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This paper formulates and analyzes a pine wilt disease model. Mathematical analyses of the model with regard to invariance of
nonnegativity, boundedness of the solutions, existence of nonnegative equilibria, permanence, and global stability are presented. It
is proved that the global dynamics are determined by the basic reproduction number R

0
and the other value R

𝑐
which is larger

thanR
0
. IfR

0
andR

𝑐
are both less than one, the disease-free equilibrium is asymptotically stable and the pine wilt disease always

dies out. If one is between the two values, though the pine wilt disease could occur, the outbreak will stop. If the basic reproduction
number is greater than one, a unique endemic equilibrium exists and is globally stable in the interior of the feasible region, and
the disease persists at the endemic equilibrium state if it initially exists. Numerical simulations are carried out to illustrate the
theoretical results, and some disease control measures are especially presented by these theoretical results.

1. Introduction

Pinewilt is a dramatic disease of pine caused by the pinewood
nematode (Bursaphelenchus xylophilus), which constitutes a
major threat to forest ecosystems worldwide, from both the
economical point of view and the environmental (landscape)
perspective [1]. Pine trees are affected by pine wilt disease,
wilt, and usually die within a few months. Symptoms of
pine wilt disease usually become evident in late spring or
summer. The first observable symptom is the lack of resin
exudation from barks wounds.The foliage then becomes pale
green, then yellow, and finally reddish brown when the tree
succumbs to the disease.Thewood in affected trees is dry and
totally lacks resin.

In [2], Evans et al. reviewed the principle of the Bursaphe-
lenchus xylophilus transmission and disease dissemination.
The Bursaphelenchus xylophilus is transmitted from pine
tree to pine tree by a bark beetle called the pine sawyer
(Monochamus alternatus) either when the sawyer beetles are
fed on the bark and phloem of twigs of susceptible live
trees (primary transmission) or when the female beetles

lay eggs (oviposition) in freshly cut timber or dying trees
(secondary transmission). Nematodes introduced during
primary transmission can reproduce rapidly in the sapwood,
and a susceptible host can wilt and die within weeks of being
infested if conditions are favorable to disease development.
In the summer, adult pine sawyers emerge from pine trees
and fly to new trees. If the beetle is carrying the pine wood
nematode, it spreads to the new trees (see Figure 1).

Pine wilt disease causes significant economic losses in
natural coniferous forests in Eastern Asia (especially Japan,
China, and South Korea) and Western Europe (especially
Portugal). As such, the pine wilt disease is among the most
important pests included in the quarantine lists of many
countries around the world [3]. In the beginning of the 20th
century, pinewilt diseasewas first reported in Japan.Up to the
present day, pinewilt disease has become themajor ecological
catastrophe of pine forests in Japan. For example, it has losses
reaching over 2 million m3/year in the 1980s. Since then,
it has spread to other Asian countries and regions such as
China, Taiwan, and Korea, causing serious losses and eco-
nomic damage. The pinewood nematode was first detected
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Figure 1: Schematic representation of the interrelationships between the pinewood nematode, Bursaphelenchus xylophilus, and its insect
vector (Monochamus alternatus) (adapted from Evans et al. [2]).

in Portugal’s Setúbal region in 1999. Immediately, several
governments of the European Union prompted actions to
assess the extent of the nematode’s presence and to contain
Bursaphelenchus xylophilus andMonochamus alternatus in an
area with a 30 km radius in the Setbal Peninsula, 20 km south
of Lisbon [4]. Despite the dedicated and concerted actions
of government agencies, this disease continues to spread. In
2006, a new strategy which is the coordination of the national
program for the control of the pinewood nematode for the
control and ultimately the eradication of the nematode has
been announced in Portugal [4].

Experience from control actions in Japan included aerial
spraying of insecticides to control the insect vector (the cer-
ambycid beetleMonochamus alternatus), injection of nemati-
cides to the trunk of infected trees, slashing and burning
of large areas out of control, beetle traps, biological control,
and tree breeding programs [1]. These actions allowed not
only some positive results, but also unsuccessful cases due to
the pinewood nematode spread and virulence. Other Asian
countries also followed similar strategies, but the nematode
is still spreading in many regions.

In recent years,many attempts have beenmade to develop
realistic mathematical models for investigating the transmis-
sion dynamics of the pine wilt disease, see [5–7]. Previous
studies have worked on modeling of population dynamics
of the vector beetle (Monochamus alternatus) and the pine
tree to explore expansion of the disease using an integro-
difference equationwith a dispersal kernel that describes bee-
tlemobility. In this paper, we revisit these previousmodels but
retain individuality by building a differential system model

to study the relation between pine tree, Bursaphelenchus
xylophilus, and its insect vector Monochamus alternatus
in the long run. The following assumptions are made in
formulating the mathematical model.

(𝐻
1
) The population of pine is divided into two classes:
pine which is normal and susceptible and pine which
has been infected by Bursaphelenchus xylophilus.
𝑆(𝑡), 𝐼(𝑡) express the number of pine which is normal
and susceptible and pine which is infected by Bur-
saphelenchus xylophilus at time 𝑡, respectively.

(𝐻
2
) 𝑋(𝑡), 𝑌(𝑡)Are the number ofMonochamus alternatus
which does not carry Bursaphelenchus xylophilus
Nickle and which carries Bursaphelenchus xylophilus
Nickle at time 𝑡, respectively.

(𝐻
3
) The pine is infected by the Monochamus alternatus
which carries Bursaphelenchus xylophilus Nickle,
and this contact process is assumed to follow the
standard incident rate𝛽(𝑌/(𝑋+𝑌)); theMonochamus
alternatus which does not carry the Bursaphelenchus
xylophilus Nickle is infected by Bursaphelenchus
xylophilus Nickle through the infected pine, and this
contact process is also assumed to follow the standard
incident rate 𝑘(𝐼/(𝑆 + 𝐼)).

