

≤ 𝜎 ‖Ψ (𝜔)‖

+ [𝜎 (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖

+ ‖𝑈 (0, 𝐼)‖ + 2 ‖𝑉 (0, 𝐼)‖) + 1] 𝑐
6

×






[𝑓 (𝜔)]

+






≤ 𝜂 (‖Ψ (𝜔)‖ +






[𝑓 (𝜔)]

+






)

≤ 𝜂 (‖Ψ (𝜔)‖
1
+






[𝑓 (𝜔)]

+






)

≤ 𝜂 (






(−𝐴 (𝐼, 0) 𝜔)
+




1
+






(−𝑈 (0, 𝐼) 𝜔)
+




1

+‖𝐵(𝐼, 0)𝜔‖
1
+ ‖𝑉(0, 𝐼)𝜔‖

1
+






[𝑓 (𝜔)]

+






)

≤ 𝜂 (√𝑠






(−𝐴 (𝐼, 0) 𝜔)
+






+ √𝑠






(−𝑈 (0, 𝐼) 𝜔)
+






+
√
𝑡 ‖𝐵 (𝐼, 0) 𝜔‖ + √𝑚‖𝑉 (0, 𝐼) 𝜔‖

+






[𝑓 (𝜔)]

+






)

≤ 𝑐
8
(






(−𝐴 (𝐼, 0) 𝜔)
+






+






(−𝑈 (0, 𝐼) 𝜔)
+






+ ‖𝐵 (𝐼, 0) 𝜔‖

+ ‖𝑉 (0, 𝐼) 𝜔‖ +






[𝑓 (𝜔)]

+






) ,

(60)

where the second inequality follows from (56) with constant
𝜎 = 𝑐
7
√2𝑠 + 2𝑡 + 2𝑚, the third inequality uses (59), the fifth

inequality follows from (53), the sixth inequality follows from
the fact that

𝜂 = max {𝜎, [𝜎 (‖𝐴 (𝐼, 0)‖ + 2 ‖𝐵 (𝐼, 0)‖ + ‖𝑈 (0, 𝐼)‖

+2 ‖𝑉 (0, 𝐼)‖) + 1] 𝑐
6
} ,

(61)

the seventh and ninth inequalities follow from the fact that

‖𝑥‖ ≤ ‖𝑥‖
1
≤ √𝑛 ‖𝑥‖ , ∀𝑥 ∈ 𝑅

𝑛

, (62)

and the last inequality follows by letting 𝑐
8
= 𝜂max{√𝑠, √𝑡,

√𝑚, 1}.
For any 𝑥 ∈ 𝑅𝑛, letting 𝜔 := (𝜇, ]) = (𝐹(𝑥), 𝐺(𝑥)) ∈ 𝑅

2𝑚,
then there exists 𝜔∗ = (𝜇

∗

, ]∗) = (𝐹(𝑥

∗

), 𝐺(𝑥

∗

)) ∈ Ω

∗ such
that dist(𝜔,Ω∗) = ‖𝜔 − 𝜔∗‖, and a direct computation yields
that

dist1+𝛾 (𝑥,𝑋∗) ≤ 




𝑥 − 𝑥

∗




1+𝛾

≤

1

2𝑐
1
𝛼

1+𝛾
dist2 (𝜔,Ω∗)

≤

1

2𝑐
1
𝛼

1+𝛾
𝑐

2

8

× {






[𝐴 (𝐼, 0) 𝜔]
−






+






[𝑈 (0, 𝐼) 𝜔]
−






+ ‖𝐵 (𝐼, 0) 𝜔‖ + ‖𝑉 (0, 𝐼) 𝜔‖

+







{[(𝐼, 0) 𝜔]

⊤

[(0, 𝐼) 𝜔]}

+







}

2

=

1

2𝑐
1
𝛼

1+𝛾
𝑐

2

8
{






[𝐴𝜇]

−






+






[𝑈]]
−






+






𝐵𝜇






+ ‖𝑉]‖ +






{𝜇

⊤]}
+







}

2

,

(63)

where the deduction of the second equality uses the similar
technique to that of (30), and the third inequality is by (60).
By (63) and letting 𝜌

3
= {(1/2𝑐

1
𝛼

1+𝛾

)𝑐

2

8
}

1/(1+𝛾), then the
desired result follows.

