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We consider a class of linearly constrained separable convex programming problems whose objective functions are the sum of three
convex functions without coupled variables. For those problems, Han and Yuan (2012) have shown that the sequence generated by
the alternating direction method of multipliers (ADMM) with three blocks converges globally to their KKT points under some
technical conditions. In this paper, a new proof of this result is found under new conditions which are much weaker than Han and
Yuan’s assumptions. Moreover, in order to accelerate the ADMMwith three blocks, we also propose a relaxed ADMM involving an
additional computation of optimal step size and establish its global convergence under mild conditions.

1. Introduction

In various fields of applied mathematics and engineering,
many problems can be equivalently formulated as a sep-
arable convex optimization problem with two blocks; that
is, given two closed convex functions 𝑓

𝑖
: R𝑛𝑖 → R ∪

{+∞}, 𝑖 = 1, 2, to find a solution pair (𝑥∗
1
, 𝑥∗
2
) of the following

problem:

min 𝑓
1
(𝑥
1
) + 𝑓
2
(𝑥
2
)

s.t. 𝐴
1
𝑥
1
+ 𝐴
2
𝑥
2
= 𝑏,

(1)

where 𝐴
𝑖
is a matrix in R𝑝×𝑛𝑖 , 𝑖 = 1, 2, and 𝑏 is a vector in

R𝑝. The classical alternating direction method of multipliers
(ADMM) [1, 2] applied to problem (1) yields the following
scheme:

𝑥𝑘+1
1

= arg min
𝑥1∈R

𝑛1

𝑓
1
(𝑥
1
) − ⟨𝐴𝑇

1
𝜆𝑘, 𝑥
1
⟩

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩𝐴1𝑥1 + 𝐴
2
𝑥𝑘
2
− 𝑏

󵄩󵄩󵄩󵄩󵄩
2

,

𝑥𝑘+1
2

= arg min
𝑥2∈R

𝑛2

𝑓
2
(𝑥
2
) − ⟨𝐴𝑇

2
𝜆𝑘, 𝑥
2
⟩

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩𝐴1𝑥
𝑘+1

1
+ 𝐴
2
𝑥
2
− 𝑏

󵄩󵄩󵄩󵄩󵄩
2

,

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘+1
2

− 𝑏) ,

(2)

where 𝜆𝑘 is a Lagrangian multiplier and 𝛽 > 0 is a penalty
parameter. Possibly due to its simplicity and effectiveness, the
ADMM with two blocks has received continuous attention
both in theoretical and application domains. We refer to
[3–8] for theoretical results on ADMM with two blocks
and [9–13] for its efficient applications in high-dimensional
statistics, compressive sensing, finance, image processing,
and engineering, to name just a few.

In this paper, we concentrate on the linearly constrained
convex programming problem with three blocks:

min 𝑓
1
(𝑥
1
) + 𝑓
2
(𝑥
2
) + 𝑓
3
(𝑥
3
)

s.t. 𝐴
1
𝑥
1
+ 𝐴
2
𝑥
2
+ 𝐴
3
𝑥
3
= 𝑏,

(3)
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where 𝑓
3
: R𝑛3 → R ∪ {+∞} is a closed convex function

and 𝐴
3
is a matrix in R𝑝×𝑛3 . For solving (3), a nature idea is

to extend the ADMM with two blocks to the ADMM with
three blocks in which the next iteration (𝑥𝑘+1

2
, 𝑥𝑘+1
3

, 𝜆𝑘+1) is
updated by

(𝑥𝑘+1
2

, 𝑥𝑘+1
3

, 𝜆𝑘+1) := (𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆̃𝑘) , (4)

where

𝑥𝑘
1
= arg min

𝑥1∈R
𝑛1

𝑓
1
(𝑥
1
) − ⟨𝐴𝑇

1
𝜆𝑘, 𝑥
1
⟩

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩𝐴1𝑥1 + 𝐴
2
𝑥𝑘
2
+ 𝐴
3
𝑥𝑘
3
− 𝑏

󵄩󵄩󵄩󵄩󵄩
2

,

𝑥𝑘
2
= arg min

𝑥2∈R
𝑛2

𝑓
2
(𝑥
2
) − ⟨𝐴𝑇

2
𝜆𝑘, 𝑥
2
⟩

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩𝐴1𝑥
𝑘

1
+ 𝐴
2
𝑥
2
+ 𝐴
3
𝑥𝑘 − 𝑏

󵄩󵄩󵄩󵄩󵄩
2

,

𝑥𝑘
3
= arg min

𝑥3∈R
𝑛3

𝑓
3
(𝑥
3
) − ⟨𝐴𝑇

3
𝜆𝑘, 𝑥
3
⟩

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩𝐴1𝑥
𝑘

1
+ 𝐴
2
𝑥𝑘
2
+ 𝐴
3
𝑥
3
− 𝑏

󵄩󵄩󵄩󵄩󵄩
2

,

𝜆̃𝑘 = 𝜆𝑘 − 𝛽 (𝐴
1
𝑥𝑘
1
+ 𝐴
2
𝑥𝑘
2
+ 𝐴
3
𝑥𝑘
3
− 𝑏) .