The dynamic of the whole model is indeed determined
by the four-dimensional system involving only the pine and
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Monochamus alternatus. And the model for the transmission
of the virus in the pineMonochamus alternatus cycle reads

𝑑𝑆

𝑑𝑡
= 𝑏 − 𝛽

𝑌

𝑋 + 𝑌
𝑆 − 𝛼𝑆,

𝑑𝐼

𝑑𝑡
= 𝛽

𝑌

𝑋 + 𝑌
𝑆 − 𝛿𝐼,

𝑑𝑋

𝑑𝑡
= 𝑎 − 𝑘

𝐼

𝑆 + 𝐼
𝑋 − 𝜇𝑋,

𝑑𝑌

𝑑𝑡
= 𝑘

𝐼

𝑆 + 𝐼
𝑋 − 𝜇𝑌,

(1)

where 𝑎 is the constant input rate of Monochamus alter-
natus; 𝑏 is the constant increase rate of pine; 𝜇 is the
mortality ofMonochamus alternatus; 𝑘 is the probability that
Monochamus alternatus carries Bursaphelenchus xylophilus
Nickle; 𝛽 is the probability that pine is infected by Bursaphe-
lenchus xylophilus;𝛼 is the exploitation percent of pinewhich
is normal and susceptible; 𝛿 is the percent isolated and felled
of pine which has infected Bursaphelenchus xylophilus. Here
we suppose that 𝛿 > 𝛼. All parameters are assumed to be
positive.

Let

𝐴 = 𝑋 + 𝑌. (2)

It follows from the system (1) that 𝐴(𝑡) satisfies the following
differential equation:

𝑑𝐴

𝑑𝑡
= 𝑎 − 𝜇𝐴. (3)

This leads to 𝐴(𝑡) → (𝑎/𝜇) as 𝑡 → ∞. Thus, the system (1)
is reduced to the following three-dimensional system:

𝑑𝑆

𝑑𝑡
= 𝑏 −

𝜇

𝑎
𝛽𝑌𝑆 − 𝛼𝑆,

𝑑𝐼

𝑑𝑡
=
𝜇

𝑎
𝛽𝑌𝑆 − 𝛿𝐼,

𝑑𝑌

𝑑𝑡
=

𝑘𝐼

𝑆 + 𝐼
(
𝑎

𝜇
− 𝑌) − 𝜇𝑌.

(4)

The initial conditions of the system (4) are assumed as
follows:

𝑆 (0) ≥ 0, 𝐼 (0) ≥ 0, 𝑌 (0) ≥ 0. (5)

This paper is organized as follows. In Section 2, we
present some preliminaries such as the positivity and the
boundedness of solutions. In Section 3, we firstly calculate
the basic reproduction number of system (4).Then we obtain
the local and global stability of the disease-free equilibrium.
In Section 4, we present the local and global stability of
the endemic equilibrium of the system (4). In Section 5, we
conclude with some numerical simulations and discussions.

2. Positivity and Boundedness of Solutions

It is important to prove that the solutions of the system (4)
are positive and bounded with the positive initial conditions
(5) for the biology meaning.

Let

𝐷 = {(𝑆, 𝐼, 𝑌) |
𝑏

𝛿
≤ 𝑆 + 𝐼 ≤

𝑏

𝛼
, 0 ≤ 𝑌 ≤

𝑎

𝜇
} . (6)

Proposition 1. All solutions (𝑆, 𝐼, 𝑌) of the system (4) are
nonnegative. Moreover, 𝐷 is a global attractor in R3

+
and

positively invariant for the system (4).

Proof. The first statement is trivial. It easily follows from the
argument for reduction in the last equation that 0 ≤ 𝑌 ≤ 𝑎/𝜇.
It follows from the first two equations of the system (4) that

𝑏 − 𝛿 (𝑆 + 𝐼) ≤
𝑑 (𝑆 + 𝐼)

𝑑𝑡
≤ 𝑏 − 𝛼 (𝑆 + 𝐼) (7)

for all 𝑡 ≥ 0, then the second statement follows immediately.

3. Stability of the Disease-Free Equilibrium

For all infectious diseases, the basic reproduction number,
sometimes called the basic reproductive rate or the basic
reproductive ratio, is one of themost useful threshold param-
eters which characterize mathematical problems concerning
infectious diseases. This metric is useful because it helps
determine whether or not an infectious disease will spread
through a population. In this section, we will calculate the
basic reproduction number of the system (4). Moreover, we
will obtain the local and global stability of the disease-free
equilibrium.

It is easy to see that the system (4) always has a disease-
free equilibrium (the absence of infection, i.e., 𝐼 = 𝑌 = 0),
𝐸
0
(𝑆
0
, 0, 0), where 𝑆

0
= 𝑏/𝛼. Let 𝑥 = (𝐼, 𝑌, 𝑆)

⊤. Then system
(4) can be written as

𝑑𝑥

𝑑𝑡
= F (𝑥) −V (𝑥) , (8)

where

F (𝑥) =(

(

𝜇

𝑎
𝛽𝑌𝑆

𝑘𝐼

𝑆 + 𝐼
(
𝑎

𝜇
− 𝑌)

0

)

)

,

V (𝑥) =(

(

𝛿𝐼

𝜇𝑌

−(𝑏 −
𝜇

𝑎
𝛽𝑌𝑆 − 𝛼𝑆)

)

)

.

(9)
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We can get

F = (

0
𝜇

𝑎
𝛽𝑆

−𝑘𝐼 ((𝑎/𝜇) − 𝑌)

(𝑆 + 𝐼)
2

+
𝑘 ((𝑎/𝜇) − 𝑌)

𝑆 + 𝐼
−

𝑘𝐼

𝑆 + 𝐼

) ,

V = (
𝛿 0

0 𝜇
) .

(10)

Submitting 𝐸
0
into F, then

F = (

0
𝜇

𝑎
𝛽𝑆
0

𝑘𝑎𝛼

𝜇𝑏
0

) (11)

and giving

V−1 = (

1

𝛿
0

0
1

𝜇

) , (12)

FV−1 = (
0

𝛽𝑏

𝑎𝛼
𝑘𝑎𝛼

𝑏𝛿𝜇
0
) (13)

is the next generationmatrix for the system (4). It then follows
that the spectral radius of matrix FV−1 is 𝜌(FV−1) = √𝑘𝛽/𝛿𝜇.
According to Theorem 2 in [8], the basic reproduction
number of model (4) is

R
0
= √

𝑘𝛽

𝛿𝜇
. (14)

In the following, we will discuss the local and global
stability of the disease-free equilibrium. From above and [8],
we can obtain the following theorems.

Theorem 2. The disease-free equilibrium 𝐸
0
is locally asymp-

totically stable forR
0
< 1 and unstable forR

0
> 1.

Theorem3. Thedisease-free equilibrium𝐸
0
is globally asymp-

totically stable ifR
𝑐
< 1, whereR

𝑐
= √𝑘𝛽/𝛼𝜇.