Remark 21. When 𝐹 is strongly monotone with respect to 𝐺,
that is, 𝛾 = 1, without the requirement of nondegenerate
solution, the square root term in the error bound estimation is
removed as stated inTheorem 20.Hence, the error estimation
becomes more practical than that in Theorem 4.1 in [4].
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3. Global Error Bound for the GLCP

In this section, we consider the linear case of the GCP such
thatmappings𝐹 and𝐺 are both linear; that is,𝐹(𝑥) = 𝑀𝑥+𝑝,
𝐺(𝑥) = 𝑁𝑥 + 𝑞 with𝑀,𝑁 ∈ 𝑅

𝑚×𝑛, 𝑝, 𝑞 ∈ 𝑅𝑚:

min 𝐻(𝑥) = (𝑀𝑥 + 𝑝)

⊤

(𝑁𝑥 + 𝑞)

s.t. 𝑥 ∈ 𝑋,

(64)

where

𝑋 = {𝑥 ∈ 𝑅

𝑛

|

𝐴 (𝑀𝑥 + 𝑝) ≥ 0, 𝑈 (𝑁𝑥 + 𝑞) ≥ 0,

𝐵 (𝑀𝑥 + 𝑝) = 0, 𝑉 (𝑁𝑥 + 𝑞) = 0

} . (65)

For problem (64), combining (18) with (23) and using
a similar discussion in Lemmas 8 and 9, we also have the
following conclusion.

Lemma 22. Under Assumption 3(A1),𝐻(𝑥) is a convex func-
tion.

Lemma 23. 𝑥∗ ∈ 𝑅𝑛 is a solution of the GLCP if and only if 𝑥∗
is global optimal solution with the objective vanishing of (64).

Based on (64), using the argument similar to that of
Theorem 13, we can obtain the following conclusion.

Theorem 24. Under Assumptions 3(A1) and 3(A2), and that
mappings 𝐹 and 𝐺 are both linear, there exists constant 𝜌

4
> 0

such that

dist (𝑥,𝑋∗) ≤ 𝜌
4
{






[𝐴𝐹 (𝑥)]
−






+ ‖𝐵𝐹 (𝑥)‖ +






[𝑈𝐺 (𝑥)]
−






+ ‖𝑉𝐺 (𝑥)‖ +







[𝐹(𝑥)

⊤

𝐺 (𝑥)]

+







+







[𝐹(𝑥)

⊤

𝐺 (𝑥)]

+







1/2

} , ∀𝑥 ∈ 𝑅

𝑛

.

(66)

Proof. For any 𝑥 ∈ 𝑅𝑛, a direct computation yields that

dist (𝑥,𝑋∗)

≤ 𝑐
9
max {dist (𝑥, 𝑋) , 



[𝐻 (𝑥)]
+






,






[𝐻 (𝑥)]
+






1/2

}

≤ 𝑐
9
max {𝑐

10
{






[𝐴𝐹 (𝑥)]
−






+ ‖𝐵𝐹 (𝑥)‖

+






[𝑈𝐺 (𝑥)]
−






+ ‖𝑉𝐺 (𝑥)‖} ,






[𝐻 (𝑥)]
+






,






[𝐻 (𝑥)]
+






1/2

}

≤ 𝑐
9
max {𝑐

10
, 1} {






[𝐴𝐹 (𝑥)]
−






+ ‖𝐵𝐹 (𝑥)‖

+






[𝑈𝐺 (𝑥)]
−






+ ‖𝑉𝐺 (𝑥)‖ +







[(𝐹 (𝑥))

⊤

𝐺 (𝑥)]

+







+







[(𝐹 (𝑥))

⊤

𝐺 (𝑥)]

+







1/2

} ,

(67)

where the first inequality follows from Lemma 11 with con-
stant 𝑐

9
> 0 and Lemma 23, and the second inequality uses

Lemma 10 with constant 𝑐
10

> 0. By (67) and letting 𝜌
4
=

𝑐
9
max{𝑐

10
, 1}, the desired result follows.