(5)

Similar to theADMMwith two blocks, theADMMwith three
blocks has found numerous applications in a broad spectrum
of areas, such as doubly nonnegative cone programming
[14], high-dimensional statistics [15, 16], imaging science
[17], and engineering [18]. Even though its numerical effi-
ciency is clearly seen from those applications, the theoretical
treatment of ADMM with three blocks is challenging and
the convergence of the ADMM is still open given only the
convex assumptions of the objective function. To alleviate
this difficulty, the authors of [19, 20] proposed prediction-
correction type methods to solve the general separable con-
vex programming; however, numerical results show that the
direct ADMM outperforms its variants substantially. There-
fore, it is of great significance to investigate the theoretical
performance of the ADMM with three blocks even only to
provide sufficient conditions to guarantee the convergence.
To the best of our knowledge, there exist only two works
aiming to attack the convergence problem of the direct
ADMM with three blocks. By using an error bound analysis
method, Hong and Luo [21] proved the linear convergence
of the ADMM with 𝑚 blocks for sufficiently small 𝛽 subject
to some technical conditions. However, the sufficiently small
requirement on𝛽makes the algorithmdifficult to implement.
In [22], Han and Yuan employed a contractive analysis
method to establish the convergence of ADMM under the
strongly convex assumptions of 𝑓

𝑖
and the parameter 𝛽

less than a threshold depending on all the strongly convex
moduli. In this paper, we firstly prove the convergence of
ADMM with three blocks under two conditions weaker
than those of [22]. In our conditions, the threshold on the
parameter 𝛽 only relies on the strongly convex moduli of 𝑓

2

and𝑓
3
, and furthermore𝑓

1
is not necessarily strongly convex

in one of our conditions. Also, the restricted range of 𝛽 in this
paper is shown to be at least three times as big as that of [22].

In order to accelerate the ADMM with three blocks,
we also propose a relaxed ADMM with three blocks which
involves an additional computation of optimal step size.
Specifically, with the triple (𝑥𝑘

2
, 𝑥𝑘
3
, 𝜆𝑘), we first generate

a predictor (𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆̃𝑘) according to (5) and then obtain

(𝑥𝑘+1
2

, 𝑥𝑘+1
3

, 𝜆𝑘+1) in the next iteration by

𝑥𝑘+1
2

= 𝑥𝑘
2
− 𝛾𝛼∗
𝑘
(𝑥𝑘
2
− 𝑥𝑘
2
) ,

𝑥𝑘+1
3

= 𝑥𝑘
3
− 𝛾𝛼∗
𝑘
(𝑥𝑘
3
− 𝑥𝑘
3
) ,

𝜆𝑘+1 = 𝜆𝑘 − 𝛾𝛼∗
𝑘
(𝜆𝑘 − 𝜆̃𝑘) ,

(6)

where 𝛾 ∈ (0, 2) and 𝛼∗
𝑘
is special step size defined in (43).

The convergence of the relaxed ADMM is also established
under mild conditions. We should mention that it is possible
tomodify the analyses given in this paper to be problemswith
more than three blocks of separability. But this is not the focus
of this paper.

The remaining parts of this paper are organized as follows.
In Section 2, we list some preliminaries on the strongly
convex function, subdifferential, and the ADMM with three
blocks. In Section 3, we first show the contractive property
of the distance between the sequence generated by ADMM
with three blocks and the solution set and then prove
the convergence of ADMM under certain conditions. In
Section 4, we extend the direct ADMM with three blocks to
the relaxed ADMM with an optimal step size and establish
its convergence under suitable conditions. We conclude our
paper in Section 5.

Notation. For any positive integer 𝑚, let 𝐼
𝑚
be the 𝑚 × 𝑚

identity matrix. We use ‖ ⋅ ‖ and ‖ ⋅ ‖
2
to denote the vector

Euclidean normand the spectral normofmatrices (defined as
the maximum singular value of matrices). For any symmetric
matrix 𝑆 ∈ R𝑛×𝑛, we write ‖𝑥‖2

𝑆
= 𝑥𝑇𝑆𝑥 for any 𝑥 ∈ R𝑛. 𝐺

and𝑀 are two (𝑛
2
+ 𝑛
3
+ 𝑝) × (𝑛

2
+ 𝑛
3
+ 𝑝)matrices defined

by

𝐺 := (

𝛽𝐴𝑇
2
𝐴
2

0 0

0 𝛽𝐴𝑇
3
𝐴
3

0

0 0
𝐼

𝛽

) ,

𝑀 := (

2𝛽𝐴𝑇
2
𝐴
2

0 0

0 𝛽𝐴𝑇
3
𝐴
3

0

0 0
𝐼

𝛽

) ,

(7)

respectively. For given 𝑥
1
∈ R𝑛1 , 𝑥

2
∈ R𝑛2 , 𝑥

3
∈ R𝑛3 , and

𝜆 ∈ R𝑝, we frequently use 𝑢 and V to denote the joint vectors
of 𝑥
2
, 𝑥
3
, 𝜆 and 𝑥

1
, 𝑥
2
, 𝑥
3
, 𝜆, respectively; that is,

𝑢 = [𝑥𝑇
2
, 𝑥𝑇
3
, 𝜆𝑇]
𝑇

, V = [𝑥𝑇
1
, 𝑥𝑇
2
, 𝑥𝑇
3
, 𝜆𝑇]
𝑇

, (8)

while 𝑢̃ and Ṽ are the joint vectors corresponding to 𝑥
2
, 𝑥
3
, 𝜆̃

and 𝑥
1
, 𝑥
2
, 𝑥
3
, 𝜆̃.
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2. Preliminaries

Throughout this paper, we assume 𝑓
𝑖
, 𝑖 = 1, 2, 3, are strongly

convex functions with modulus 𝜇
𝑖
≥ 0; that is

𝑓
𝑖
((1 − 𝛼) 𝑧 + 𝛼𝑧󸀠)

≤ (1 − 𝛼) 𝑓𝑖 (𝑧) + 𝛼𝑓
𝑖
(𝑧󸀠)

−
1

2
𝜇
𝑖
𝛼 (1 − 𝛼)