Proof. Define a Lyapunov function 𝐿 of the system (4) as
follows:

𝐿 =
𝛼𝑎

𝑏𝛽
𝐼 + 𝑌. (15)

Its derivative along a solution of the system (4) is

𝑑𝐿

𝑑𝑡
=
𝛼𝑎

𝑏𝛽

𝜇

𝑎
𝛽𝑌𝑆 −

𝛼𝑎𝛿

𝑏𝛽
𝐼 +

𝑘𝑎

𝜇 (𝑆 + 𝐼)
𝐼 −

𝑘𝐼

𝑆 + 𝐼
𝑌 − 𝜇𝑌

= (
𝛼𝜇

𝑏
𝑆 −

𝑘𝐼

𝑆 + 𝐼
− 𝜇)𝑌 + (

𝑎𝑘

𝜇 (𝑆 + 𝐼)
−
𝛼𝑎𝛿

𝑏𝛽
) 𝐼

≤ (𝜇 −
𝑘𝐼

𝑆 + 𝐼
− 𝜇)𝑌 + (

𝑎𝑘𝛿

𝜇𝑏
−
𝛼𝑎𝛿

𝑏𝛽
) 𝐼

≤
𝑎𝛿 (𝑘𝛽 − 𝛼𝜇)

𝜇𝑏𝛽
𝐼.

(16)

It is clear from (16) that for R
𝑐
≤ 1, 𝑑𝐿/𝑑𝑡 ≤ 0 as 𝑏/𝛿 ≤

𝑆 + 𝐼 ≤ 𝑏/𝛼. Furthermore, if 𝑀 is the set of solutions of the
systemwhere𝑑𝐿/𝑑𝑡 = 0, then the Lyapunov-LasalleTheorem
[9] implies that all paths in 𝐷 approach the largest positively
invariant subset of the set 𝑀. Here, 𝑀 is the set where 𝐼 =

0. On the boundary of 𝐷 where 𝐼 = 0, we have 𝑌 = 0 and
𝑑𝑆/𝑑𝑡 = 𝑏 − 𝛼𝑆. So 𝑆 → 𝑏/𝛼 as 𝑡 → ∞. Hence, all solution
paths in𝐷 approach the disease-free equilibrium 𝐸

0
.

Remark 4. This above result is of outmost importance
because it shows that if at any time, through appropriate
interventions, we are able to lowerR

0
andR

𝑐
to less than 1,

then the pinewilt diseasewill disappear.Obviously,R
0
< R
𝑐
.

The condition of global stability of disease-free equilibrium
is stronger than that of local stability. In fact, since R

0
<

1 < R
𝑐
, it is possible to be no outbreak appearance, see

Figure 2(a). R
𝑐
> 1 indicates that pine wilt disease could

occur, while R
0
< 1 shows that the outbreak will stop since

the infected pine decreases to the disease-free equilibrium.
We know that R

0
and R

𝑐
depend on 𝜇, the mortality of

Monochamus alternatus. Thus, if we are able to increase the
value of 𝜇,R

0
andR

𝑐
will decrease.

4. Global Stability of the Endemic Equilibrium

In this section, we will discuss the local and global stabil-
ity of the endemic equilibrium. The endemic equilibrium
𝐸
∗(𝑆∗, 𝐼∗, 𝑌∗) of the system (4) can be deduced by the

following equations:

𝑏 −
𝜇

𝑎
𝛽𝑌
∗
𝑆
∗
− 𝛼𝑆
∗
= 0,

𝜇

𝑎
𝛽𝑌
∗
𝑆
∗
− 𝛿𝐼
∗
= 0,

𝑘𝐼
∗

𝑆∗ + 𝐼∗
(
𝑎

𝜇
− 𝑌
∗
) − 𝜇𝑌

∗
= 0.

(17)

Clearly, the system (4) has a unique endemic equilibrium
𝐸∗(𝑆∗, 𝐼∗, 𝑌∗) when R

0
> 1 and no endemic equilibrium

whenR
0
≤ 1, where 𝑆∗ = 𝑏(𝑘 + 𝜇)/(𝑘𝛽 + 𝑘𝛼− 𝜇𝛿+ 𝜇𝛼), 𝐼∗ =

(𝑘𝛽−𝜇𝛿)𝑏/(𝑘𝛽+𝑘𝛼−𝜇𝛿+𝜇𝛼)𝛿, and𝑌∗ = (𝑘𝛽−𝜇𝛿)𝑎/(𝑘+𝜇)𝜇𝛽.
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In the following, we will consider the locally asymptotical
stability of the positive equilibrium whenR

0
> 1.

Theorem 5. If R
0
> 1, the endemic equilibrium 𝐸∗ is locally

asymptotically stable.

Proof. Jacobian matrix of the system (4) is evaluated at the
endemic equilibrium 𝐸

∗:

𝐽 (𝐸
∗
) = (

−
𝜇

𝑎
𝛽𝑌∗ − 𝛼 0 −

𝜇

𝑎
𝛽𝑆∗

𝜇

𝑎
𝛽𝑌∗ −𝛿

𝜇

𝑎
𝛽𝑆∗

−
𝜇𝑌∗

𝑆∗ + 𝐼∗
𝜇𝑌∗

𝐼∗
−

𝜇𝑌∗

𝑆∗ + 𝐼∗
−

𝑘𝐼∗

𝑆∗ + 𝐼∗
− 𝜇

) .