Remark 25. Obviously, Assumption 3(A2) in Theorem 24
is weaker than Assumption (A2) in Theorem 4.1 in [4],
Assumption 3(A1) coincides with Assumption (A1) in [4]. In
addition, Theorem 24 is sharper thanTheorem 4.1 in [4].

The following result further estimates the error bound for
the GLCP.

Theorem 26. Suppose that the hypotheses ofTheorem 24 hold,
and the GLCP has a nondegenerate solution. Then, there exists
constant 𝜌

5
> 0 such that

dist (𝑥,𝑋∗) ≤ 𝜌
5
{






[𝐴𝐹 (𝑥)]
−






+ ‖𝐵𝐹 (𝑥)‖ +






[𝑈𝐺 (𝑥)]
−






+ ‖𝑉𝐺 (𝑥)‖ +







[𝐹(𝑥)

⊤

𝐺 (𝑥)]

+







} ,

∀𝑥 ∈ 𝑅

𝑛

.

(68)

Proof. From Corollary 17, we have

𝑋

∗

= {𝑥 ∈ 𝑋 | (𝑀𝑥 + 𝑝)

⊤

(𝑁𝑥
0
+ 𝑞)

+(𝑁𝑥 + 𝑞)

⊤

(𝑀𝑥
0
+ 𝑝) ≤ 0} ,

(69)

where 𝑥
0
is a nondegenerate solution of GLCP, and 𝑋 is

defined in (64). For any 𝑥 ∈ 𝑅

𝑛, a direct computation yields
that

dist (𝑥,𝑋∗) ≤ 𝑐
11
{






[𝐴 (𝑀𝑥 + 𝑝)]

−






+






[𝑈 (𝑁𝑥 + 𝑞)]

−






+






𝐵 (𝑀𝑥 + 𝑝)






+






𝑉 (𝑁𝑥 + 𝑞)






+







[(𝑀𝑥 + 𝑝)

⊤

(𝑁𝑥
0
+ 𝑞)

+(𝑁𝑥 + 𝑞)

⊤

(𝑀𝑥
0
+ 𝑝)]

+







}

≤ 𝑐
11
{






[𝐴 (𝑀𝑥 + 𝑝)]

−






+






[𝑈 (𝑁𝑥 + 𝑞)]

−






+






𝐵 (𝑀𝑥 + 𝑝)






+






𝑉 (𝑁𝑥 + 𝑞)






+







[(𝑀𝑥 + 𝑝)

⊤

(𝑁𝑥 + 𝑞)]

+







} ,

(70)

where the first inequality follows from Lemma 10 with con-
stant 𝑐

11
> 0, and the second inequality uses (36). Letting

𝜌
5
= 𝑐
11
, the desired result follows.

Remark 27. The condition inTheorem 26 is weaker than that
in Theorem 4.2 in [4].
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Theorem 28. Suppose that the hypotheses ofTheorem 24 hold,
and there exists point 𝑥 ∈ 𝑅

𝑛 such that (51) holds. Then there
exists constant 𝜌

6
> 0 such that

dist (𝑥,𝑋∗) ≤ 𝜌
6
{






[𝐴𝐹 (𝑥)]
−






+ ‖𝐵𝐹 (𝑥)‖ +






[𝑈𝐺 (𝑥)]
−






+ ‖𝑉𝐺 (𝑥)‖ +







[𝐹(𝑥)

⊤

𝐺 (𝑥)]

+







} ,

∀𝑥 ∈ 𝑅

𝑛

.

