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A collocation finite element method for solving fractional diffusion equation for force-free case is considered. In this paper, we
develop an approximation method based on collocation finite elements by cubic B-spline functions to solve fractional diffusion
equation for force-free case formulated with Riemann-Liouville operator. Some numerical examples of interest are provided to
show the accuracy of the method. A comparison between exact analytical solution and a numerical one has been made.

1. Introduction

Scientific and engineering problems including fractional de-
rivatives have become more important in recent years. Since
the description of physical and chemical processes by means
of equations including fractional derivatives is more accurate
and precise, their numerical solutions have been the primary
interest of many recently published articles. The applications
are so wide that they include such diverse areas as control
theory [1], transport problems [2], tumor development [3],
subdiffusive anomalous transport in the presence of an
external field [4–7], and viscoelastic and viscoplastic flow [8].
These diverse areas of applications have led to an increase in
the number of studies on fractional differential equations and
have caused it to be an important topic in mathematics and
science. Yuste [9] has used weighted average finite difference
methods for fractional diffusion equations and provided
some examples in which the new methods’ numerical solu-
tions are obtained and compared against exact solutions.
Langlands and Henry [10] have investigated the accuracy
and stability of an implicit numerical scheme for solving the
fractional diffusion equation. Murio [11] has developed an
implicit unconditionally stable numericalmethod to solve the
one-dimensional linear time fractional diffusion equation,
formulated with Caputo’s fractional derivative, on a finite
slab. Yuste and Acedo [12] have combined the forward time
centered space (FTCS) method, well known for the numer-
ical integration of ordinary diffusion equations, with the

Grünwald-Letnikov discretization of the Riemann-Liouville
derivative to obtain an FTCS scheme for solving the fractional
diffusion equation.

The general form of the fractional diffusion equation for
force-free case is given by [4, 13, 14]
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where 𝐾 is the diffusion coefficient and 𝛾 ∈ (0, 1) is
anomalous diffusion exponent. In all numerical computa-
tions, diffusion coefficient 𝐾 is going to be taken as 1. In this
paper, we will take the boundary conditions of (1) given in
the interval 0 ≤ 𝑥 ≤ 1 as

𝑢 (0, 𝑡) = 0, 𝑢 (1, 𝑡) = 0 (3)

and the initial condition as

𝑢 (𝑥, 0) = 𝑥 (1 − 𝑥) . (4)
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The exact analytical solution of (1) is found by the method of
separation of variables [9] as
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) ,

(5)

where 𝐸
𝛾
is the Mittag-Leffler function [15].

In our numerical solutions, to obtain a finite element
scheme for solving the fractional diffusion equation for force-
free case (0 < 𝛾 ≤ 1), we will also discretize the Riemann-
Liouville operator [9, 16] as
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where
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2. Cubic B-Spline Finite Element
Collocation Solutions

To solve (1) with the boundary conditions (3) and the initial
condition (4) using collocation finite element method, first of
all, we define cubic B-spline base functions. Let us consider
that the interval [𝑎, 𝑏] is partitioned into𝑁 finite elements of
uniformly equal length by the knots 𝑥
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The set of cubic splines {𝜙
−1
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0
(𝑥), . . . , 𝜙

𝑁+1
(𝑥)} consti-

tutes a basis for the functions defined over the interval [𝑎, 𝑏].
Thus, an approximate solution 𝑈

𝑁
(𝑥, 𝑡) over the interval can

be written in terms of the cubic B-splines trial functions as
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where 𝛿
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be determined from the boundary and cubic B-spline col-
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If we substitute the global approximation (11) and its neces-
sary derivatives (10) into (1), we directly obtain the following
set of the first-order ordinary differential equations:
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where dot stands for derivative with respect to time. In the
first place, time parameters 𝛿
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Figure 1: The comparison of the exact (lines) and numerical
solutions for 𝛾 = 0.50, Δ𝑡 = 0.0001, and 𝑁 = 40 at 𝑡 = 0.001
(triangles), 𝑡 = 0.01 (squares), and 𝑡 = 0.1 (stars).
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Figure 2: The comparison of the exact and numerical solutions for
𝛾 = 0.75, Δ𝑡 = 0.0001, and 𝑁 = 40 at at 𝑡 = 0.001 (triangles),
𝑡 = 0.01 (squares), and 𝑡 = 0.1 (stars).
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The system (15) is consisted of𝑁+1 linear equations including
𝑁 + 3 unknown parameters (𝛿

−1
, . . . , 𝛿

𝑁+1
)
𝑇. To obtain a

unique solution to this system, we need two additional
constraints.These are obtained from the boundary conditions
and can be used to eliminate 𝛿

−1
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from the system.

2.1. Initial State. To start iteration, we do need to evaluate
the initial vector at starting time level. The initial vec-
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Using these conditions results in a three-diagonal system of
matrix of the form
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Solving this system yields the values of element parame-
ters at 𝑡 = 0. Now, it is time to find out the values of element
parameters at different time levels using the iterative system
(15).

