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The synchronization between fractional-order hyperchaotic systems and integer-order hyperchaotic systems via sliding mode
controller is investigated. By designing an active sliding mode controller and choosing proper control parameters, the drive and
response systems are synchronized. Synchronization between the fractional-order Chen chaotic system and the integer-order Chen
chaotic system and between integer-order hyperchaotic Chen system and fractional-order hyperchaotic Rössler system is used to
illustrate the effectiveness of the proposed synchronization approach. Numerical simulations coincide with the theoretical analysis.

1. Introduction

During the past decades, fractional calculus has become a
powerful tool to describe the dynamics of complex systems
such as power systems, mathematics, biology, medicine,
secure communication, and chemical reactors [1–6]. Chaos
synchronization has attracted lots of attention in a variety of
research fields [7–13] over the last two decades, because it can
be applied in vast areas of physics and engineering and secure
communication [14, 15]. Moreover, many theoretical analysis
and numerical simulation results about the synchronization
of chaotic systems are obtained. Wang et al. [16] deal with
the finite-time chaos synchronization of the unified chaotic
systemwith uncertain parameters. Chen and Liu [17] propose
a simple linear state feedback controller to realize the stability
control of a unified chaotic system. The problem of chaos
synchronization between two different chaotic systems with
fully unknown parameters is investigated in [18]. Moreover,
Chen and his partners [19] investigate the chaos control of a
class of fractional-order chaotic systems via sliding mode.

All of above articlesmainly focus on integer-order chaotic
systems or fractional-order chaotic systems. There is little
information about the synchronization between fractional-
order chaotic systems and integer-order chaotic systems [20,
21]. The study of synchronization between fractional-order

hyperchaotic systems and integer-order hyperchaotic systems
is also limited.

Motivated by the above discussion, this paper investigates
a sliding mode method for synchronization between a class
of fractional-order hyperchaotic systems and integer-order
hyperchaotic systems. And the integer-order hyperchaotic
systems are regarded as response system in the proposed
synchronous technique which is simple and theoretically
rigorous.

2. System Description and
Problem Formulation

Consider the following fractional-order hyperchaotic system
as a drive system

𝐷
𝑞
𝑥 = 𝐴𝑥 + 𝑓 (𝑥) , (1)

where 𝑥(𝑡) ∈ 𝑅4 denotes four-dimensional state vector. 𝐴 ∈

𝑅
4×4 represents the linear part of the system, and 𝑓 : 𝑅4 →
𝑅
4 is the nonlinear part of the system.
And the response system can be described as

𝐷𝑦 = 𝐵𝑦 + 𝑔 (𝑦) , (2)
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where 𝑦(𝑡) ∈ 𝑅4 is four-dimensional state vector, 𝐵 ∈ 𝑅
4×4

and 𝑔 : 𝑅
4
→ 𝑅
4 imply the same roles as 𝐴 and 𝑓 in the

drive system, respectively.

Remark 1. 𝐴 and 𝑓(⋅) in the drive system can be same as 𝐵
and 𝑔(⋅) in the response system, respectively.

One adds the controller 𝑢(𝑡) ∈ 𝑅
4 into the response

system, which is given by

𝐷𝑦 = 𝐵𝑦 + 𝑔 (𝑦) + 𝑢 (𝑡) . (3)

Define the synchronous errors as 𝑒 = 𝑦 − 𝑥. The aim is to
choose a suitable controller 𝑢(𝑡) ∈ 𝑅4, so that the drive system
and response system can achieve chaotic synchronization
(i.e., lim𝑡→∞‖𝑒‖ = 0, where ‖ ⋅ ‖ is the Euclidean norm).

3. Design of Sliding Mode Controller

Let the controller 𝑢(𝑡) be

𝑢 (𝑡) = 𝑢1 (𝑡) + 𝑢2 (𝑡) , (4)

where 𝑢1(𝑡) ∈ 𝑅
4 is a compensation controller and 𝑢1(𝑡) =

𝐷𝑥 − 𝐵(𝑥) − 𝑔(𝑥). Here, 𝑥(𝑡) ∈ 𝑅
4 in the response

systembelongs to hyperchaotic fractional-order drive system.
𝑢2(𝑡) ∈ 𝑅

4 is a vector function, and it will be designed later.
From (4), the system (3) can be rewritten as

𝐷𝑒 = 𝐵𝑒 + 𝑔 (𝑦) − 𝑔 (𝑥) + 𝑢2 (𝑡) . (5)

In accordance with the active control design procedure,
the nonlinear part of the error dynamics is eliminated by the
following choice of the input vector [22]