(71)

Proof. Let 𝑆
2
:= {𝑥 ∈ 𝑅

𝑛

| 𝐻(𝑥) ≤ 0}, where 𝐻(𝑥) =

(𝑀𝑥+𝑝)

⊤

(𝑁𝑥+𝑞). By Lemma 22,𝐻(𝑥) is a convex quadratic
function, and 𝑆

2
is a closed convex set. For any 𝑥 ∈ 𝑅𝑛, there

exists a vector 𝑥 ∈ 𝑆
2
such that

‖𝑥 − 𝑥‖ = dist (𝑥, 𝑆
2
) . (72)

Combining (51) and applying Lemma 19 yield the following
result:

dist (𝑥, 𝑆
2
) ≤ 𝑐
12






[𝐻 (𝑥)]
+






, ∀𝑥 ∈ 𝑅

𝑛

, (73)

where 𝑐
12
is a positive constant. For convenience, we let

𝜑 (𝑥) = (−𝐴𝐹 (𝑥) , −𝐵𝐹 (𝑥) , −𝑈𝐺 (𝑥)

−𝑉𝐺 (𝑥) , 𝐵𝐹 (𝑥) , 𝑉𝐺 (𝑥) )
+
.

(74)

From (50), we have𝑋∗ = 𝑋⋂𝑆
2
, where𝑋 is defined in (64).

So for any 𝑥 ∈ 𝑆
2
, combining Lemma 10 and using the similar

technique to that of (56), one has

dist (𝑥,𝑋∗) ≤ 𝑐
13
[






(−𝐴𝐹 (𝑥))
+






+






(−𝑈𝐺 (𝑥))
+






+ ‖𝐵𝐹 (𝑥)‖ + ‖𝑉𝐺 (𝑥)‖ ]

≤ 𝑐
13
√
2𝑠 + 2𝑡 + 2𝑚






𝜑 (𝑥)






,

(75)

where 𝑐
13
is a positive constant.

Using the fact that

min {𝑎, 𝑏} = 𝑎 − 𝑃
𝑅+
(𝑎 − 𝑏) , ∀𝑎, 𝑏 ∈ 𝑅, (76)

and using the similar technique to that of (57), one has





𝜑 (𝑥) − 𝜑 (𝑥)






=






(−𝐴𝐹 (𝑥) , −𝐵𝐹 (𝑥) , −𝑈𝐺 (𝑥) , −𝑉𝐺 (𝑥) ,

𝐵𝐹 (𝑥) , 𝑉𝐺 (𝑥))
+

− (−𝐴𝐹 (𝑥) , −𝐵𝐹 (𝑥) , −𝑈𝐺 (𝑥) ,

− 𝑉𝐺 (𝑥) , 𝐵𝐹 (𝑥) , 𝑉𝐺 (𝑥))
+






≤ ‖𝐴𝐹 (𝑥) − 𝐴𝐹 (𝑥)‖ + 2 ‖𝐵𝐹 (𝑥) − 𝐵𝐹 (𝑥)‖

+ ‖𝑈𝐺 (𝑥) − 𝑈𝐺 (𝑥)‖ + 2 ‖𝑉𝐺 (𝑥) − 𝑉𝐺 (𝑥)‖

≤ (‖𝐴𝑀‖ + 2 ‖𝐵𝑀‖ + ‖𝑈𝑁‖ + 2 ‖𝑉𝑁‖) ‖𝑥 − 𝑥‖

= (‖𝐴𝑀‖ + 2 ‖𝐵𝑀‖ + ‖𝑈𝑁‖

+2 ‖𝑉𝑁‖) dist (𝑥, 𝑆
2
) ,

(77)

where the second inequality is by nonexpanding property of
projection operator. Thus,






𝜑 (𝑥)






≤






𝜑 (𝑥)






+ (‖𝐴𝑀‖ + 2 ‖𝐵𝑀‖

+ ‖𝑈𝑁‖ + 2 ‖𝑉𝑁‖) dist (𝑥, 𝑆
2
) .