󵄩󵄩󵄩󵄩󵄩𝑧 − 𝑧󸀠
󵄩󵄩󵄩󵄩󵄩
2

, ∀𝑧, 𝑧󸀠 ∈ R
𝑛𝑖 ,

(9)

for each 𝑖. Note that 𝑓
𝑖
is a strongly convex function with

modulus 0 being equivalent to the convexity of 𝑓
𝑖
. Let 𝑥 be

a point of dom(𝑓
𝑖
); the subdifferential of 𝑓

𝑖
at 𝑥 is defined by

𝜕𝑓
𝑖 (𝑥) := {𝑥∗ | 𝑓 (𝑧) ≥ 𝑓 (𝑥) + ⟨𝑥∗, 𝑧 − 𝑥⟩ , ∀𝑧} . (10)

From Proposition 6 in [23], we know that, for each 𝑖, 𝜕𝑓
𝑖
is

strongly monotone with modulus 𝜇
𝑖
which means

⟨𝑧
1
− 𝑧
2
, 𝑥
1
− 𝑥
2
⟩ ≥ 𝜇
𝑖

󵄩󵄩󵄩󵄩𝑧1 − 𝑧
2

󵄩󵄩󵄩󵄩
2
≥ 0,

∀𝑥
1
, 𝑥
2
, 𝑧
1
∈ 𝜕𝑓
𝑖
(𝑥
1
) , 𝑧
2
∈ 𝜕𝑓
𝑖
(𝑥
2
) .

(11)

The next lemma introduced in [22] plays a key role in the
convergence analysis of the ADMM and the relaxed ADMM
with three blocks.

Lemma 1. Let (𝑥∗
1
, 𝑥∗
2
, 𝑥∗
3
, 𝜆∗) be any KKT point of problem

(3). Let Ṽ𝑘 be generated by (5) from given 𝑢𝑘. Then, one has

⟨𝑢̃𝑘 − 𝑢∗, 𝐺 (𝑢𝑘 − 𝑢̃𝑘)⟩

≥
3

∑
𝑖=1

𝜇
𝑖
‖𝑥𝑘
𝑖
− 𝑥∗
𝑖
‖2 +⟨𝜆𝑘 − 𝜆̃𝑘,

3

∑
𝑖=2

𝐴
𝑖
(𝑥𝑘
𝑖
− 𝑥𝑘
𝑖
)⟩

+ 𝛽⟨𝐴
3
(𝑥𝑘
3
− 𝑥∗
3
) , 𝐴
2
(𝑥𝑘
2
− 𝑥𝑘
2
)⟩ .

(12)

3. The ADMM with Three Blocks

In this section, we first investigate the contractive property
of the distance between the sequence generated by ADMM
with three blocks and the solution set under the condition
that 0 < 𝛽 ≤ min{𝜇

2
/‖𝐴
2
‖2
2
, 𝜇
3
/‖𝐴
3
‖2
2
}.

Lemma 2. Let V∗ = (𝑥∗
1
, 𝑥∗
2
, 𝑥∗
3
, 𝜆∗) be a KKT point of

problem (3) and let the sequence {V𝑘 = (𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} be

generated by the ADMM with three blocks. Then, it holds that
󵄩󵄩󵄩󵄩󵄩𝑢
𝑘+1 − 𝑢∗

󵄩󵄩󵄩󵄩󵄩
2

𝑀
≤
󵄩󵄩󵄩󵄩󵄩𝑢
𝑘 − 𝑢∗

󵄩󵄩󵄩󵄩󵄩
2

𝑀
− 𝛽

󵄩󵄩󵄩󵄩󵄩𝐴3(𝑥
𝑘+1

3
− 𝑥𝑘
3
)
󵄩󵄩󵄩󵄩󵄩
2

− 𝛽
󵄩󵄩󵄩󵄩󵄩𝐴1𝑥
𝑘+1

1
+ 𝐴
2
𝑥𝑘
2
+ 𝐴
3
𝑥𝑘+1
3

− 𝑏
󵄩󵄩󵄩󵄩󵄩
2

− 2𝜇
1

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

1
− 𝑥∗
1

󵄩󵄩󵄩󵄩󵄩
2

− 2
󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

2
− 𝑥∗
2

󵄩󵄩󵄩󵄩󵄩
2

𝜇2𝐼𝑛2
−𝛽𝐴
𝑇

2
𝐴2

− 2
󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

3
− 𝑥∗
3

󵄩󵄩󵄩󵄩󵄩
2

𝜇3𝐼𝑛3
−𝛽𝐴
𝑇

3
𝐴3

.

(13)

Proof. Since 𝑥𝑗
3
minimizes 𝑓

3
(⋅) − ⟨𝐴𝑇

3
𝜆𝑗, ⋅⟩, we deduce from

the first order optimality condition that

𝐴𝑇
3
𝜆𝑗 ∈ 𝜕𝑓

3
(𝑥
𝑗

3
) , 𝑗 = 0, 1, . . . , 𝑘. (14)

By (14) and themonotonicity of 𝜕𝑓
3
(⋅) (11), it is easily seen that

⟨𝑥𝑘
3
− 𝑥𝑘+1
3

, 𝐴𝑇
3
𝜆𝑘 − 𝐴𝑇

3
𝜆𝑘+1⟩ ≥ 0. (15)