𝑢2 (𝑡) = 𝑔 (𝑥) − 𝑔 (𝑦) + 𝐾𝑤 (𝑡) . (6)

The error system (5) is rewritten as

𝐷𝑒 = 𝐵𝑒 + 𝐾𝑤 (𝑡) , (7)

where 𝐾 = [𝑘1, 𝑘2, 𝑘3, 𝑘4]
𝑇 is a constant gain vector and

𝑤(𝑡) ∈ 𝑅 is the control input which satisfies

𝑤 (𝑡) = {
𝑤
+
(𝑡) 𝑠 (𝑒) ≥ 0

𝑤
−
(𝑡) 𝑠 (𝑒) < 0.

(8)

To design a sliding mode controller, one has two steps.
First, one constructs a sliding surface that represents a desired
system dynamics. Next, one develops a switching control law
such that a sliding mode exists on every point of the sliding
surface, and any states outside the surface are driven to reach
the surface in a finite time [23]. As a choice for the sliding
surface, one has

𝑠1 (𝑡) = 𝑐1𝑒1 + 𝑐2𝑒2,

𝑠2 (𝑡) = 𝑐2𝑒2 + 𝑐3𝑒3,

𝑠3 (𝑡) = 𝑐4𝑒4 + 𝑐3𝑒3,

𝑠4 (𝑡) = 𝑐4𝑒4,

(9)

which can also be easily given by

𝑠 (𝑡) = 𝐶𝑒, where 𝐶 =
[
[
[

[

𝑐1

0

0

0

𝑐2

𝑐2

0

0

0

𝑐3

𝑐3

0

0

0

𝑐4

𝑐4

]
]
]

]

. (10)

In the sliding mode, the sliding surface and its derivative
must satisfy

𝑠 (𝑡) = 0, ̇𝑠 (𝑡) = 0. (11)

Consider

̇𝑠 (𝑡) = 𝐷𝑠 = 0 󳨐⇒ 𝐶𝐷𝑒 + 𝑒 = 𝐶 (𝐵𝑒 + 𝐾𝑤 (𝑡)) + 𝑒 = 0.

(12)

One can get that

𝑤 (𝑡) = −(𝐶𝐾)
−1
(𝐶𝐵 − 𝐼) 𝑒 (𝑡) . (13)

Replacing for 𝑤(𝑡) in (7) from 𝑤(𝑡) of (13), the error
dynamics on the sliding surface are determined by the
following relation:

𝐷𝑒 = (𝐼 − 𝐾(𝐶𝐾)
−1
𝐶)𝐵𝑒. (14)

To satisfy the sliding condition, the discontinuous reach-
ing law is chosen as follows:

𝐷𝑠 = −𝑝 sign (𝑠) − 𝑟𝑠, (15)

where

sign (𝑠) =
{{

{{

{

+1, 𝑠 > 0

0, 𝑠 = 0

−1, 𝑠 < 0

(16)

and 𝑝 > 0, 𝑟 > 0 are the gains of the controller.
In the sliding phase, it implies that 𝐷𝑠 = ̇𝑠(𝑡) = 0.

Considering (12) and (15), one gets

𝑤 (𝑡) = −(𝐶𝐾)
−1
[𝐶 (𝑟𝐼 + 𝐵) 𝑒 + 𝑝 sign (𝑠)] . (17)

Now, the total control law can be defined as follows:

𝑢 (𝑡) = 𝐷𝑥 − 𝐵𝑥 − 𝑔 (𝑦)

− 𝐾(𝐶𝐾)
−1
[𝐶 (𝑟𝐼 + 𝐵) 𝑒 + 𝑝 sign (𝑠)] .

(18)

Replacing 𝑤(𝑡) in (7) by (17), the error dynamics are
determined by

𝐷𝑒 = [𝐵 − 𝐾(𝐶𝐾)
−1
𝐶 (𝑟𝐼 + 𝐵)] 𝑒 − 𝐾(𝐶𝐾)

−1
𝑝 sign (𝑠) .