(78)

Combining (75) with (78), we know that for any 𝑥 ∈ 𝑅

𝑛, it
holds that

dist (𝑥,𝑋∗)

≤ dist (𝑥, 𝑆
2
) + dist (𝑥, 𝑋∗)

≤ dist (𝑥, 𝑆
2
) + 𝜎
1






𝜑 (𝑥)






≤ dist (𝑥, 𝑆
2
)

+ 𝜎
1
(






𝜑 (𝑥)






+ (‖𝐴𝑀‖ + 2 ‖𝐵𝑀‖

+ ‖𝑈𝑁‖ + 2 ‖𝑉𝑁‖) dist (𝑥, 𝑆
2
))

≤ 𝜎
1






𝜑 (𝑥)






+ [𝜎
1
(‖𝐴𝑀‖ + 2 ‖𝐵𝑀‖

+ ‖𝑈𝑁‖ + 2 ‖𝑉𝑁‖) + 1] dist (𝑥, 𝑆
2
)

≤ 𝜎
1






𝜑 (𝑥)






+ [𝜎
1
(‖𝐴𝑀‖ + 2 ‖𝐵𝑀‖

+ ‖𝑈𝑁‖ + 2 ‖𝑉𝑁‖) + 1] 𝑐
12






[𝐻 (𝑥)]
+






≤ 𝜂
1
(






𝜑 (𝑥)






+






[𝐻 (𝑥)]
+






)

≤ 𝜂
1
(






𝜑 (𝑥)




1
+






[𝐻 (𝑥)]
+






)

≤ 𝜂
1
(






(−𝐴𝐹 (𝑥))
+




1
+






(−𝑈𝐺 (𝑥))
+




1

+ ‖𝐵𝐹 (𝑥)‖
1
+ ‖𝑉𝐺 (𝑥)‖

1
+






[𝐻 (𝑥)]
+






)

≤ 𝜂
1
(√𝑠






(−𝐴𝐹 (𝑥))
+






+ √𝑠






(−𝑈𝐺 (𝑥))
+






+
√
𝑡 ‖𝐵𝐹 (𝑥)‖ + √𝑚‖𝑉𝐺 (𝑥)‖ +






[𝐻 (𝑥)]
+






)

≤ 𝜌
6
(






(−𝐴𝐹 (𝑥))
+






+






(−𝑈𝐺 (𝑥))
+






+ ‖𝐵𝐹 (𝑥)‖

+ ‖𝑉𝐺 (𝑥)‖ +






[𝐻 (𝑥)]
+






) ,

(79)

where the second inequalities follows from (75) with constant
𝜎
1
= 𝑐
13
√2𝑠 + 2𝑡 + 2𝑚, the third inequality follows from

(78), the fifth inequality follows from (73), the sixth inequality
follows by letting 𝜂

1
= max{𝜎

1
, [𝜎
1
(‖𝐴𝑀‖+2‖𝐵𝑀‖+‖𝑈𝑁‖+

2‖𝑉𝑁‖) + 1]𝑐
12
}, and the seventh and ninth inequality follow

from the fact that

‖𝑥‖ ≤ ‖𝑥‖
1
≤ √𝑛 ‖𝑥‖ , ∀𝑥 ∈ 𝑅

𝑛

. (80)

By (79) and letting 𝜌
6
= 𝜂
1
max{√𝑠, √𝑡, √𝑚, 1}, the desired

result follows.
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Remark 29. In Theorem 28, without the requirement of
nondegenerate solution, the square root term in the error
bound estimation is removed. Hence, the error estimation
becomes more practical than that in Theorem 4.1 in [4].

4. Comparison with Existing Error Bound

In the end of this paper, we will present an example to
compare Theorem 13 and Theorem 2.5 in [5]. Furthermore,
we will present two examples to show the conclusion in
Theorem 13 can provide a global error bound for the GNCP,
while the conclusion inTheorem 2.5 in [5] cannot do.

