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The problem of existence, uniqueness, and global asymptotic stability is considered for the class of neutral-type neural network
model with discrete time delays. By employing a suitable Lyapunov functional and using the homeomorphism mapping theorem,
we derive some new delay-independent sufficient conditions for the existence, uniqueness, and global asymptotic stability of
the equilibrium point for this class of neutral-type systems. The obtained conditions basically establish some norm and matrix
inequalities involving the network parameters of the neural system.The main advantage of the proposed results is that they can be
expressed in terms of network parameters only. Some comparative examples are also given to compare our results with the previous
corresponding results and demonstrate the effectiveness of the results presented.

1. Introduction

In recent years, dynamical neural networks have been
employed in solving many practical engineering problems
such as signal and image processing, pattern recognition,
associative memories, parallel computation, and optimiza-
tion and control problems [1–10]. In such applications, it is
important to know the dynamics of the designed neural
networks. In addition, when using delayed neural networks,
time delaysmight affect the transmission rate and cause insta-
bility. Therefore, the analysis of stability of neural networks
with time delays is indispensable for solving engineering
system problems. In the recent literature, many papers have
studied the problem of global stability of different classes
of neural networks by exploiting various analysis techniques
and methods and presented some useful stability results for
delayed neural networks. In practice, in order to precisely
determine the equilibrium and stability properties of neural
networks, the information about time derivatives of the past
states must be introduced into the state equations of neural

networks. A neural network of this model is called neutral-
type neural networks. Some global stability results of various
classes of neural networks with time delays have been
reported in [1–33]. The goal of our paper is to present some
new and alternative stability results of neutral-type neural
networks with discrete time delays with respect to Lipschitz
continuous activation functions.

Throughout this paper wewill use these notations: for any
matrix𝑃 = (𝑝

𝑖𝑗
)
𝑛×𝑛

,𝑃 > 0will denote that𝑃 is symmetric and
positive definite; 𝑃𝑇, 𝑃−1, 𝜆

𝑚
(𝑃), and 𝜆

𝑀
(𝑃) will denote the

transpose of 𝑃, the inverse of 𝑃, the minimum eigenvalue of
𝑃, and themaximumeigenvalue of𝑃, respectively.Wewill use
the matrix norm ‖𝑃‖

2
= [𝜆
𝑀
(𝑃
𝑇
𝑃)]
1/2. For any two positive

definite matrices 𝑃 = (𝑝
𝑖𝑗
)
𝑛×𝑛

and𝑄 = (𝑞
𝑖𝑗
)
𝑛×𝑛

. If𝑄 > 0, then
𝑃 > 𝑄 will imply that 𝑃 > 0. For V = (V

1
, V
2
, . . . , V

𝑛
)
𝑇
∈ 𝑅
𝑛,

we will use the vector norms ‖V‖
2
= √∑

𝑛

𝑖=1
V2
𝑖
and ‖V‖

1
=

∑
𝑛

𝑖=1
|V
𝑖
|.
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2. Problem Statement

The class of neutral-type neural network model with discrete
time delays is described by the following set of nonlinear
differential equations:

�̇�
𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
�̇�
𝑗
(𝑡 − 𝜏

𝑗
)

= −𝑐
𝑖
𝑥
𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜏

𝑗
)) + 𝑢

𝑖
,

𝑖 = 1, . . . , 𝑛,

(1)

where 𝑛 is the number of the neurons in the network, 𝑥
𝑖

denotes the state of the 𝑖th neuron, and the parameters 𝑐
𝑖
are

some constants: the constants 𝑎
𝑖𝑗
denote the strengths of the

neuron interconnections within the network; the constants
𝑏
𝑖𝑗
denote the strengths of the neuron interconnections with

time delay parameters 𝜏
𝑗
. 𝑒
𝑖𝑗
are coefficients of the time

derivative of the delayed states, the functions 𝑓
𝑗
(⋅) denote the

neuron activations, and the constants 𝑢
𝑖
are some external

inputs. In system (1), 𝜏
𝑗
≥ 0 represents the delay parameter

with 𝜏 = max (𝜏
𝑗
), 1 ≤ 𝑗 ≤ 𝑛. Accompanying the neutral

system (1) is an initial condition of the form: 𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) ∈

𝐶([−𝜏, 0], 𝑅), where 𝐶([−𝜏, 0], 𝑅) denotes the set of all con-
tinuous functions from [−𝜏, 0] to 𝑅.