(18)

The eigenvalue problem for the Jacobian matrix (18)
provides the characteristic equation

𝜆
3
+ 𝑎
1
𝜆
2
+ 𝑎
2
𝜆 + 𝑎
3
= 0, (19)

where the coefficients 𝑎
𝑖
(𝑖 = 1, 2, 3) are

𝑎
1
= (𝑘𝛽 − 𝜇𝛿)

× [𝑎𝑏
2
𝑘 (𝛼𝛿𝑘 + 𝛽𝜇

2
+ 2𝑘𝛽𝜇 + 𝛼𝑘𝛽 + 2𝛿𝑘𝛽

+𝑘𝛽
2
+ 𝛼𝛿𝜇 + 𝛿

2
𝑘 + 𝛼𝛽𝜇 + 𝑘

2
𝛽)]

× ((𝑘 + 𝜇) (𝑘𝛽 + 𝑘𝛼 − 𝜇𝛿 + 𝜇𝛼)
2
𝛿
2
𝑎 (𝑆
∗
+ 𝐼
∗
) 𝐼
∗
)
−1

,

𝑎
2
= (𝑘𝛽 − 𝜇𝛿) {𝑎𝑏

2
𝑘 [(𝛿𝑘 + 𝛿

2
+ 𝜇𝛽 + 𝛿𝛽 + 𝑘𝛽 + 𝜇𝛿)

× (𝑘𝛽 − 𝜇𝛿) + 𝛼𝛿
2
𝑘 + 𝛼𝑘

2
𝛽

+ 𝛼𝛿𝛽𝜇 + 𝛼𝛿
2
𝜇 + 𝜇
2
𝛼𝛽

+𝛼𝛿𝑘𝛽 + 2𝛼𝑘𝛽𝜇]}

× ((𝑘 + 𝜇) (𝑘𝛽 + 𝑘𝛼 − 𝜇𝛿 + 𝜇𝛼)
2
𝛿
2
𝑎 (𝑆
∗
+ 𝐼
∗
) 𝐼
∗
)
−1

,

𝑎
3
=

(𝑘𝛽 − 𝜇𝛿)
2
𝑎𝑏2

𝛿 (𝑘𝛽 + 𝑘𝛼 − 𝜇𝛿 + 𝜇𝛼) 𝑎 (𝑆∗ + 𝐼∗) 𝐼∗
.

(20)

Note that 𝑎
1
> 0, 𝑎

2
> 0, and 𝑎

3
> 0 ifR

0
> 1.

Expressing 𝑎
1
𝑎
2
− 𝑎
3
in terms of 𝛼, we have

𝑎
1
𝑎
2
− 𝑎
3
= 𝑑
1
𝛼
2
+ 𝑑
2
𝛼 + 𝑑
3
𝛼, (21)

where

𝑑
1
= 𝑘 (𝛿 + 𝛽) (𝑘 + 𝜇)

2
(𝛽𝜇 + 𝑘𝛽 + 𝛿𝛽 + 𝛿

2
) ,

𝑑
2
= (𝑘 + 𝜇) (𝑘𝛽

2
𝜇
3
+ 𝜇
3
𝛿
2
𝛽 + 𝜇
3
𝛿
3
+ 3𝑘
2
𝛽
2
𝜇
2

+ 𝜇
2
𝛿
3
𝑘 + 𝜇𝛿

2
𝑘
2
𝛽 + 3𝜇𝛿𝑘

2
𝛽
2
+ 3𝑘
3
𝛽
2
𝜇

+ 𝑘
4
𝛽
2
+ 4𝑘
3
𝛽
2
𝛿 + 2𝑘

3
𝛽
3
+ 2𝑘
3
𝛽𝛿
2
+ 𝛿
4
𝑘
2

+ (4𝑘𝛽 − 𝛿𝜇) 𝑘𝛿
3
+ (5𝑘𝛽 − 2𝛿𝜇) 𝑘𝛿

2
𝛽

+ (2𝑘𝛽 − 𝛿𝜇) 𝑘𝛽
2
(𝛿 + 𝜇)) ,

(22)

𝑑
3
= (𝛿 + 𝛽) (𝑘𝛽 − 𝜇𝛿)

× (𝛽
2
𝛿𝑘
2
+ 𝛽
2
𝑘
2
𝜇 + 𝛽
2
𝑘
3
+ 𝛽𝑘
4
+ 3𝛽𝑘

3
𝜇

+ 2𝛽𝛿𝑘
3
+ 2𝛽𝑘

2
𝛿𝜇 + 2𝛿

2
𝑘
2
𝛽 + 3𝑘

2
𝛽𝜇
2

+𝑘𝛽𝜇
3
+ 𝛿
2
𝑘
3
+ 2𝛿
2
𝑘
2
𝜇 + 𝑘
2
𝛿
3
+ 2𝛿
2
𝑘𝜇
2
+ 𝛿
2
𝜇
3
) .

(23)

Clearly, 𝑑
1
, 𝑑
2
, 𝑑
3
> 0 sinceR

0
> 1. Then it becomes obvious

from the expression for 𝑑
1
, 𝑑
2
, and 𝑑

3
that 𝑎

1
, 𝑎
2
, 𝑎
3
> 0.

Hence, thanks to the Routh-Hurwitz criterion all eigenvalues
of 𝐽(𝐸∗) have negative real part, and consequently 𝐸∗ is
locally asymptotically stable.

We have shown that R
0
> 1 implies the existence and

uniqueness of the endemic equilibrium 𝐸∗. In the follow-
ing, we provide sufficient conditions leading to a globally
asymptotically stable infected steady state when R

0
> 1.

The stability analysis of 𝐸∗ will be here performed through
the geometric approach to global stability due to Li and
Muldowney [10–12]. Firstly, wewill summarize themain facts
related to our research.

Let us consider the system of differential equations

𝑑𝑋

𝑑𝑡
= 𝐹 (𝑋) , 𝑋 ∈ 𝐷, (24)

where 𝐷 is an open subset on R3 and 𝐹 is twice con-
tinuously differentiable in 𝐷. The noncontinuable solution
of (24) satisfying 𝑋(0) = 𝑋

0
is denoted by 𝑋(𝑡, 𝑋

0
),

the positive (negative) semiorbit through 𝑋
0
is denoted by

𝜙+(𝑋
0
) (𝜙−(𝑋

0
)), and the orbit through 𝑋

0
is denoted by

𝜙(0) = 𝜙−(𝑋
0
) ∪ 𝜙+(𝑋

0
). We use the notation 𝜔(𝑋

0
) (𝛼(𝑋

0
))

for the positive (negative) limit set of 𝜙+(𝑋
0
) (𝜙−(𝑋

0
)),

provided the latter semiorbit has compact closure in𝐷.
The system (24) is competitive in 𝐷 [13–16] if, for some

diagonal matrix 𝐻 = diag (𝜖
1
, 𝜖
2
, 𝜖
3
), where 𝜖

𝑖
is either 1 or

−1, 𝐻(𝐷𝐹(𝑋))𝐻 has nonpositive off-diagonal elements for
𝑋 ∈ 𝐷, where 𝐷𝐹(𝑋) is the Jacobian of (24). It is shown in
[16] that if𝐷 is convex the flow of such a system preserves for
𝑡 < 0 the partial order in R3 defined by the orthant