Example 30. When K = 𝑅

𝑚

+
, (2) reduces to the generalized

nonlinear complementarity problem of finding vector 𝑥∗ ∈
𝑅

𝑛 such that

𝐹 (𝑥

∗

) ≥ 0, 𝐺 (𝑥

∗

) ≥ 0, 𝐹(𝑥

∗

)

⊤

𝐺 (𝑥

∗

) = 0. (81)

For (81), usingTheorem 13 with 𝛾 = 1, we have

dist (𝑥,𝑋∗) ≤ 𝜌𝜑 (𝑥) , ∀𝑥 ∈ 𝑅

𝑛

, (82)

where 𝜑(𝑥) =: ‖[𝐹(𝑥)]
−
‖ + ‖[𝐺(𝑥)]

−
‖ + |[𝐹(𝑥)

⊤

𝐺(𝑥)]
+
| +

|[𝐹(𝑥)

⊤

𝐺(𝑥)]
+
|

1/2.
Using Theorem 2.5 in [5] with 𝛾 = 1, V

1
= V
2
= 1, and

𝛽 = 1, we have that there exists constant 𝜌 > 0 such that

dist (𝑥,𝑋∗) ≤ 𝜌𝑟 (𝑥) , (83)

where 𝑟(𝑥) =: ‖min{𝐹(𝑥), 𝐺(𝑥)}‖. In addition,

𝜑 (𝑥) ≤ {2√𝑚 + ‖max {𝐹 (𝑥) , 𝐺 (𝑥)}‖} {𝑟 (𝑥) + 𝑟(𝑥)1/2} .
(84)

In particular, when ‖𝑥‖ ≤ 𝑐
14
with constant 𝑐

14
> 0, then there

exists positive constant 𝑐
15
such that

𝜑 (𝑥) ≤ 𝑐
15
{𝑟 (𝑥) + 𝑟(𝑥)

1/2

} . (85)

In fact, we have

𝜑 (𝑥) ≤






(𝐹 (𝑥))
−




1
+






(𝐺 (𝑥))
−




1

+ [(𝐹 (𝑥))

⊤

𝐺 (𝑥)]

+
+ [(𝐹 (𝑥))

⊤

𝐺 (𝑥)]

1/2

+

≤ 2√𝑚‖min {𝐹 (𝑥) , 𝐺 (𝑥)}‖

+ [(𝐹 (𝑥))

⊤

𝐺 (𝑥)]

+
+ [(𝐹 (𝑥))

⊤

𝐺 (𝑥)]

1/2

+

≤ 2√𝑚‖min {𝐹 (𝑥) , 𝐺 (𝑥)}‖

+

𝑚

∑

𝑖=1

[(𝐹 (𝑥))
𝑖
(𝐺 (𝑥))

𝑖
]

+

+ {

𝑚

∑

𝑖=1

[(𝐹 (𝑥))
𝑖
(𝐺 (𝑥))

𝑖
]

+
}

1/2

≤ 2√𝑚‖min {𝐹 (𝑥) , 𝐺 (𝑥)}‖

+

𝑚

∑

𝑖=1






min {𝐹 (𝑥) , 𝐺 (𝑥)}
𝑖






⋅






max {𝐹 (𝑥) , 𝐺 (𝑥)}
𝑖






+ {

𝑚

∑

𝑖=1






min {𝐹 (𝑥) , 𝐺 (𝑥)}
𝑖






⋅






max {𝐹 (𝑥) , 𝐺 (𝑥)}
𝑖






}

1/2

≤ 2√𝑚‖min {𝐹 (𝑥) , 𝐺 (𝑥)}‖

+ ‖min {𝐹 (𝑥) , 𝐺 (𝑥)}‖ ⋅ ‖max {𝐹 (𝑥) , 𝐺 (𝑥)}‖

+ {‖min {𝐹 (𝑥) , 𝐺 (𝑥)}‖ ⋅ ‖max {𝐹 (𝑥) , 𝐺 (𝑥)}‖}1/2

= {2√𝑚 + ‖max {𝐹 (𝑥) , 𝐺 (𝑥)}‖} 𝑟 (𝑥)