Then for each 𝑘,

⟨𝑢𝑘+1 − 𝑢∗, 𝐺 (𝑢𝑘 − 𝑢𝑘+1)⟩

≥
3

∑
𝑖=1

𝜇
𝑖

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

𝑖
− 𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩
2

+ ⟨𝜆𝑘 − 𝜆𝑘+1, 𝐴
2
(𝑥𝑘
𝑖
− 𝑥𝑘+1
2

)⟩

+ 𝛽⟨𝐴
3
(𝑥𝑘+1
3

− 𝑥∗
3
) , 𝐴
2
(𝑥𝑘+1
2

− 𝑥𝑘
2
)⟩

≥
2

∑
𝑖=1

𝜇
𝑖

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

𝑖
− 𝑥∗
𝑖

󵄩󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

3
− 𝑥∗
3

󵄩󵄩󵄩󵄩󵄩
2

𝜇3𝐼𝑛3
−𝛽𝐴
𝑇

3
𝐴3

+ ⟨𝜆𝑘 − 𝜆𝑘+1, 𝐴
2
(𝑥𝑘
2
− 𝑥𝑘+1
2

)⟩

−
𝛽

4

󵄩󵄩󵄩󵄩󵄩𝐴2 (𝑥
𝑘+1

2
− 𝑥𝑘
2
)
󵄩󵄩󵄩󵄩󵄩
2

,

(16)

where the last “≥” follows from the elementary inequality

⟨𝑥, 𝑦⟩ ≥ −‖𝑥‖
2 −

1

4

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩
2
. (17)

Since

󵄩󵄩󵄩󵄩󵄩𝐴3 (𝑥
𝑘+1

3
− 𝑥𝑘
3
)
󵄩󵄩󵄩󵄩󵄩
2

≤ 2
󵄩󵄩󵄩󵄩󵄩𝐴3(𝑥

𝑘+1

3
− 𝑥∗
3
)
󵄩󵄩󵄩󵄩󵄩
2

+ 2
󵄩󵄩󵄩󵄩󵄩𝐴3 (𝑥

𝑘

3
− 𝑥∗
3
)
󵄩󵄩󵄩󵄩󵄩
2

,

(18)

by direct computations, we further obtain that

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘 − 𝑢∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺
≥
󵄩󵄩󵄩󵄩󵄩𝑢
𝑘+1 − 𝑢∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺

+
󵄩󵄩󵄩󵄩󵄩𝑢
𝑘+1 − 𝑢𝑘

󵄩󵄩󵄩󵄩󵄩
2

𝐺
+ 2𝜇
1

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

1
− 𝑥∗
1

󵄩󵄩󵄩󵄩󵄩
2

+ 2
󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

2
− 𝑥∗
2

󵄩󵄩󵄩󵄩󵄩
2

𝜇2𝐼𝑛2
−(𝛽/2)𝐴𝑇2𝐴2

+ 2
󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

3
− 𝑥∗
3

󵄩󵄩󵄩󵄩󵄩
2

𝜇3𝐼𝑛3
−𝛽𝐴
𝑇

3
𝐴3

+ 2 ⟨𝜆𝑘 − 𝜆𝑘+1, 𝐴
2
(𝑥𝑘
2
− 𝑥𝑘+1
2

)⟩

− 𝛽
󵄩󵄩󵄩󵄩󵄩𝐴2 (𝑥

𝑘

2
− 𝑥∗
2
)
󵄩󵄩󵄩󵄩󵄩
2

,

(19)
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which, together with 𝐺 = 𝑀 − (
𝛽𝐴
𝑇

2
𝐴2

0

0

), implies

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘 − 𝑢∗

󵄩󵄩󵄩󵄩󵄩
2

𝑀
≥
󵄩󵄩󵄩󵄩󵄩𝑢
𝑘+1 − 𝑢𝑘

󵄩󵄩󵄩󵄩󵄩
2

𝐺

+
󵄩󵄩󵄩󵄩󵄩𝑢
𝑘+1 − 𝑢∗

󵄩󵄩󵄩󵄩󵄩
2

𝑀
+ 2𝜇
1

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

1
− 𝑥∗
1

󵄩󵄩󵄩󵄩󵄩
2

+ 2
󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

2
− 𝑥∗
2

󵄩󵄩󵄩󵄩󵄩
2

𝜇2𝐼𝑛2
−𝛽𝐴
𝑇

2
𝐴2

+ 2
󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

3
− 𝑥∗
3

󵄩󵄩󵄩󵄩󵄩
2

𝜇3𝐼𝑛3
−𝛽𝐴
𝑇

3
𝐴3

+ 2 ⟨𝜆𝑘 − 𝜆𝑘+1, 𝐴
2
(𝑥𝑘
2
− 𝑥𝑘+1
2

)⟩ .

(20)

Note that

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘

2
− 𝑥𝑘+1
2

󵄩󵄩󵄩󵄩󵄩
2

𝛽𝐴
𝑇

2
𝐴2

+ 2 ⟨𝜆𝑘 − 𝜆𝑘+1, 𝐴
2
(𝑥𝑘
2
− 𝑥𝑘+1
2

)⟩

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩𝜆
𝑘 − 𝜆𝑘+1

󵄩󵄩󵄩󵄩󵄩
2

= 𝛽
󵄩󵄩󵄩󵄩󵄩𝐴1𝑥
𝑘+1

1
+ 𝐴
2
𝑥𝑘
2
+ 𝐴
3
𝑥𝑘+1
3

− 𝑏
󵄩󵄩󵄩󵄩󵄩
2

.

(21)

We complete the proof of this lemma.

With the above preparation, we are ready to prove the
convergence of the ADMM with three blocks for solving (3)
given the following conditions.

Theorem 3. Let {V𝑘 = (𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} be the sequence

generated by the ADMMwith three blocks.Then {V𝑘} converges
to a KKT point of problem (3) if either of the following
conditions holds:

(i) 𝜇
1
> 0 and 0 < 𝛽 ≤ min{𝜇

2
/‖𝐴
2
‖2
2
, 𝜇
3
/‖𝐴
3
‖2
2
};

(ii) 𝐴
1
is of full column rank, 0 < 𝛽 < 𝜇

2
‖𝐴
2
‖2
2
, and 𝛽 ≤

𝜇
3
‖𝐴
3
‖2
2
.