We will assume that the activation functions 𝑓
𝑖
(⋅), 𝑖 =

1, 2, . . . , 𝑛, are Lipschitz continuous; for example, there exist
some constants ℓ

𝑖
> 0 such that

𝑓𝑖 (𝑥) − 𝑓𝑖 (𝑦)
 ≤ ℓ𝑖

𝑥 − 𝑦
 , 𝑖 = 1, 2, . . . , 𝑛,

∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ̸= 𝑦.

(2)

Neural networkmodel (1) can be written in the vector-matrix
form as follows:

�̇� (𝑡) + 𝐸�̇� (𝑡 − 𝜏) = −𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏)) + 𝑢,

(3)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ 𝑅
𝑛, 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

, 𝐵 =
(𝑏
𝑖𝑗
)
𝑛×𝑛

, 𝐸 = (𝑒
𝑖𝑗
)
𝑛×𝑛

, 𝐶 = diag (𝑐
𝑖
> 0), 𝑢 = (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇,

𝑓(𝑥(𝑡)) = (𝑓
1
(𝑥
1
(𝑡)), 𝑓

2
(𝑥
2
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡)))
𝑇, and 𝑓(𝑥(𝑡 −

𝜏)) = (𝑓
1
(𝑥
1
(𝑡 − 𝜏
1
)), 𝑓
2
(𝑥
2
(𝑡 − 𝜏
2
)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡 − 𝜏
𝑛
)))
𝑇.

In order to obtain our main results, the following lemma
will be needed.

Lemma 1 (see [23]). If a map𝐻(𝑥) ∈ 𝐶0 satisfies the following
conditions:

(i) 𝐻(𝑥) ̸=𝐻(𝑦) for all 𝑥 ̸= 𝑦,
(ii) ‖𝐻(𝑥)‖ → ∞ as ‖𝑥‖ → ∞,

then,𝐻(𝑥) is homeomorphism of 𝑅𝑛.

3. Existence and Uniqueness Analysis

This section deals with obtaining the sufficient conditions
that ensure the existence and uniqueness of the equilibrium
point for neutral-type neural network model (1). The main
result is given in the following result.

Theorem 2. For the neutral-type neural network model (1),
let ‖𝐸‖

2
< 1 and the activation functions satisfy (2). Then,

the system (1) has unique equilibrium point for each 𝑢 if there
exist positive diagonal matrices𝐻 and 𝐷 and positive definite
matrices 𝑃, 𝑄, and 𝑅 such that the following conditions hold:

Υ
1
= 𝐶 − 𝑃 − 𝑄 − 𝐻 − 𝐶𝑅

−1
𝐶 > 0,

Υ
2
= 𝐶L

−2
− 𝐷 − 𝐴

𝑇
𝑃
−1
𝐴 − 𝐴

𝑇
𝑅
−1
𝐴 > 0,

Υ
3
= 𝐷 − 𝐵

𝑇
𝑄
−1
𝐵 − 𝐵
𝑇
𝑅
−1
𝐵 > 0,

Υ
4
= 𝐻 − 3𝐸

𝑇
𝑅𝐸 > 0,

(4)

whereL = diag(ℓ
1
, ℓ
2
, . . . , ℓ

𝑛
).