+ ‖max {𝐹 (𝑥) , 𝐺 (𝑥)}‖1/2𝑟(𝑥)1/2

≤ {2√𝑚 + ‖max {𝐹 (𝑥) , 𝐺 (𝑥)}‖} {𝑟 (𝑥) + 𝑟(𝑥)1/2} ,
(86)

where the first inequality follows from the fact that ‖𝑥‖ ≤

‖𝑥‖
1
, for all 𝑥 ∈ 𝑅

𝑚, the second inequality follows from
the fact that 𝑎

−
≤ |min{𝑎, 𝑏}|, for all 𝑎, 𝑏 ∈ 𝑅, the third

inequality follows from the fact that (𝑎 + 𝑏)
+
≤ 𝑎
+
+ 𝑏
+
, for

all 𝑎, 𝑏 ∈ 𝑅, the fourth inequality follows from the fact that
(𝑎𝑏)
+
≤ |min{𝑎, 𝑏}| ⋅ |max{𝑎, 𝑏}|, for all 𝑎, 𝑏 ∈ 𝑅, and the fifth

inequality follows from the Cauchy-Schwarz inequality.

Example 31. For mappings 𝐹, 𝐺 : 𝑅
+

→ 𝑅 involved in
problem (81), we set

𝐹 (𝑥) = (𝑥 + 1)

2

, 𝐺 (𝑥) = √𝑥. (87)

It is easy to see that the solution set𝑋∗ = {0}, and one has

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝐺 (𝑥) − 𝐺 (𝑦)⟩ =

𝑥 + 𝑦 + 2

√𝑥 + √𝑦

(𝑥 − 𝑦)

2

≥ (𝑥 − 𝑦)

2

,

(88)

where the first inequality follows from the fact that 𝑥+𝑦+2 ≥
√𝑥 + √𝑦.

In fact, we consider the following four cases.

Case 1 (𝑥 ≥ 1 and 𝑦 ≥ 1). Then, 𝑥 ≥ √𝑥 and 𝑦 ≥ √𝑦, and the
desired result follows.

Case 2 (0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1). Then,√𝑥 ≤ 1 and√𝑦 ≤ 1,
and the desired result follows.

Case 3 (0 ≤ 𝑥 ≤ 1 and 𝑦 ≥ 1). Then, √𝑥 ≤ 1 and √𝑦 ≤ 𝑦,
and the desired result follows.

Case 4 (𝑥 ≥ 1 and 0 ≤ 𝑦 ≤ 1). Then, √𝑥 ≤ 𝑥 and √𝑦 ≤ 1,
and the desired result follows.
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For any 𝑥(𝜖) := 𝜖, 𝜖 ≥ 0. By Theorem 13 with 𝛾 = 1, we
can obtain

‖𝑥 (𝜖) − 0‖

𝜑 (𝑥 (𝜖))

=

𝜖

(𝜖 + 1)

2

√𝜖 +
√
(𝜖 + 1)

2

√𝜖

→ 0 (89)

as 𝜖 → +∞.Thus,Theorem 13 provides a global error bound
for the GNCP. UsingTheorem 2.5 in [5], for 𝑥(𝜖), we have

‖𝑥 (𝜖) − 0‖

𝑟 (𝑥 (𝜖))

=

𝜖







min {(𝜖 + 1)2, √𝜖}



=

𝜖

√𝜖

= √𝜖 → +∞

(90)

as 𝜖 → +∞. Thus, Theorem 2.5 in [5] fails in providing an
error bound for this GNCP.