𝐾
1
= {(𝑋

1
, 𝑋
2
, 𝑋
3
) ∈ R
3
| 𝜖
𝑖
𝑋
𝑖
≥ 0} . (25)
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Figure 2: (a) Time series diagram of the system (4), where the blue and green continuous curves express the number of pines which is normal
and susceptible 𝑆(𝑡) and pine which is infected Bursaphelenchus xylophilus 𝐼(𝑡), respectively. And the red continuous curves expresses the
number of Monochamus alternatus which carries Bursaphelenchus xylophilus Nickle. The pine wilt disease will not break out, where 𝑏 =

0.25, 𝜇 = 0.05, 𝛽 = 0.006, 𝑎 = 0.003, 𝛼 = 0.002, 𝛿 = 0.01 and 𝑘 = 0.05. In this case,R
0
= 0.7746 andR

𝑐
= 1.7321. (b) Time series diagram

of the system (4), where the blue and green continuous curve express the number of pines which is normal and susceptible 𝑆(𝑡) and pine
which is infected Bursaphelenchus xylophilus 𝐼(𝑡), respectively. And the red continuous curve express the number ofMonochamus alternatus
carry Bursaphelenchus xylophilus Nickle. the endemic equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑌∗) is globally asymptotically stable, where 𝑏 = 0.25, 𝜇 =

0.0005, 𝛽 = 0.006, 𝑎 = 0.003, 𝛼 = 0.002, 𝛿 = 0.008 and 𝑘 = 0.05. In this case,R
0
= 8.6603 andR

𝑐
= 17.3205. (c) Time series diagram of

the system (4), where the blue and green continuous curves express the number of pines which is normal and susceptible 𝑆(𝑡) and pine which
is infected Bursaphelenchus xylophilus 𝐼(𝑡), respectively. And the red continuous curve expresses the number of Monochamus alternatus
which carries Bursaphelenchus xylophilus Nickle. The disease-free equilibrium 𝐸

0
(𝑆
0
, 0, 0) of the system (4) is globally asymptotically stable,

where 𝑏 = 0.25, 𝜇 = 0.5, 𝛽 = 0.006, 𝑎 = 0.003, 𝛼 = 0.002, 𝛿 = 0.008 and 𝑘 = 0.05. In this case,R
0
= 0.2739 andR

𝑐
= 0.5477.

Hirsch [13] and Smith [15, 16] proved that three-
dimensional competitive systems that live in convex sets have
the Poincare-Bendixson property [17]; that is, any nonempty
compact omega limit set that contains no equilibria must be
a closed orbit.

We recall additional definitions that we will use later. We
first recall the basic definitions in [18]. Suppose that (24) has
a periodic solution 𝑥 = 𝑝(𝑡) with minimal period 𝜔 > 0 and
orbit 𝛾 = {𝑝(𝑡) : 0 ≤ 𝑡 ≤ 𝜔}. This orbit is orbitally stable
if and only if, for each 𝜀 > 0, there exists a 𝛿

1
> 0 such
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that any solution 𝑥(𝑡), for which the distance of 𝑥(0) from
𝛾 is less 𝛿, remains at a distance less than 𝜀 from 𝛾 for all
𝑡 ≥ 0. It is asymptotically orbitally stable, if the distance of
𝑥(𝑡) from 𝛾 also tends to 0 as 𝑡 goes to ∞. This orbit 𝛾 is
asymptotically orbitally stable with asymptotic phase if it is
asymptotically orbitally stable and there exists a 𝑏 > 0, such
that, any solution 𝑥(𝑡), for which the distance of 𝑥(0) from 𝛾

is less than 𝑏, satisfying |𝑥(𝑡) − 𝑝(𝑡 − 𝜏)| → 0 as 𝑡 → +∞ for
some 𝜏 which may depend on 𝑥(0).

Definition 6. We say that the system (24) has the property
of stability of periodic orbits if and only if the orbit of any
periodic solution 𝛾(𝑡), if it exists, is asymptotically orbitally
stable.

The following lemma is the main tool to prove the global
stability of the endemic equilibrium with disease.

Lemma 7 (see [19]). Assume that 𝑛 = 3 and 𝐷 is convex and
bounded. Suppose that (4) is competitive and persistent and has
the property of stability of the periodic orbits. If 𝑥

0
is the only

equilibrium in int(𝐷) and if it is locally asymptotically stable,
then it is globally asymptotically stable in int(𝐷).

In order to apply this lemma to prove the globally
asymptotically stability of the endemic equilibrium, we will
prove the persistence of the system (4).

Theorem 8. On the boundary of 𝐷, the system (4) has only
one 𝜔-limit point which is the equilibrium 𝐸

0
. Moreover, for

R
0
> 1, 𝐸

0
cannot be the 𝜔-limit of any orbit in int(𝐷).

Proof. The vector field is transversal to the boundary of 𝐷
except in the 𝑆-axis, which is invariant with respect to (4).
On the 𝑆-axis we have

𝑑𝑆

𝑑𝑡
= 𝑏 − 𝛼𝑆, (26)

which implies that 𝑆 → 𝑏/𝛼 as 𝑡 → ∞. Therefore, 𝐸
0
is the

only 𝜔-limit point on the boundary of𝐷.
To prove the second part of the position, we consider the

function

𝑉
1
= 𝑌 +

𝛼𝑎

𝑏𝛽

1 +R2
0

2
𝐼, (27)

the derivative of which along solutions is given by

𝑑𝑉
1

𝑑𝑡
=
𝑑𝑌

𝑑𝑡
+
𝛼𝑎

𝑏𝛽

1 +R2
0

2

𝑑𝐼

𝑑𝑡

=
𝑘

𝑆 + 𝐼

𝑎

𝜇
𝐼 −

𝑘𝑌𝐼

𝑆 + 𝐼
− 𝜇𝑌 +

𝛼𝜇

𝑏

1 +R2
0

2
𝛽𝑌𝑆

−
𝛼𝑎𝛿

𝑏𝛽

1 +R2
0

2
𝐼

≥ (
𝑘𝑎

(𝑏/𝛼) 𝜇
−
𝛼𝑎𝛿

𝑏𝛽

1 +R2
0

2
) 𝐼

+ (
𝛼𝜇

𝑏

1 +R2
0

2
𝑆 −

𝑘

𝑏/𝛿
𝐼 − 𝜇)𝑌

≥ (1 −
1

R2
0

1 +R2
0

2
)

𝑏𝜇

𝑘𝑎𝛼
𝐼

+ (𝑆 −
𝑘𝛿

𝛼𝜇

2

1 +R2
0

𝐼 −
2

1 +R2
0

𝑏

𝛼
)

𝑏

𝛼𝑏

2

1 +R2
0

𝑌.