Proof. Wewillmake use of the result of Lemma 1 for the proof
of the existence and uniqueness of the equilibrium point for
system (1). Let us define the following mapping associated
with system (1):

𝐻(𝑥) + 𝐸𝐻 (𝑥) = −𝐶𝑥 + 𝐴𝑓 (𝑥) + 𝐵𝑓 (𝑥) + 𝑢. (5)

If 𝑥∗ = (𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
)
𝑇 is an equilibrium point of (1), then

𝑥
∗ satisfies the equilibrium equation:

𝐻(𝑥
∗
) + 𝐸𝐻 (𝑥

∗
) = −𝐶𝑥

∗
+ 𝐴𝑓 (𝑥

∗
) + 𝐵𝑓 (𝑥

∗
) + 𝑢 = 0.

(6)

Clearly, the solution of the equation 𝐻(𝑥) = 0 is an equi-
librium point of (1). Therefore, in the light of Lemma 1, we
can conclude that, for the system defined by (1), there exists a
unique equilibrium point for every input vector 𝑢 if 𝐻(𝑥) is
homeomorphismof𝑅𝑛.Wewill now show that the conditions
of Theorem 2 imply that 𝐻(𝑥) is a homeomorphism of 𝑅𝑛.
To this end, we choose any two vectors 𝑥 ∈ 𝑅𝑛 and 𝑦 ∈ 𝑅𝑛
such that 𝑥 ̸= 𝑦. When the activation functions satisfy (2), for
𝑥 ̸= 𝑦, we have two cases: first case is 𝑥 ̸= 𝑦 and 𝑓(𝑥) ̸= 𝑓(𝑦),
and the second case is 𝑥 ̸= 𝑦 and𝑓(𝑥) = 𝑓(𝑦). Let us carry out
the existence and uniqueness analysis for the first case where
𝑥 ̸= 𝑦 and 𝑓(𝑥) ̸= 𝑓(𝑦). In this case, for 𝐻(𝑥) defined by (5),
we can write

𝐻(𝑥) − 𝐻 (𝑦) + 𝐸 (𝐻 (𝑥) − 𝐻 (𝑦))

= (𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

= −𝐶 (𝑥 − 𝑦) + 𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) + 𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)) .

(7)
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If we multiply both sides of (7) by the term 2(𝑥−𝑦)
𝑇
(𝐼+𝐸)

𝑇,
and then add the terms (𝑓(𝑥)−𝑓(𝑦))𝑇𝐷(𝑓(𝑥)−𝑓(𝑦))−(𝑓(𝑥)−
𝑓(𝑦))

𝑇
𝐷(𝑓(𝑥)−𝑓(𝑦)) = 0 and (𝑥−𝑦)𝑇𝐻(𝑥−𝑦)−(𝑥−𝑦)𝑇𝐻(𝑥−

𝑦) = 0 to the right hand side of the resulting equation, we get

2(𝑥 − 𝑦)
𝑇
(𝐼 + 𝐸)

𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

= 2(𝑥 − 𝑦)
𝑇
(𝐼 + 𝐸)

𝑇

× (−𝐶 (𝑥 − 𝑦) + 𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) + 𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)))

= 2(𝑥 − 𝑦)
𝑇
(𝐼 + 𝐸)

𝑇

× (−𝐶 (𝑥 − 𝑦) + 𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) + 𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)))

+ (𝑥 − 𝑦)
𝑇
𝐻(𝑥 − 𝑦) − (𝑥 − 𝑦)

𝑇
𝐻(𝑥 − 𝑦)

+ (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇
𝐷(𝑓 (𝑥) − 𝑓 (𝑦))

− (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇
𝐷(𝑓 (𝑥) − 𝑓 (𝑦))

= −2(𝑥 − 𝑦)
𝑇
𝐶 (𝑥 − 𝑦) + 2(𝑥 − 𝑦)

𝑇
𝐴 (𝑓 (𝑥) − 𝑓 (𝑦))

+ 2(𝑥 − 𝑦)
𝑇
𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)) − 2(𝑥 − 𝑦)

𝑇
𝐸
𝑇
𝐶 (𝑥 − 𝑦)