Proof. By the inequality (13), it follows that the sequence
{𝐴
2
𝑥𝑘
2
, 𝐴
3
𝑥𝑘
3
, 𝜆𝑘} is bounded. Recall that

𝐴
1
𝑥𝑘+1
1

=
𝜆𝑘 − 𝜆𝑘+1

𝛽
− 𝐴
2
𝑥𝑘+1
2

− 𝐴
3
𝑥𝑘+1
3

+ 𝑏. (22)

Hence {𝐴
1
𝑥𝑘
1
} is also bounded. Moreover, from (13) we see

immediately that

+∞ >
∞

∑
𝑘=1

𝛽
󵄩󵄩󵄩󵄩󵄩𝐴3(𝑥

𝑘+1

3
− 𝑥𝑘
3
)
󵄩󵄩󵄩󵄩󵄩
2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩𝐴1𝑥
𝑘+1

1
+ 𝐴
2
𝑥𝑘
2
+ 𝐴
3
𝑥𝑘+1
3

− 𝑏
󵄩󵄩󵄩󵄩󵄩
2

+
∞

∑
𝑘=1

2𝜇
1

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

1
− 𝑥∗
1

󵄩󵄩󵄩󵄩󵄩
2

+ 2
󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

2
− 𝑥∗
2

󵄩󵄩󵄩󵄩󵄩
2

𝜇2𝐼𝑛2
−𝛽𝐴
𝑇

2
𝐴2

+ 2
󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

3
− 𝑥∗
3

󵄩󵄩󵄩󵄩󵄩
2

𝜇3𝐼𝑛3
−𝛽𝐴
𝑇

3
𝐴3

.

(23)

According to the condition that 0 < 𝛽 ≤ min{𝜇
2
/‖𝐴
2
‖2
2
,

𝜇
3
/‖𝐴
3
‖2
2
}, we know

∞

∑
𝑘=1

‖𝐴
3
(𝑥𝑘+1
3

− 𝑥𝑘
3
) ‖2 < ∞,

∞

∑
𝑘=1

‖𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘
2
+ 𝐴
3
𝑥𝑘+1
3

− 𝑏‖2 < +∞,

∞

∑
𝑘=1

𝜇
1
‖𝑥𝑘+1
1

− 𝑥∗
1
‖2 < +∞,

∞

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

2
− 𝑥∗
2

󵄩󵄩󵄩󵄩󵄩
2

𝜇2𝐼𝑛2
−𝛽𝐴
𝑇

2
𝐴2

< +∞,

∞

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

3
− 𝑥∗
3

󵄩󵄩󵄩󵄩󵄩
2

𝜇3𝐼𝑛3
−𝛽𝐴
𝑇

3
𝐴3

< +∞.

(24)

It therefore holds that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝐴3 (𝑥
𝑘+1

3
− 𝑥𝑘
3
)
󵄩󵄩󵄩󵄩󵄩
2

= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝐴1𝑥
𝑘+1

1
+ 𝐴
2
𝑥𝑘
2
+ 𝐴
3
𝑥𝑘+1
3

− 𝑏
󵄩󵄩󵄩󵄩󵄩
2

= 0,

(25)

lim
𝑘→∞

𝜇
1

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

1
− 𝑥∗
1

󵄩󵄩󵄩󵄩󵄩
2

= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

2
− 𝑥∗
2

󵄩󵄩󵄩󵄩󵄩
2

𝜇2𝐼𝑛2
−𝛽𝐴
𝑇

2
𝐴2

= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

3
− 𝑥∗
3

󵄩󵄩󵄩󵄩󵄩
2

𝜇3𝐼𝑛3
−𝛽𝐴
𝑇

3
𝐴3

= 0.

(26)

Therefore, the sequence {𝜇
1
‖𝑥𝑘
1
‖
2

, ‖𝑥𝑘
2
‖
2

𝜇2𝐼𝑛2
−𝛽𝐴
𝑇

2
𝐴2
,

‖𝑥𝑘
3
‖
2

𝜇3𝐼𝑛3
−𝛽𝐴
𝑇

2
𝐴2
} is bounded, which, together with the bound-

edness of {𝐴
1
𝑥𝑘
1
, 𝐴
2
𝑥𝑘
2
, 𝐴
3
𝑥𝑘
3
, 𝜆𝑘}, implies that {𝑥𝑘

2
, 𝑥𝑘
3
, 𝜆𝑘} is

bounded, and {𝑥𝑘
1
} is bounded given the condition 𝜇

1
> 0 or

𝐴
1
is of full column rank. Moreover, since

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

3
− 𝑥𝑘
3

󵄩󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩󵄩𝐴3𝑥
𝑘+1

3
− 𝐴
3
𝑥𝑘
3

󵄩󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

3
− 𝑥𝑘
3

󵄩󵄩󵄩󵄩󵄩
2

𝜇3𝐼𝑛3
−𝐴
𝑇

3
𝐴3

,
(27)

by the first equality in (25) and the third equality in (26), it
holds that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

3
− 𝑥𝑘
3

󵄩󵄩󵄩󵄩󵄩 = 0. (28)
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We proceed to prove the convergence of ADMM by consid-
ering the following two cases.