2.2. Stability Analysis. The study of the stability of the
approximation obtained by the present scheme will be based
on the von Neumann stability analysis. In this analysis, the
growth factor of a typical Fourier mode is defined as
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equation:
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Secondly, if we write
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and assume that

𝜁 ≡ 𝜁 (𝜑) (24)
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Table 1: The comparison of the exact solutions with the numerical solutions with 𝛾 = 0.5, Δ𝑡 = 0.001, and 𝑡
𝑓
= 0.1 for different values of𝑁

and the error norms 𝐿
2
and 𝐿

∞
.

𝑥 𝑁 = 10 𝑁 = 20 𝑁 = 40 𝑁 = 80 𝑁 = 100 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.013806 0.013886 0.013920 0.013925 0.013926 0.013765
0.2 0.026128 0.026284 0.026325 0.026335 0.026336 0.026183
0.3 0.035777 0.035982 0.036034 0.036046 0.036048 0.036037
0.4 0.041903 0.042137 0.042195 0.042210 0.042212 0.042364
0.5 0.044001 0.044245 0.044306 0.044321 0.044323 0.044544
0.6 0.041903 0.042137 0.042195 0.042210 0.042212 0.042364
0.7 0.035777 0.035982 0.036034 0.036046 0.036048 0.036037
0.8 0.026128 0.026284 0.026325 0.026335 0.026336 0.026183
0.9 0.013806 0.013886 0.013920 0.013925 0.013926 0.013765
1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
𝐿
2
× 10
3 0.294172 0.159576 0.142246 0.139756 0.139501

𝐿
∞
× 10
3 0.543026 0.299690 0.238942 0.223758 0.221936

Table 2:The comparison of the exact solutions with the numerical solutions with 𝛾 = 0.5,𝑁 = 40, and 𝑡
𝑓
= 0.1 for different values of Δ𝑡 and

the error norms 𝐿
2
and 𝐿

∞
.

𝑥 Δ𝑡 = 0.01 Δ𝑡 = 0.001 Δ𝑡 = 0.0001 Δ𝑡 = 0.00001 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.015039 0.013920 0.013929 0.013930 0.013765
0.2 0.026111 0.026325 0.026347 0.026349 0.026183
0.3 0.035392 0.036034 0.036063 0.036065 0.036037
0.4 0.041638 0.042195 0.042229 0.042233 0.042364
0.5 0.043830 0.044306 0.044341 0.044345 0.044544
0.6 0.041638 0.042195 0.042229 0.042233 0.042364
0.7 0.035392 0.036034 0.036063 0.036065 0.036037
0.8 0.026111 0.026325 0.026347 0.026349 0.026183
0.9 0.015039 0.013920 0.013929 0.013930 0.013765
1.0 0.000000 0.000000 0.000000 0.000000 0.000000
𝐿
2
× 10
3 0.836889 0.142246 0.136548 0.136264

𝐿
∞
× 10
3 1.589369 0.238942 0.203235 0.199723

Table 3: The comparison of the exact solutions with the numerical solutions with 𝛾 = 0.75, Δ𝑡 = 0.001, and 𝑡
𝑓
= 0.1 for different values of𝑁

and the error norms 𝐿
2
and 𝐿

∞
.

𝑥 𝑁 = 10 𝑁 = 20 𝑁 = 40 𝑁 = 80 𝑁 = 100 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.018544 0.018677 0.018710 0.018718 0.018719 0.018574
0.2 0.035151 0.035393 0.035453 0.035468 0.035470 0.035331
0.3 0.048210 0.048531 0.048611 0.048631 0.048633 0.048629
0.4 0.056530 0.056900 0.056992 0.057015 0.057018 0.057166
0.5 0.048210 0.059771 0.059868 0.059892 0.059895 0.060108
0.6 0.056530 0.056900 0.056992 0.057015 0.057018 0.057166
0.7 0.048210 0.048531 0.048611 0.048631 0.048633 0.048629
0.8 0.035151 0.035393 0.035453 0.035468 0.035470 0.035331
0.9 0.018544 0.018677 0.018710 0.018718 0.018719 0.018574
1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
𝐿
2
× 10
3 0.418167 0.174101 0.136253 0.130959 0.130466

𝐿
∞
× 10
3 0.722901 0.336912 0.240523 0.216433 0.213542
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Table 4: The comparison of the exact solutions with the numerical solutions with 𝛾 = 0.75,𝑁 = 40, and 𝑡
𝑓
= 0.1 for different values of Δ𝑡

and the error norms 𝐿
2
and 𝐿

∞
.