(19)

Theorem 2 (see [24]). The following system is as follows:

𝐷
𝑞
𝑥 = 𝐴𝑥, 𝑥 (0) = 𝑥0, (20)

where 0 < 𝑞 ≤ 1, 𝑥 ∈ 𝑅
𝑛 and 𝐴 ∈ 𝑅

𝑛×𝑛. System (20) is
asymptotically stable if | arg(𝜆𝑖)| > 𝑞𝜋/2, where 𝜆𝑖 are the
eigenvalues ofmatrix𝐴. Also, this system is stable if | arg(𝜆𝑖)| ≥
𝑞𝜋/2 and those critical eigenvalues that satisfy | arg(𝜆𝑖)| =
𝑞𝜋/2 have geometric multiplicity one.
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Theorem 3 (see [24]). Consider a system given by the follow-
ing linear state space form with inner dimension 𝑛 as follows:

𝐷
𝑞
𝑥 = 𝐴𝑥 + 𝐵𝑢,

𝑦 = 𝐶𝑥, 𝑥 (0) = 𝑥0,

(21)

where 0 < 𝑞 ≤ 1, 𝑥 ∈ 𝑅𝑛, 𝑦 ∈ 𝑅𝑝, and 𝐴 ∈ 𝑅
𝑛×𝑛. Assuming

that the triplet (𝐴, 𝐵, 𝐶) is minimal, then system (21) is stable
if | arg( eig (𝐴))| > 𝑞𝜋/2.

According to Theorem 2, the error dynamics on the
sliding surface defined by (14) is asymptotically stable, as long
as all eigenvalues of [(𝐼 − 𝐾(𝐶𝐾)−1𝐶)𝐵] satisfy the condition
| arg(𝜆𝑖)| > 𝜋/2. In the sliding phase, as a linear fractional-
order system with bounded inputs (−𝐾(𝐶𝐾)−1𝑝 for 𝑠 > 0

and 𝐾(𝐶𝐾)−1𝑝 for 𝑠 > 0), the error system (19) is stable if
| arg(eig([𝐵 − 𝐾(𝐶𝐾)−1𝐶(𝑟𝐼 + 𝐵)]))| > 𝜋/2. It can be shown
that choosing appropriate 𝐾, 𝐶, and 𝑟 can make the error
dynamics stable; hence, the synchronization is realized.

4. Numerical Simulation

This section presents two illustrative examples to verify
and demonstrate the effectiveness of the proposed control
scheme. Case 1 is the synchronization between the same
structure hyperchaotic systems. Case 2 is the synchronization
between the different structure hyperchaotic systems.

Case 1. Synchronization between fractional-order and
integer-order hyperchaotic Chen systems.

Consider Chen hyperchaotic system which is written as
[25]

𝑑
𝑞
1𝑥1

𝑑𝑡𝑞1
= 𝑎1 (𝑥2 − 𝑥1) + 𝑥4,

𝑑
𝑞
2𝑥2

𝑑𝑡𝑞2
= 𝛾𝑥1 − 𝑥1𝑥3 + 𝑐1𝑥2,

𝑑
𝑞
3𝑥3

𝑑𝑡𝑞3
= 𝑥1𝑥2 − 𝑏1𝑥3,

𝑑
𝑞
4𝑥4

𝑑𝑡𝑞4
= 𝑥2𝑥3 + 𝑑1𝑥4.

(22)

When 𝑞1 = 𝑞2 = 𝑞3 = 𝑞4 = 1, the system is integer-order
system; otherwise we call the system (22) a fractional-order
system.

Take the fractional-order system with fractional-order
𝑞1 = 𝑞2 = 𝑞3 = 𝑞4 = 0.95 as a drive system, and the
integer-order Chen hyperchaotic system as a response system
with the following initial conditions: [𝑥1, 𝑥2, 𝑥3, 𝑥4]

𝑇
=

[0.1, 0.5, −0.9, 1]
𝑇 and [𝑦1, 𝑦2, 𝑦3, 𝑦4]

𝑇
= [0.1, 0, 0.9, 0]

𝑇, and
the system parameters are (𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝛾) = (35, 3, 28, 7).

The controller parameters are chosen as 𝐾 =

diag(−2, −8, −2, −2), 𝐶 = [4, 4, 0, 0; 0, 4, 4, 0; 0, 0, 4, 4;
0, 0, 0, 4], 𝑟 = 10, and 𝑝 = 2. This selection of parameters
results in eigenvalues (𝜆1, 𝜆2, 𝜆3, 𝜆4) = (−10, −10, −10, −10),
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Figure 1: Synchronization errors between Chen systems.

which are located in the stable region. According to (18), the
control inputs are taken as follows:

𝑢1 =
𝑑𝑥1

𝑑𝑡
− 𝑎1 (𝑥2 − 𝑥1) − 𝑥4 + 25𝑒1 − 35𝑒2 − 𝑒4

−
1

2
(sign (𝑠1) − sign (𝑠2) + sign (𝑠3) − sign (𝑠4)) ,

𝑢2 =
𝑑𝑥2

𝑑𝑡
− 𝛾𝑥1 − 𝑐1𝑥2 + 𝑦1𝑦3 − 38𝑒2 − 7𝑒1

+
1

2
(sign (𝑠3) − sign (𝑠2) − sign (𝑠4)) ,

𝑢3 =
𝑑𝑥3

𝑑𝑡
+ 𝑏1𝑥3 − 𝑦1𝑦2 − 7𝑒3 +

1

2
(sign (𝑠4) − sign (𝑠3)) ,

𝑢4 =
𝑑𝑥4

𝑑𝑡
− 𝑑1𝑥4 − 𝑦2𝑦3 −

21

2
𝑒4 −

1

2
sign (𝑠4) .