Case 1 ( 𝜇
1
> 0 and 𝛽 ≤ min(𝜇

2
/‖𝐴
2
‖2
2
, 𝜇
3
/‖𝐴
3
‖2
2
)). In this

case, the sequence {𝑥𝑘
1
} converges to 𝑥∗

1
and then

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝐴2𝑥
𝑘+1

2
− 𝐴
2
𝑥𝑘
2

󵄩󵄩󵄩󵄩󵄩 = 0, lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝜆
𝑘+1 − 𝜆𝑘

󵄩󵄩󵄩󵄩󵄩 = 0.

(29)

By the second equality in (26), we deduce from (29) that

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘+1

2
− 𝑥𝑘
2

󵄩󵄩󵄩󵄩󵄩 = 0. (30)

Since {𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘} is bounded, there exist a triple (𝑥∞

2
, 𝑥∞
3
, 𝜆∞)

and a subsequence {𝑛
𝑘
} such that

lim
𝑘→∞

𝑥
𝑛𝑘

2
= 𝑥∞
2
, lim

𝑘→∞

𝑥
𝑛𝑘

2
= 𝑥∞
2
, lim

𝑘→∞

𝜆𝑛𝑘 = 𝜆∞,

(31)

which by combining (25), (29) with given conditions, implies

lim
𝑘→∞

𝑥
𝑛𝑘+1

2
= 𝑥∞
2
, lim

𝑘→∞

𝑥
𝑛𝑘+1

2
= 𝑥∞
2
,

lim
𝑘→∞

𝜆𝑛𝑘+1 = 𝜆∞.
(32)

Note that

0 ∈ 𝜕𝑓
1
(𝑥𝑘+1
1

) − 𝐴𝑇
1
𝜆𝑘+1 + 𝐴𝑇

1
𝐴
2
(𝑥𝑘
2
− 𝑥𝑘+1
2

)

+ 𝐴𝑇
1
𝐴
3
(𝑥𝑘
3
− 𝑥𝑘+1
3

) ,

0 ∈ 𝜕𝑓
2
(𝑥𝑘+1
2

) − 𝐴𝑇
2
𝜆𝑘+1 + 𝐴𝑇

2
𝐴
3
(𝑥𝑘
3
− 𝑥𝑘+1
3

) ,

0 ∈ 𝜕𝑓
3
(𝑥𝑘+1
3

) − 𝐴𝑇
3
𝜆𝑘+1,

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴
1
𝑥𝑘+1
1

+ 𝐴
2
𝑥𝑘+1
2

+ 𝐴
3
𝑥𝑘+1
3

) .

(33)

Then, by taking the limits on both sides of (33), using (25) and
(29), and invoking the upper semicontinuous of 𝜕𝑓

1
(⋅), 𝜕𝑓

2
(⋅),

and 𝜕𝑓
3
(⋅) [24], one can immediately write

0 ∈ 𝜕𝑓
1
(𝑥∗) − 𝐴𝑇

1
𝜆∞,

0 ∈ 𝜕𝑓
2
(𝑥∞
2
) − 𝐴𝑇
2
𝜆∞,

0 ∈ 𝜕𝑓
3
(𝑥∞
3
) − 𝐴𝑇
3
𝜆∞,

𝐴
1
𝑥∗ + 𝐴

2
𝑥∞
2

+ 𝐴
3
𝑥∞
3

= 𝑏,

(34)

which indicates (𝑥∗
1
, 𝑥∞
2
, 𝑥∞
3
, 𝜆∞) is a KKT point of problem

(3). Hence, the inequality (13) is also valid if (𝑥∗
1
, 𝑥∗
2
, 𝑥∗
3
, 𝜆∗)

is replaced by (𝑥∗
1
, 𝑥∞
2
, 𝑥∞
3
, 𝜆∞). Then it holds that

2𝛽
󵄩󵄩󵄩󵄩󵄩𝐴2𝑥
𝑘+1

2
− 𝐴
2
𝑥∞
2

󵄩󵄩󵄩󵄩󵄩
2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩𝐴3𝑥
𝑘+1

3
− 𝐴
3
𝑥∞
3

󵄩󵄩󵄩󵄩󵄩
2

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩𝜆
𝑘+1 − 𝜆∞

󵄩󵄩󵄩󵄩󵄩
2

≤ 2𝛽
󵄩󵄩󵄩󵄩󵄩𝐴2𝑥
𝑘

2
− 𝐴
2
𝑥∞
2

󵄩󵄩󵄩󵄩󵄩
2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩𝐴3𝑥
𝑘

3
− 𝐴
3
𝑥∞
3

󵄩󵄩󵄩󵄩󵄩
2

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩𝜆
𝑘 − 𝜆∞

󵄩󵄩󵄩󵄩󵄩
2

,

(35)

which yields

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘

2
− 𝑥∞
2

󵄩󵄩󵄩󵄩󵄩
2

𝐴
𝑇

2
𝐴2

= 0,

lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘

3
− 𝑥∞
3

󵄩󵄩󵄩󵄩󵄩
2

𝐴
𝑇

3
𝐴3

= 0,

(36)

lim
𝑘→∞

𝜆𝑘 = 𝜆∞. (37)

By adding the last two equalities in (26) to (36), we know

lim
𝑘→∞

𝑥𝑘
2
= 𝑥∞
2
, lim

𝑘→∞

𝑥𝑘
3
= 𝑥∞
3
. (38)

Therefore, we have shown that the whole sequence
{(𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} converges to (𝑥∗

1
, 𝑥∞
2
, 𝑥∞
3
, 𝜆∞) under

condition (i) inTheorem 3.