(28)

SinceR
0
> 1, then ((1/R2

0
) + 1)/2 < 1 and 2/(1 +R2

0
) < 1.

Therefore, there exists a neighborhood 𝑈 of 𝐸
0
such that for

(𝑆, 𝐼, 𝑌) ∈ 𝑈 ∪ int(𝐷) the expression inside the brackets is
positive. In this neighborhood, we have 𝑉

1
> 0 unless 𝐼 =

𝑌 = 0. Moreover, the level sets of 𝑉
1
are the planes

𝑌 +
𝛼𝑎

𝑏𝛽

1 +R2
0

2
𝐼 = 𝐶, (29)

which go away from the 𝑆-axis as 𝐶 increase. Since 𝑉
1

increases along the orbits starting in𝑈∪ int(𝐷), we conclude
that they go away from 𝐸

0
. This proves the proposition and

therefore the persistence of system (4) whenR
0
> 1.

By looking at the Jacobian matrix of the system (4) and
choosing the matrix𝐻 as

𝐻 = (

−1 0 0

0 1 0

0 0 −1

) , (30)

we can see that the system (4) is competitive in𝐷, with respect
to the partial order defined by the orthant 𝐾

1
= {(𝑆, 𝐼, 𝑌) ∈

R3 : 𝑆 ≤ 0, 𝐼 ≤ 0, 𝑌 ≤ 0}. Our main results will follow from
this observation and the above theorems.

Theorem 9. IfR
0
> 1, then the positive equilibrium 𝐸∗ of the

system (4) is globally asymptotically stable.

Proof. Since the system (4) is competitive permanent ifR
0
>

1 holds and the only equilibrium point 𝐸∗ of the system (4)
is locally asymptotically stable. Furthermore, in accordance
with Lemma 7, Theorem 9 would be established if we show
that the system (4) has the property of stability of periodic
orbits. In the following, we prove it.

Let 𝑝(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑌(𝑡)) be a periodic solution whose
orbit 𝛾 is contained in int(𝑅3

+
) and suppose that its minimal

period is 𝜔 > 0. The second compound equation is the
following periodic linear system:

𝑑𝑍 (𝑡)

𝑑𝑡
=
𝜕𝑓[2]

𝜕𝑥
(𝑝 (𝑡)) 𝑍 (𝑡) , (31)

where 𝑍 = (𝑍
1
, 𝑍
2
, 𝑍
3
)
⊤ and 𝜕𝑓/𝜕𝑥 is derived from the

Jacobian matrix of the system (4) and defined as follows:



8 Journal of Applied Mathematics

𝜕𝑓[2]

𝜕𝑥
=

(
(
(
(
(

(

−
𝜇

𝑎
𝛽𝑌 − 𝛼 − 𝛿

𝜇

𝑎
𝛽𝑆

𝜇

𝑎
𝛽𝑆0

−
𝑘 ((𝑎/𝜇) − 𝑌) 𝐼

(𝑆 + 𝐼)
2

+
𝑘 ((𝑎/𝜇) − 𝑌)

𝑆 + 𝐼
−
𝜇

𝑎
𝛽𝑌 − 𝛼 −

𝑘𝐼

𝑆 + 𝐼
− 𝜇 0

𝑘 ((𝑎/𝜇) − 𝑌) 𝐼

(𝑆 + 𝐼)
2

𝜇

𝑎
𝛽𝑌 −𝛿 −

𝑘𝐼

𝑆 + 𝐼
− 𝜇

)
)
)
)
)

)

. (32)

For the solution 𝑝(𝑡), (31) becomes

𝑍̇
1
(𝑡) = − (

𝜇

𝑎
𝛽𝑌 + 𝛼 + 𝛿)𝑍

1
+
𝜇

𝑎
𝛽𝑆 (𝑍

2
+ 𝑍
3
) ,

𝑍̇
2
(𝑡) = (−

𝑘 ((𝑎/𝜇) − 𝑌) 𝐼

(𝑆 + 𝐼)
2

+
𝑘 ((𝑎/𝜇) − 𝑌)

𝑆 + 𝐼
)𝑍
1

− (
𝜇

𝑎
𝛽𝑌 + 𝛼 +

𝑘𝐼

𝑆 + 𝐼
+ 𝜇)𝑍

2
,

𝑍̇
3 (𝑡) =

𝑘 ((𝑎/𝜇) − 𝑌) 𝐼

(𝑆 + 𝐼)
2

𝑍
1
+
𝜇

𝑎
𝛽𝑌𝑍
2
− (𝛿 +

𝑘𝐼

𝑆 + 𝐼
+ 𝜇)𝑍

3
.

(33)

To prove that (33) is globally asymptotically stable, we
shall use the following Lyapunov function:

𝐿 (𝑍
1
, 𝑍
2
, 𝑍
3
; 𝑆 (𝑡) , 𝐼 (𝑡) , 𝑌 (𝑡))

= sup {󵄨󵄨󵄨󵄨𝑍1
󵄨󵄨󵄨󵄨 ,
𝐼

𝑌
(
󵄨󵄨󵄨󵄨𝑍2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑍3

󵄨󵄨󵄨󵄨)} .
(34)

Function (34) is positive, but not differentiable every-
where. Fortunately, this lack of differentiability can be reme-
died by using the right derivative of 𝐿(𝑡), denoted as 𝐷

+
𝐿(𝑡).