+ 2(𝑥 − 𝑦)
𝑇
𝐸
𝑇
𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) + 2(𝑥 − 𝑦)

𝑇
𝐸
𝑇
𝐵

× (𝑓 (𝑥) − 𝑓 (𝑦)) + (𝑥 − 𝑦)
𝑇
𝐻(𝑥 − 𝑦) − (𝑥 − 𝑦)

𝑇

× 𝐻 (𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇
𝐷(𝑓 (𝑥) − 𝑓 (𝑦))

− (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇
𝐷(𝑓 (𝑥) − 𝑓 (𝑦)) .

(8)

We note the following inequalities:

2(𝑥 − 𝑦)
𝑇
𝐴 (𝑓 (𝑥) − 𝑓 (𝑦))

≤ (𝑥 − 𝑦)
𝑇
𝑃 (𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))

𝑇

× 𝐴
𝑇
𝑃
−1
𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) ,

2(𝑥 − 𝑦)
𝑇
𝐵 (𝑓 (𝑥) − 𝑓 (𝑦))

≤ (𝑥 − 𝑦)
𝑇
𝑄 (𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))

𝑇

× 𝐵
𝑇
𝑄
−1
𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)) ,

− 2(𝑥 − 𝑦)
𝑇
𝐸
𝑇
𝐶 (𝑥 − 𝑦) (𝑡)

≤ (𝑥 − 𝑦)
𝑇
𝐸
𝑇
𝑅𝐸 (𝑥 − 𝑦) + (𝑥 − 𝑦)

𝑇

× 𝐶
𝑇
𝑅
−1
𝐶 (𝑥 − 𝑦) ,

2(𝑥 − 𝑦)
𝑇
𝐸
𝑇
𝐴 (𝑓 (𝑥) − 𝑓 (𝑦))

≤ (𝑥 − 𝑦)
𝑇
𝐸
𝑇
𝑅𝐸 (𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))

𝑇

× 𝐴
𝑇
𝑅
−1
𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) ,

2(𝑥 − 𝑦)
𝑇
𝐸
𝑇
𝐵 (𝑓 (𝑥) − 𝑓 (𝑦))

≤ (𝑥 − 𝑦)
𝑇
𝐸
𝑇
𝑅𝐸 (𝑥 − 𝑦)

+ (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇
𝐵
𝑇
𝑅
−1
𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)) .

(9)

Using (9) in (8) results in

2(𝑥 − 𝑦)
𝑇
(𝐼 + 𝐸)

𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

≤ − (𝑥 − 𝑦)
𝑇
𝐶 (𝑥 − 𝑦) − (𝑥 − 𝑦)

𝑇
𝐶 (𝑥 − 𝑦)

+ (𝑥 − 𝑦)
𝑇
𝑃 (𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))

𝑇
𝐴
𝑇
𝑃
−1

× 𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) + (𝑥 − 𝑦)
𝑇
𝑄 (𝑥 − 𝑦)

+ (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇
𝐵
𝑇
𝑄
−1
𝐵 (𝑓 (𝑥) − 𝑓 (𝑦))

+ (𝑥 − 𝑦)
𝑇
𝐸
𝑇
𝑅𝐸 (𝑥 − 𝑦) + (𝑥 − 𝑦)

𝑇
𝐶
𝑇
𝑅
−1

× 𝐶 (𝑥 − 𝑦) + (𝑥 − 𝑦)
𝑇
𝐸
𝑇
𝑅𝐸 (𝑥 − 𝑦)

+ (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇
𝐴
𝑇
𝑅
−1
𝐴 (𝑓 (𝑥) − 𝑓 (𝑦)) (𝑥 − 𝑦)

𝑇

× 𝐸
𝑇
𝑅𝐸 (𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))

𝑇

× 𝐵
𝑇
𝑅
−1
𝐵 (𝑓 (𝑥) − 𝑓 (𝑦)) + (𝑥 − 𝑦)