Case 2 (𝐴
1
is of full column rank, 0 < 𝛽 < 𝜇

2
/‖𝐴
2
‖2
2
, and

𝛽 ≤ 𝜇
3
/‖𝐴
3
‖2
2
). In this case, the sequence {𝑥𝑘

2
} converges to

𝑥∗
2
and {𝑥𝑘

1
} is bounded. From the second equality in (25) and

(28), we have

lim
𝑘→∞

‖𝐴
1
𝑥𝑘+1
1

− 𝐴
1
𝑥𝑘
1
‖ = 0,

lim
𝑘→∞

‖𝜆𝑘 − 𝜆𝑘+1 ‖ = 0.
(39)

Since 𝐴
1
is of full column rank, it therefore holds that

lim
𝑘→∞

‖𝑥𝑘+1
1

− 𝑥𝑘
1
‖ = 0. (40)

Let (𝑥∞
1
, 𝑥∞
3
, 𝜆∞) be a cluster point of the sequence

{𝑥𝑘
1
, 𝑥𝑘
3
, 𝜆𝑘}. Following a similar proof in Case 1, we are able to

show (𝑥∞
1
, 𝑥∗
2
, 𝑥∞
3
, 𝜆∞) is a KKT point of problem (3) and the

whole sequence {(𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} converges to this point.

Remark 4 (see [22]). the authors proved the convergence
of the ADMM under the conditions that 𝑓

1
, 𝑓
2
, and 𝑓

3
are

strongly convex and 0 < 𝛽 < min
1≤𝑖≤3

{𝜇
𝑖
/3‖𝐴
𝑖
‖2
2
}. Our

result improves the upper bound min
1≤𝑖≤3

{𝜇
𝑖
/3‖𝐴
𝑖
‖2
2
} by

min{𝜇
2
/‖𝐴
2
‖2
2
, 𝜇
3
/‖𝐴
3
‖2
2
}. Moreover, in our condition (ii),

the strongly convexity assumption is only imposed on 𝑓
2
and

𝑓
3
while 𝑓

1
is not necessarily strongly convex with positive

modulus.

4. The Relaxed ADMM with Three Blocks

For the ADMMwith two blocks, Ye and Yuan [25] developed
a variant of alternating direction method with an optimal
step size. Numerical results demonstrated that an additional
computation on the optimal step size would improve the
efficiency of the new variant of ADMM. In this section, by
adopting the essential idea of Ye and Yuan [25], we propose
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a relaxed ADMMwith three blocks to accelerate the ADMM
via an optimal step size. For notational simplicity, we write

Φ(𝑢𝑘, 𝑢̃𝑘) :=
3𝛽

4

󵄩󵄩󵄩󵄩󵄩𝐴2(𝑥
𝑘

2
− 𝑥𝑘
2
)
󵄩󵄩󵄩󵄩󵄩
2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩𝐴3(𝑥3 − 𝑥𝑘

3
)
󵄩󵄩󵄩󵄩󵄩
2

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩𝜆
𝑘 − 𝜆̃𝑘

󵄩󵄩󵄩󵄩󵄩
2

+ ⟨𝜆𝑘 − 𝜆̃𝑘, 𝐴
2
(𝑥𝑘
2
− 𝑥𝑘
2
) + 𝐴

3
(𝑥𝑘
3
− 𝑥𝑘
3
)⟩ .

(41)

With 𝑢𝑘 = (𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘), the new iterate of extended ADMM is

produced by

𝑢𝑘+1 = 𝑢𝑘 − 𝛾𝛼∗ (𝑢𝑘 − 𝑢̃𝑘) , 𝛾 ∈ (0, 2) , (42)

where 𝑢̃𝑘 is the solution of (5) and 𝛼∗ is defined by

𝛼∗ :=
Φ (𝑢𝑘, 𝑢̃𝑘)

‖𝑢𝑘 − 𝑢̃𝑘‖2
𝐺

. (43)

Lemma 5. Let the sequence {𝑢𝑘} be generated by the relaxed
ADMM with three blocks. Then, if 0 < 𝛽 ≤ 𝜇

3
/‖𝐴
3
‖2
2
, the

following statements are valid:

(i) Φ(𝑢𝑘, 𝑢̃𝑘) ≥ (1/6)‖𝑢𝑘 − 𝑢𝑘+1‖2
𝐺
and thus 𝛼∗ ≥ 1/6;

(ii) ‖𝑢𝑘+1 − 𝑢∗‖
2

𝐺
≤ ‖𝑢𝑘 − 𝑢∗‖

2

𝐺
− (1/36)𝛾(2 −

𝛾)‖𝑢𝑘 − 𝑢̃𝑘‖
2

𝐺
− (1/3)𝛾𝜇

1
‖𝑥𝑘
1
− 𝑥∗
1
‖
2

−

(1/3)𝛾𝜇
2
‖𝑥𝑘
2
− 𝑥∗
2
‖
2

− (1/3)𝛾‖𝑥𝑘
3
− 𝑥∗
3
‖
2

𝜇3𝐼−𝛽𝐴
𝑇

3
𝐴3
.

Proof. By direct computations to Φ(𝑢𝑘, 𝑢̃𝑘), we know that

Φ(𝑢𝑘, 𝑢̃𝑘)

=
3𝛽

4

󵄩󵄩󵄩󵄩󵄩𝐴2 (𝑥
𝑘

2
− 𝑥𝑘
2
)
󵄩󵄩󵄩󵄩󵄩
2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩𝐴3(𝑥3 − 𝑥𝑘