𝑥 Δ𝑡 = 0.01 Δ𝑡 = 0.001 Δ𝑡 = 0.0001 Δ𝑡 = 0.00001 Exact
0.0 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.018556 0.018710 0.018722 0.018723 0.018574
0.2 0.035089 0.035453 0.035475 0.035477 0.035331
0.3 0.048219 0.048611 0.048642 0.048644 0.048629
0.4 0.056522 0.056992 0.057028 0.057031 0.057166
0.5 0.059360 0.059868 0.059905 0.059909 0.060108
0.6 0.056522 0.056992 0.057028 0.057031 0.057166
0.7 0.048219 0.048611 0.048642 0.048644 0.048629
0.8 0.035089 0.035453 0.035475 0.035477 0.035331
0.9 0.018556 0.018710 0.018722 0.018723 0.018574
1.0 0.000000 0.000000 0.000000 0.000000 0.000000
𝐿
2
× 10
3 0.449135 0.136253 0.128451 0.127966

𝐿
∞
× 10
3 0.747758 0.240523 0.203042 0.199418

is independent of time, then we get the following expression
for the amplification factor 𝜁 of the subdiffusion mode:

𝜁 ((1 − 𝛼) 𝑒
−𝑖𝜑
+ (4 + 2𝛼) + (1 − 𝛼) 𝑒

𝑖𝜑
)

= ((1 + 𝛼) 𝑒
−𝑖𝜑
+ (4 − 2𝛼) + (1 + 𝛼) 𝑒

𝑖𝜑
)

+ 𝛼

𝑛

∑

𝑘=1

𝜔
1−𝛾

𝑘
[(𝜁
1−𝑘
+ 𝜁
−𝑘
) (𝑒
−𝑖𝜑
− 2 + 𝑒

𝑖𝜑
)] .

(25)

If we want the given scheme to be stable in terms of Fourier
stability analysis, then the condition |𝜁| ≤ 1must be satisfied.
Considering the extreme value 𝜁 = 1, from (22) and (25), we
obtain the following inequality:

8𝛼 sin2 (
𝜑

2
) ≥ 0. (26)

Since 𝛼 > 0, we can say that the scheme is unconditionally
stable.

3. Numerical Examples and Results

Numerical results for the diffusion and diffusion-wave prob-
lems are obtained by collocation method using cubic B-
spline base functions. The accuracy of the present method is
measured by the error norm 𝐿

2
as

𝐿
2
=

𝑈

exact
− 𝑈
𝑁

2
= √ℎ

𝑁

∑

𝑗=0


𝑈exact
𝑗

− (𝑈
𝑁
)
𝑗



2

(27)

and the error norm 𝐿
∞

as

𝐿
∞
=

𝑈

exact
− 𝑈
𝑁

∞
= max
𝑗


𝑈

exact
𝑗

− (𝑈
𝑁
)
𝑗


. (28)

Figures 1 and 2 show the graphs of the exact (denoted by
lines) solutions and the numerical ones for Δ𝑡 = 0.0001 and
𝑁 = 40 at 𝑡 = 0.001 (denoted by triangles), 𝑡 = 0.01 (denoted

by squares), and 𝑡 = 0.1 (denoted by stars) for two different
values of 𝛾 = 0.50 and 𝛾 = 0.75, respectively. Table 1 shows
the comparison of the exact solutionswith the numerical ones
with 𝛾 = 0.5, Δ𝑡 = 0.001, and 𝑡

𝑓
= 0.1 for different values of

𝑁.The calculated error norms 𝐿
2
and 𝐿

∞
at those time levels

are also presented in the table. In Table 2, the comparison of
the exact solutions with the numerical ones with 𝛾 = 0.5,𝑁 =
40 and 𝑡

𝑓
= 0.1 for different values ofΔ𝑡 is illustrated and then

the error norms 𝐿
2
and 𝐿

∞
are computed and presented in

the table. In Table 3, we have listed the numerical and exact
solutions of the problem for 𝛾 = 0.75, Δ𝑡 = 0.001, and 𝑡

𝑓
=

0.1 for different values of𝑁 and the error norms 𝐿
2
and 𝐿

∞
.

Table 4 illustrates the comparison of the exact solutions with
the numerical solutions for 𝛾 = 0.75, 𝑁 = 40, and 𝑡

𝑓
= 0.1

for different values of Δ𝑡 and the error norms 𝐿
2
and 𝐿

∞
.

4. Conclusion

In the present study, first of all, a collocation finite element
method has been constructed. Then, the method has been
applied using cubic B-spline base functions. During the
implementation of the method, Crank-Nicolson formula
and first-order difference formula have been applied for
discretization process. The stability of the method presented
in the paper has been tested using the von Neumann stability
analysis in which the growth factor of a typical Fourier mode
is used. The accuracy of the method is also measured by the
error norms 𝐿

2
and 𝐿

∞
. The successful application of the

present method prompts the probability of extending it to
other finite element methods and other kinds of fractional
differential equations. The available results suggest that this
is highly probable.
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