Example 32. For mappings 𝐹, 𝐺 : 𝑅 → 𝑅 involved in
problem (81), we set

𝐹 (𝑥) =

1

3

𝑥

3

+ 𝑥, 𝐺 (𝑥) = 𝑥. (91)

It is easy to see that the solution set 𝑋∗ = {0}. Without
loss of generality, we let 𝑥 > 𝑦, and one has

𝐹 (𝑥) − 𝐹 (𝑦) ≥ (𝑥 − 𝑦)

2

, (92)

where the inequality follows from the fact that

(

1

3

𝑥

3

+ 𝑥) − (

1

3

𝑦

3

+ 𝑦) − (𝑥 − 𝑦)

2

= (𝑥 − 𝑦) [

1

3

𝑥

2

+

1

3

𝑦

2

+

1

3

𝑥𝑦 + 1 + (𝑥 − 𝑦)] ≥ 0.

(93)

In fact, we consider the following four cases.

Case 1 (𝑥 > 𝑦 ≥ 0). Then, (1/3)𝑥2 + (1/3)𝑦2 + (1/3)𝑥𝑦 + 1 +
(𝑥 − 𝑦) ≥ 0, and the desired result follows.

Case 2 (0 ≥ 𝑥 > 𝑦). Then, (1/3)𝑥2 + (1/3)𝑦2 + (1/3)𝑥𝑦 + 1 +
(𝑥 − 𝑦) ≥ 0, and the desired result follows.

Case 3 (𝑥 ≥ 0, 𝑦 < 0 and 𝑥 + 𝑦 ≥ 0). Then,

1

3

𝑥

2

+

1

3

𝑦

2

+

1

3

𝑥𝑦 + 1 + (𝑥 − 𝑦)

=

1

3

𝑥 (𝑥 + 𝑦) +

1

3

𝑦

2

+ 1 + (𝑥 − 𝑦) ≥ 0,

(94)

and the desired result follows.

Case 4 (𝑥 ≥ 0, 𝑦 < 0, and 𝑥 + 𝑦 ≤ 0). Then,

1

3

𝑥

2

+

1

3

𝑦

2

+

1

3

𝑥𝑦 + 1 + (𝑥 − 𝑦)

=

1

3

𝑥

2

+

1

3

𝑦 (𝑥 + 𝑦) + 1 + (𝑥 − 𝑦) ≥ 0,

(95)

and the desired result follows.

Thus, we obtain

⟨𝐹 (𝑥) − 𝐹 (𝑦) , 𝐺 (𝑥) − 𝐺 (𝑦)⟩ ≥ (𝑥 − 𝑦)

3

. (96)

For any 𝑥(𝜖) := 𝜖, 𝜖 ≥ 0. By Theorem 13 with 𝛾 = 2, we
can obtain
‖𝑥 (𝜖) − 0‖

𝜑 (𝑥 (𝜖))

=

𝜖

[((1/3) 𝜖

3
+ 𝜖) 𝜖 + √((1/3) 𝜖

3
+ 𝜖) 𝜖]

2/3

→ 0

(97)

as 𝜖 → +∞.Thus,Theorem 13 provides a global error bound
for the GNCP.

On the other hand, usingTheorem 2.5 in [5], for 𝑥(𝜖), we
have
‖𝑥 (𝜖) − 0‖

𝑟(𝑥 (𝜖))

𝛿

=

𝜖






min {(1/3) 𝜖3 + 𝜖, 𝜖}


𝛿

=

𝜖

𝜖

𝛿

→ +∞ (98)

as 𝜖 → +∞, where 𝛿 is a constant with 1/3 < 𝛿 ≤ 1/2. Thus,
Theorem 2.5 in [5] fails in providing an error bound for this
GNCP.

5. Conclusion

In this paper, we established some global error bounds on
the generalized nonlinear complementarity problems over a
polyhedral cone, which improves the result obtained for vari-
ational inequalities and the GNCP [4, 5, 9–11] by weakening
the assumptions. Surely, under milder conditions, we may
establish global error bounds for GNCP and use the error
bounds estimation to establish quick convergence rate of the
methods for the GNCP. This is a topic for future research.
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