𝑇
𝐻(𝑥 − 𝑦)

− (𝑥 − 𝑦)
𝑇
𝐻(𝑥 − 𝑦) + (𝑓 (𝑥) − 𝑓 (𝑦))

𝑇

× 𝐷 (𝑓 (𝑥) − 𝑓 (𝑦)) − (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

× 𝐷 (𝑓 (𝑥) − 𝑓 (𝑦))

(10)

which is of the form

2(𝑥 − 𝑦)
𝑇
(𝐼 + 𝐸)

𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

≤ − (𝑥 − 𝑦)
𝑇
(𝐶 − 𝑃 − 𝑄 − 𝐻 − 𝐶

𝑇
𝑅
−1
𝐶) (𝑥 − 𝑦)

𝑇

− (𝑓(𝑥) − 𝑓(𝑦))
𝑇
(𝐶L
−2
− 𝐷 − 𝐴

𝑇
𝑃
−1
𝐴 − 𝐴

𝑇
𝑅
−1
𝐴)

× (𝑓 (𝑥) − 𝑓 (𝑦)) − (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇

× (𝐷 − 𝐵
𝑇
𝑄
−1
𝐵 − 𝐵
𝑇
𝑅
−1
𝐵) (𝑓 (𝑥) − 𝑓 (𝑦))

− (𝑥 − 𝑦)
𝑇
(𝐻 − 3𝐸

𝑇
𝑅𝐸) (𝑥 − 𝑦)

(11)

or equivalently

2(𝑥 − 𝑦)
𝑇
(𝐼 + 𝐸)

𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

≤ − (𝑥 − 𝑦)
𝑇
Υ
1
(𝑥 − 𝑦)

− (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇
Υ
2
(𝑓 (𝑥) − 𝑓 (𝑦))

− (𝑓 (𝑥) − 𝑓 (𝑦))
𝑇
Υ
3
(𝑓 (𝑥) − 𝑓 (𝑦))

− (𝑥 − 𝑦)
𝑇
Υ
4
(𝑥 − 𝑦) .

(12)
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Since 𝑥 ̸= 𝑦 and 𝑓(𝑥) ̸= 𝑓(𝑦), Υ
1
> 0, Υ

2
> 0, Υ

3
> 0, and

Υ
4
> 0 imply that

2(𝑥 − 𝑦)
𝑇
(𝐼 + 𝐸)

𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦)) < 0 (13)

implying that


(𝑥 − 𝑦)

𝑇
(𝐼 + 𝐸)

𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

 2
> 0 (14)

from which it follows that

𝑥 − 𝑦
 2‖

𝐼 + 𝐸‖
2

2

𝐻 (𝑥) − 𝐻 (𝑦)
 2
> 0. (15)

‖𝐸‖
2
< 1 implies that ‖𝐼 + 𝐸‖2

2
> 0, and 𝑥 ̸= 𝑦 implies

that ‖𝑥 − 𝑦‖
2

> 0. Therefore, it directly follows that
‖𝐻(𝑥) − 𝐻(𝑦)‖

2
> 0, thus implying that ‖𝐻(𝑥)‖ ̸= ‖𝐻(𝑦)‖.

Hence, we conclude that 𝐻(𝑥) ̸=𝐻(𝑦) for all 𝑥 ̸= 𝑦 and
𝑓(𝑥) ̸= 𝑓(𝑦).

Now consider the case where 𝑥 ̸= 𝑦 and 𝑓(𝑥) = 𝑓(𝑦). In
this case,𝐻(𝑥) defined by (5) satisfies

2(𝑥 − 𝑦)
𝑇
(𝐼 + 𝐸)

𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦))

≤ − (𝑥 − 𝑦)
𝑇
Υ
1
(𝑥 − 𝑦) − (𝑥 − 𝑦)

𝑇
Υ
4
𝑧 (𝑥 − 𝑦) ,

(16)

𝑥 ̸= 𝑦; Υ
1
> 0 and Υ

4
> 0 imply that

2(𝑥 − 𝑦)
𝑇
(𝐼 + 𝐸)

𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (𝑦)) < 0. (17)

Based on the analysis carried out for the previous case, we
conclude that𝐻(𝑥) ̸=𝐻(𝑦) for all 𝑥 ̸= 𝑦 for this case.