Then we have the following equalities:

󵄨󵄨󵄨󵄨󵄨
𝑍̇
1
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ − (

𝜇

𝑎
𝛽𝑌 + 𝛼 + 𝛿)

󵄨󵄨󵄨󵄨𝑍1
󵄨󵄨󵄨󵄨 +

𝜇

𝑎
𝛽𝑆 (

󵄨󵄨󵄨󵄨𝑍2
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑍3
󵄨󵄨󵄨󵄨)

≤ − (
𝜇

𝑎
𝛽𝑌 + 𝛼 + 𝛿)

󵄨󵄨󵄨󵄨𝑍1
󵄨󵄨󵄨󵄨

+
𝜇

𝑎
𝛽𝑆

𝑌

𝐼
(
𝐼

𝑌

󵄨󵄨󵄨󵄨𝑍2
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑍3
󵄨󵄨󵄨󵄨) ,

󵄨󵄨󵄨󵄨󵄨
𝑍̇
2 (𝑡)

󵄨󵄨󵄨󵄨󵄨
≤ (−

𝑘 ((𝑎/𝜇) − 𝑌) 𝐼

(𝑆 + 𝐼)
2

+
𝑘 ((𝑎/𝜇) − 𝑌)

𝑆 + 𝐼
)
󵄨󵄨󵄨󵄨𝑍1

󵄨󵄨󵄨󵄨

− (
𝜇

𝑎
𝛽𝑌 + 𝛼 +

𝑘𝐼

𝑆 + 𝐼
+ 𝜇)

󵄨󵄨󵄨󵄨𝑍2
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨󵄨
𝑍̇
3
(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤
𝑘 ((𝑎/𝜇) − 𝑌) 𝐼

(𝑆 + 𝐼)
2

󵄨󵄨󵄨󵄨𝑍1
󵄨󵄨󵄨󵄨 +

𝜇

𝑎
𝛽𝑌

󵄨󵄨󵄨󵄨𝑍2
󵄨󵄨󵄨󵄨

− (𝛿 +
𝑘𝐼

𝑆 + 𝐼
+ 𝜇)

󵄨󵄨󵄨󵄨𝑍3
󵄨󵄨󵄨󵄨 .

(35)

Therefore,

𝐷
+
(
𝐼

𝑌
(
󵄨󵄨󵄨󵄨𝑍2 (𝑡)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑍3 (𝑡)

󵄨󵄨󵄨󵄨))

= (
𝐼̇

𝐼
−
𝑌̇

𝑌
)
𝐼

𝑌
(
󵄨󵄨󵄨󵄨𝑍2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑍3

󵄨󵄨󵄨󵄨) +
𝐼

𝑌
𝐷
+
(
󵄨󵄨󵄨󵄨𝑍2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑍3

󵄨󵄨󵄨󵄨)

≤ (
𝐼̇

𝐼
−
𝑉̇

𝑉
)
𝐼

𝑌
(
󵄨󵄨󵄨󵄨𝑍2

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑍3

󵄨󵄨󵄨󵄨)

+
𝐼

𝑌
[
𝑘 ((𝑎/𝜇) − 𝑌)

𝑆 + 𝐼

󵄨󵄨󵄨󵄨𝑍1
󵄨󵄨󵄨󵄨

− (𝛼 +
𝑘𝐼

𝑆 + 𝐼
+ 𝜇) (

󵄨󵄨󵄨󵄨𝑍2
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑍3
󵄨󵄨󵄨󵄨)]

≤ (
𝐼̇

𝐼
−
𝑌̇

𝑌
− 𝛼 −

𝑘𝐼

𝑆 + 𝐼
− 𝜇) (

󵄨󵄨󵄨󵄨𝑍2
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑍3
󵄨󵄨󵄨󵄨)

+
𝐼

𝑌

𝑘 ((𝑎/𝜇) − 𝑌)

𝑆 + 𝐼

󵄨󵄨󵄨󵄨𝑍1
󵄨󵄨󵄨󵄨 .

(36)

Define

𝑔
1 (𝑡) = − (

𝜇

𝑎
𝛽𝑌 + 𝛼 + 𝛿) +

𝜇

𝑎
𝛽𝑆

𝑌

𝐼
,

𝑔
2
(𝑡) =

𝐼

𝑌

𝑘 ((𝑎/𝜇) − 𝑌)

𝑆 + 𝐼
+ (

𝐼̇

𝐼
−
𝑌̇

𝑌
− 𝛼 −

𝑘𝐼

𝑆 + 𝐼
− 𝜇) .

(37)

Rewriting the last two equations of (4) as

𝐼̇

𝐼
+ 𝛿 =

𝜇

𝑎
𝛽𝑆

𝑌

𝐼
,

𝑌̇

𝑌
+

𝑘𝐼

𝑆 + 𝐼
+ 𝜇 =

𝐼

𝑌

𝑘𝑎

(𝑆 + 𝐼) 𝜇
,

(38)

then

𝑔
1 (𝑡) = − (

𝜇

𝑎
𝛽𝑌 + 𝛼 + 𝛿) +

𝜇

𝑎
𝛽𝑆

𝑌

𝐼
=
𝐼̇

𝐼
−
𝜇

𝑎
𝛽𝑌 − 𝛼,
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Figure 3: (a) Simulation results showing the effect of decreasing
infected pine trees to parameter 𝜇 for 𝜇 = 0.0005, 0.001, 0.0015,

0.002, 0.0025, and other parameter values are as given in Figure 2(b).
(b) Simulation results showing the effect of decreasing infected pine
trees to parameter 𝛿 for 𝛿 = 0.008, 0.016, 0.024, 0.032, 0.04, and
other parameter values are as given in Figure 2(b).

𝑔
2 (𝑡) =

𝐼

𝑌

𝑘 ((𝑎/𝜇) − 𝑌)

𝑆 + 𝐼
+ (

𝐼̇

𝐼
−
𝑌̇

𝑌
− 𝛼 −

𝑘𝐼

𝑆 + 𝐼
− 𝜇)

=
𝐼̇

𝐼
−

𝑘𝐼

𝑆 + 𝐼
− 𝛼.

(39)

Thus, we obtain

𝐷
+
𝐿 (𝑡) ≤ sup {𝑔

1
(𝑡) , 𝑔
2
(𝑡)} 𝐿 (𝑡) . (40)

It follows from (39) that 𝑔
1
(𝑡) ≤ (𝐼̇/𝐼)−𝛼, and thus, from (40)

and Gronwall’s inequality, we obtain

𝐿 (𝑡) ≤ 𝐿 (0) 𝐼𝑒
−𝛼𝑡

. (41)

Since 𝑏/𝛿 ≤ 𝐼 ≤ 𝑏/𝛼 in int(𝐷), which implies that 𝐿(𝑡) → 0

as 𝑡 → ∞, therefore, (𝑍
1
(𝑡), 𝑍
2
(𝑡),𝑍
3
(𝑡)) → (0, 0, 0) as 𝑡 →

∞. This implies that the linear system (33) is asymptotically

stable, and therefore, the periodic solution is asymptotically
orbitally stable. This proves the theorem.