3
)
󵄩󵄩󵄩󵄩󵄩
2

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩𝜆
𝑘 − 𝜆̃𝑘

󵄩󵄩󵄩󵄩󵄩
2

+ ⟨𝜆𝑘 − 𝜆̃𝑘, 𝐴
2
(𝑥𝑘
2
− 𝑥𝑘
2
) + 𝐴

3
(𝑥𝑘
3
− 𝑥𝑘
3
)⟩

≥
3𝛽

4

󵄩󵄩󵄩󵄩󵄩𝐴2(𝑥
𝑘

2
− 𝑥𝑘
2
)
󵄩󵄩󵄩󵄩󵄩
2

+ 𝛽
󵄩󵄩󵄩󵄩󵄩𝐴3(𝑥3 − 𝑥𝑘

3
)
󵄩󵄩󵄩󵄩󵄩
2

+
1

𝛽

󵄩󵄩󵄩󵄩󵄩𝜆
𝑘 − 𝜆̃𝑘

󵄩󵄩󵄩󵄩󵄩
2

−
𝛽

2

󵄩󵄩󵄩󵄩󵄩𝐴2 (𝑥
𝑘

2
− 𝑥𝑘
2
)
󵄩󵄩󵄩󵄩󵄩
2

−
1

2𝛽

󵄩󵄩󵄩󵄩󵄩𝜆
𝑘 − 𝜆̃𝑘

󵄩󵄩󵄩󵄩󵄩
2

−
3𝛽

4

󵄩󵄩󵄩󵄩󵄩𝐴3(𝑥
𝑘

3
− 𝑥𝑘
3
)
󵄩󵄩󵄩󵄩󵄩
2

−
1

3𝛽

󵄩󵄩󵄩󵄩󵄩𝜆
𝑘 − 𝜆̃𝑘

󵄩󵄩󵄩󵄩󵄩
2

=
𝛽

4

󵄩󵄩󵄩󵄩󵄩𝐴2(𝑥
𝑘

2
− 𝑥𝑘
2
)
󵄩󵄩󵄩󵄩󵄩
2

+
𝛽

4

󵄩󵄩󵄩󵄩󵄩𝐴3(𝑥
𝑘

3
− 𝑥𝑘
3
)
󵄩󵄩󵄩󵄩󵄩
2

+
1

6𝛽

󵄩󵄩󵄩󵄩󵄩𝜆
𝑘 − 𝜆̃𝑘

󵄩󵄩󵄩󵄩󵄩
2

,

(44)

where the second inequality follows Cauchy inequality. It
therefore holds that

Φ(𝑢𝑘, 𝑢̃𝑘) ≥
1

6

󵄩󵄩󵄩󵄩󵄩𝑢
𝑘 − 𝑢̃𝑘

󵄩󵄩󵄩󵄩󵄩
2

𝐺
, (45)

which completes the proof of the first part. By Lemma 1 and
the elementary inequality (17), it can be easily verified that

⟨𝑢𝑘 − 𝑢∗, 𝐺 (𝑢𝑘 − 𝑢̃𝑘)⟩

≥ Φ (𝑢𝑘, 𝑢̃𝑘) + 𝜇
1

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘

1
− 𝑥∗
1

󵄩󵄩󵄩󵄩󵄩
2

+ 𝜇
2

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘

2
− 𝑥∗
2

󵄩󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩󵄩𝑥
𝑘

3
− 𝑥∗
3

󵄩󵄩󵄩󵄩󵄩
2

𝜇3𝐼𝑛3
−𝛽𝐴
𝑇

3
𝐴3

(46)

and then
󵄩󵄩󵄩󵄩󵄩𝑢
𝑘+1 − 𝑢∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺
=
󵄩󵄩󵄩󵄩󵄩𝑢
𝑘 − 𝑢∗ − 𝛾𝛼∗ (𝑢𝑘 − 𝑢̃𝑘)

󵄩󵄩󵄩󵄩󵄩
2

𝐺

≤
󵄩󵄩󵄩󵄩󵄩𝑢
𝑘 − 𝑢∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺
− 𝛾 (2 − 𝛾) (𝛼∗)

2

×
󵄩󵄩󵄩󵄩󵄩𝑢
𝑘 − 𝑢̃𝑘

󵄩󵄩󵄩󵄩󵄩
2

𝐺
− 2𝛾𝛼∗𝜇

1

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘

1
− 𝑥∗
1

󵄩󵄩󵄩󵄩󵄩
2

− 2𝜇
2
𝛾𝛼∗

󵄩󵄩󵄩󵄩󵄩𝑥
𝑘

2
− 𝑥∗
2

󵄩󵄩󵄩󵄩󵄩
2

− 2𝛾𝛼∗
󵄩󵄩󵄩󵄩󵄩𝑥
𝑘

3
− 𝑥∗
3

󵄩󵄩󵄩󵄩󵄩
2

𝜇3𝐼𝑛3
−𝛽𝐴
𝑇

3
𝐴3

.

(47)

This, together with the fact that 𝛼∗ ≥ 1/6, completes the
proof.

Based on the above inequality, we are able to prove the
following convergence result of the relaxed ADMM with
three blocks. Since the proof is in line with that ofTheorem 3,
we omit it.

Theorem 6. Let {V𝑘 = (𝑥𝑘
1
, 𝑥𝑘
2
, 𝑥𝑘
3
, 𝜆𝑘)} be the sequence

generated by the relaxed ADMM. Then {V𝑘} converges to a
KKT point of problem (3) under the conditions that 0 < 𝛽 ≤

𝜇
3
/‖𝐴
3
‖2
2
and 𝐴

1
, 𝐴
2
, and 𝐴

3
are of full column rank.

5. Conclusion Remarks

In this paper, we take a step to investigate the ADMM for
separable convex programming problems with three blocks.
Based on the contractive analysis of the distance between
the sequence and the solution set, we establish theoretical
results to guarantee the global convergence of ADMM with
three blocks under weaker conditions than those employed
in [22]. By adopting the essential idea of [25], we also present
a relaxed ADMM with an optimal step size to accelerate the
ADMM and prove its convergence under mild assumptions.
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