Now it is shown that the conditions of Theorem 2 imply
that ‖𝐻(𝑥)‖ → ∞ as ‖𝑥‖ → ∞. For 𝑦 = 0, we can write

2𝑥
𝑇
(𝐼 + 𝐸)

𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (0))

≤ − 𝑥
𝑇
Υ
1
𝑥 − (𝑓 (𝑥) − 𝑓 (0))

𝑇
Υ
2
(𝑓 (𝑥) − 𝑓 (0))

− (𝑓 (𝑥) − 𝑓 (0))
𝑇
Υ
3
(𝑓 (𝑥) − 𝑓 (0)) − 𝑥

𝑇
Υ
4
𝑥.

(18)

Taking the absolute value of the both sides of the above ine-
quality, we obtain


2𝑥
𝑇
(𝐼 + 𝐸)

𝑇
(𝐼 + 𝐸) (𝐻 (𝑥) − 𝐻 (0))



≥ 𝑥
𝑇
Υ
1
𝑥 + (𝑓 (𝑥) − 𝑓 (0))

𝑇
Υ
2
(𝑓 (𝑥) − 𝑓 (0))

+ (𝑓 (𝑥) − 𝑓 (0))
𝑇
Υ
3
(𝑓 (𝑥) − 𝑓 (0)) + 𝑥

𝑇
Υ
4
𝑥

(19)

from which it follows that

‖𝑥‖ 2‖𝐼 + 𝐸‖
2

2
‖𝐻 (𝑥) − 𝐻 (0)‖ 2

≥ 𝜆
𝑚
(Υ
1
) ‖𝑥‖
2

2
+ 𝜆
𝑚
(Υ
2
)
𝑓 (𝑥) − 𝑓 (0)



2

2

+ 𝜆
𝑚
(Υ
3
)
𝑓 (𝑥) − 𝑓 (0)



2

2
+ 𝜆
𝑚
(Υ
4
) ‖𝑥‖
2

2

≥ 𝜆
𝑚
(Υ
1
) ‖𝑥‖
2

2

(20)

which yields

‖𝐻 (𝑥) − 𝐻 (0)‖ 2 ≥
𝜆
𝑚
(Υ
1
)

‖𝐼 + 𝐸‖
2

2

‖𝑥‖ 2. (21)

We note that ‖𝐻(𝑥) − 𝐻(0)‖
2
≤ ‖𝐻(𝑥)‖

2
+ ‖𝐻(0)‖

2
. Hence,

from (21), it follows that

‖𝐻 (𝑥)‖ 2 ≥
𝜆
𝑚
(Υ
1
)

‖𝐼 + 𝐸‖
2

2

‖𝑥‖ 2 − ‖𝐻 (0)‖ 2. (22)

Since ‖𝐻(0)‖
2
is bounded, and ‖𝐼 + 𝐸‖2

2
> 0, then ‖𝐻(𝑥)‖

2
→

∞ as ‖𝑥‖
2
→ ∞. Hence, the conditions ofTheorem 2 ensure

that 𝐻(𝑥) is homeomorphism of 𝑅𝑛, proving that neutral
system defined by (1) has unique equilibrium point for each
𝑢.

Choosing 𝐻, 𝐷, 𝑃, 𝑄, and 𝑅 in the conditions of
Theorem 2 as𝐻 = ℎ𝐼,𝐷 = 𝑑𝐼,𝑃 = 𝑝𝐼,𝑄 = 𝑞𝐼, and𝑅 = 𝑟𝐼, we
can express some special cases of Theorem 2 as follows.