(23)

The simulation results are given in Figure 1. As we can see,
the errors converge to zero which implies that synchroniza-
tion between the two systems is realized.

Case 2. Synchronization between integer-order hyperchaotic
Chen system and fractional-order hyperchaotic Rössler sys-
tem.

Consider hyperchaotic Rössler system which is written as
[26]

𝑑
𝑞
1𝑥1

𝑑𝑡𝑞1
= −𝑥2 − 𝑥3,

𝑑
𝑞
2𝑥2

𝑑𝑡𝑞2
= 𝑥1 + 𝑎2𝑥2 + 𝑥4,

𝑑
𝑞
3𝑥3

𝑑𝑡𝑞3
= 𝑏2 + 𝑥1𝑥3,

𝑑
𝑞
3𝑥4

𝑑𝑡𝑞3
= −𝑐2𝑥3 + 𝑑2𝑥4.

(24)

Similarly, take the fractional-order Rössler hyperchaotic
system with fractional-order 𝑞1 = 𝑞2 = 𝑞3 = 𝑞4 =

0.95 as a drive system, and take the integer-order Chen
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Figure 2: Synchronization between integer-order Chen system and
fractional-order Rössler system.

hyperchaotic system as a response system with the following
initial conditions: [𝑥1, 𝑥2, 𝑥3, 𝑥4]

𝑇
= [−0.1, −0.9, 0.9, 1]

𝑇

and [𝑦1, 𝑦2, 𝑦3, 𝑦4]
𝑇
= [−0.9, 0.1, 0.9, 1.9]

𝑇, and the system
parameters are (𝑎2, 𝑏2, 𝑐2, 𝑑2) = (0.25, 3, 0.5, 0.05).

We choose the design parameters in the simulations as
𝐾 = diag(−3, −5, −6, −3), 𝐶 = [3, 3, 0, 0; 0, 3, 3, 0; 0, 0, 3, 3;
0, 0, 0, 3], 𝑟 = 5, and 𝑝 = 0.2. This selection of parameters
results in eigenvalues, (𝜆1, 𝜆2, 𝜆3, 𝜆4) = (−5, −5, −5, −5),
which are located in the stable region. According to (19), we
can yield the response system easily, that is,

𝑢1 =
𝑑𝑥1

𝑑𝑡
− 𝑎1 (𝑥2 − 𝑥1) − 𝑥4 + 30𝑒1 − 35𝑒2 − 𝑒4

−
1

15
(sign (𝑠1) − sign (𝑠2) + sign (𝑠3) − sign (𝑠4)) ,

𝑢2 =
𝑑𝑥2

𝑑𝑡
− 𝛾𝑥1 − 𝑐1𝑥2 + 𝑦1𝑦3 − 7𝑒1 − 33𝑒2

+
1

15
(sign (𝑠3) − sign (𝑠2) − sign (𝑠4)) ,

𝑢3 =
𝑑𝑥3

𝑑𝑡
+ 𝑏1𝑥3 − 𝑦1𝑦2 − 2𝑒3 +

1

15
(sign (𝑠4) − sign (𝑠3)) ,

𝑢4 =
𝑑𝑥4

𝑑𝑡
− 𝑑1𝑥4 − 𝑦2𝑦3 −

11

2
𝑒4 −

1

15
sign (𝑠4) .

(25)

The synchronization errors are shown in Figure 2, which
show that the proposed method is succeeded in synchroniz-
ing the two different structure systems.

5. Conclusion

In this paper, the problem of synchronization between
fractional-order hyperchaotic systems and integer-order
hyperchaotic systems is investigated. The integer-order
hyperchaotic system is regarded as the response system.
A sliding mode controller is designed to synchronize two
systems with different orders successfully. It is rigorously
proven that the proposed synchronization approach can be
achieved between two different order hyperchaotic systems.

Some numerical simulations are presented to show the
applicability and feasibility of the proposed scheme.
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