5. Numerical Simulations and Disease Control

In this paper, we investigate the dynamical behavior of a pine
wilt disease model that incorporates a standard incidence
rate. Qualitative analysis of the model is presented. The
model has two equilibria, the disease-free equilibrium and
endemic equilibrium. The behavior of the system (4) near
each equilibrium has been studied. Threshold value of the
relative basic reproductive numberR

0
which determines the

spread of infection has been worked out.
We obtain the basic reproduction number of the system

(4),R
0
= √𝑘𝛽/𝛿𝜇. Furthermore, we obtain that the disease-

free equilibrium 𝐸
0
(𝑆
0
, 0, 0) of the system (4) is globally

asymptotically stable when R
0
< R
𝑐
< 1 (see Figure 2(c)).

And if R
0

> 1, the endemic equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑌∗)

is globally asymptotically stable (see Figure 2(b)). That is
to say, if R

0
and R

𝑐
are lower than the threshold 1, the

system of forest insect pest appears in disease-free state, that
is, Bursaphelenchus xylophilus will be eradicated ultimately,
which is what we hope; if R

𝑐
> 1, while R

0
< 1, though

the pine wilt disease could occur, the outbreak will stop since
the infected pine decreases to the disease-free equilibrium. If
R
0
is larger than 1, the system of forest insect pest have insect

pests equilibrium, that is Bursaphelenchus xylophilus will not
disappear, and with the time to develop, susceptible pine,
infected pine, Bursaphelenchus xylophilus, and its vector will
be extend to a stable state, that is, pine wilt disease will in an
endemic steady state.

By simple calculation, we can find 𝜕R
𝑐
/𝜕𝜇 < 0. Hence,

we can makeR
𝑐
< 1 by increasing 𝜇. Also from Figure 2, we

can find that R
𝑐
= 17.3205 > 1 in Figure 2(b) and the pine

wilt disease is not disappearing. As 𝜇 increases from 0.005 to
0.5, we calculate theR

𝑐
= 0.5477 < 1 in Figure 2(c), keeping

all the other parameters the same as in Figure 2(b). Thus, the
disease-free equilibrium 𝐸

0
(𝑆
0
, 0, 0) of system (4) is globally

asymptotically stable, and Bursaphelenchus xylophilus will
be eradicated ultimately. From the Remark 4, we know that
the pine wilt disease will not break out when R

0
< 1. So

we only need to lower R
0
to less than 1 to control the pine

wilt disease. We can also find 𝜕R
0
/𝜕𝛿 < 0 and 𝜕R

0
/𝜕𝜇 < 0

by a simple calculation. Hence, we can make R
0
< 1 by

increasing 𝜇 or (and) 𝛿. Since 𝜇 and 𝛿 are the mortality of
Monochamus alternatus and the percent isolated and felled of
pine which has been infected by Bursaphelenchus xylophilus,
respectively, we can increase 𝜇 or (and) 𝛿 by various control
efforts in reality. On the one hand, we can take a set of
measures to increase the mortality of Monochamus alter-
natus, for example, setting out beetle traps, setting vertical
wood traps, releasing the natural enemies of Bursaphelenchus
xylophagous (such as releasing the Scleroderma guanior),
using chemicals to kill sawyer beetles to reduce the number
of longhomed beetle. On the other hand, we can also take
a set of techniques for specialized treatment of timber to
increase the mortality of infected longhorned beetle; removal
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of dying branches on affected trees or dead and dying trees
and fumigation of nematode-infested lumber.

But it is difficult to make R
0
< 1 by increasing 𝜇 or

(and) 𝛿 dramatically in practice. In fact, although these above
measures are very effective to control pine wilt disease, they
have not yet been practiced to eradicate pine wilt disease
ultimately because these measures require more cost and
labor and even entail danger of forest fires that most owners
of forests hesitate to use these measures.

FromTheorem 8, we can know that the endemic equilib-
rium 𝐸

∗ is globally asymptotically stable whenR
0
> 1. That

is to say, if we donot control the pinewilt disease, then the dis-
ease will be prevalent, and it will achieve a balance in the eco-
logical environment finally. But it will suffer large economic
losses if we let the disease spread at will. If we do not control
the parameters well, the pine which has been infected by
Bursaphelenchus xylophilus at the endemic equilibrium will
reach a significant number. As the infected wood can not be
used as wood products, the loss of afforestation will be large.
We have to think of any other ways to control pine wilt dis-
ease. We can control the number of infected pine trees in the
infected equilibrium point by controlling some parameters.

We can also get 𝜕𝐼∗/𝜕𝛿 = −𝑏[(𝜇𝛿 − 𝛽𝑘)
2
+ 𝛽𝑘2𝛼 +

𝛽𝑘𝜇𝛼]/(𝛽𝑘 + 𝑘𝛼 − 𝜇𝛿 + 𝜇𝛼)
2
𝛿2 < 0 and 𝜕𝐼∗/𝜕𝜇 = −𝑏𝑘𝛼(𝛿 +

𝛽)/(𝛽𝑘 + 𝑘𝛼 − 𝜇𝛿 + 𝜇𝛼)
2
𝛿 < 0. 𝐼∗ is a decreasing function of

parameter 𝛿 (or 𝜇). Hence, we can decrease 𝐼∗ by increasing
𝛿 (or 𝜇) properly. In this case, we need not increase 𝛿 (or
𝜇) large enough to make R

0
< 1 to eradicate the pine

wilt disease, and we only need to control the infected pine
in a lower level stable state (see Figure 3). In Figure 3(a),
we illustrate the effect of varying 𝜇 on 𝐼

∗. Keeping all the
other parameters the same as in Figure 2(b), we plot 𝐼(𝑡)
for different 𝜇 (𝜇 = 0.0005, 0.001, 0.0015, 0.002, 0.0025). In
Figure 3(b), we illustrate the effect of varying 𝛿 on 𝐼∗. Keeping
all the other parameters the same as in Figure 2(b), we
plot 𝐼(𝑡) for different 𝛿 (𝛿 = 0.008, 0.016, 0.024, 0.032, 0.04).
The numerical simulations show that the infected pine 𝐼(𝑡)
approaches to the steady state 𝐼∗, and 𝐼∗ decreases as 𝜇 or 𝛿
increases.Though the Bursaphelenchus xylophilus exists, the
pine wilt disease spreads only in a low level, which can lower
our economic losses to a large extent, and the pinewilt disease
will not break out in the long time.
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