Corollary 3. For the neutral-type neural network model (1),
let ‖𝐸‖

2
< 1 and the activation functions satisfy (2). Then, the

system (1) has unique equilibrium point for each 𝑢 if there exist
some positive constants ℎ, 𝑑, 𝑝, 𝑞, and 𝑟 such that the following
conditions hold:

Υ
∗

1
= 𝐶 − (𝑝 + 𝑞 + ℎ) 𝐼 −

1

𝑟
𝐶
2
> 0,

Υ
∗

2
= 𝐶L

−2
− 𝑑𝐼 −

1

𝑝
𝐴
𝑇
𝐴 −

1

𝑟
𝐴
𝑇
𝐴 > 0,

Υ
∗

3
= 𝑑𝐼 −

1

𝑞
𝐵
𝑇
𝐵 −

1

𝑟
𝐵
𝑇
𝐵 > 0,

Υ
∗

4
= ℎ𝐼 − 3𝑟𝐸

𝑇
𝐸 > 0,

(23)

whereL = diag(ℓ
1
, ℓ
2
, . . . , ℓ

𝑛
).

A special case of Corollary 3 is the following result.

Corollary 4. For the neutral-type neural network model (1),
let ‖𝐸‖

2
< 1 and the activation functions satisfy (2). Then, the

system (1) has unique equilibrium point for each 𝑢 if there exist
some positive constants ℎ, 𝑑, 𝑝, 𝑞, and 𝑟 such that the following
conditions hold:

𝜌
1
= 𝑐
𝑚
− (𝑝 + 𝑞 + ℎ) −

1

𝑟
𝑐
2

𝑀
> 0,

𝜌
2
= 𝑐
𝑚
ℓ
−2

𝑀
− 𝑑 − (

1

𝑝
+
1

𝑟
) ‖𝐴‖

2

2
> 0,

𝜌
3
= 𝑑 − (

1

𝑞
+
1

𝑟
) ‖𝐵‖

2

2
> 0,

𝜌
4
= ℎ − 3𝑟‖𝐸‖

2

2
> 0,

(24)

where 𝑐
𝑚
= min

1≤𝑖≤𝑛
(𝑐
𝑖
), 𝑐
𝑀

= max
1≤𝑖≤𝑛

(𝑐
𝑖
), and ℓ

𝑀
=

max
1≤𝑖≤𝑛

(ℓ
𝑖
).
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4. Stability Analysis

In this section, we will prove that the conditions obtained
from Theorem 2 for the existence and uniqueness of the
equilibrium point are also sufficient for the global stability
of the equilibrium point of neutral system defined by (1). In
order to simplify the proofs, we will first shift the equilibrium
point 𝑥∗ = [𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑛
]
𝑇 of system (1) to the origin. By

using the transformation 𝑧(𝑡) = 𝑥(𝑡) − 𝑥
∗, the neutral-type

neural network model (1) can be put in the form:

�̇�
𝑖 (𝑡) = −𝑐𝑖𝑧𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑔
𝑗
(𝑧
𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑧
𝑗
(𝑡 − 𝜏

𝑗
)) +

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
�̇�
𝑗
(𝑡 − 𝜏

𝑗
) ,

𝑖 = 1, . . . , 𝑛

(25)

which can be written in vector-matrix form as follows:

�̇� (𝑡) = −𝐶𝑧 (𝑡) + 𝐴𝑔 (𝑧 (𝑡)) + 𝐵𝑔 (𝑧 (𝑡 − 𝜏)) + 𝐸�̇� (𝑡 − 𝜏) ,

(26)

where 𝑧(𝑡) = (𝑧
1
(𝑡), 𝑧
2
(𝑡), . . . , 𝑧

𝑛
(𝑡))
𝑇
∈ 𝑅
𝑛 is the state

vector of transformed neural system, 𝑔(𝑧(𝑡)) =

(𝑔
1
(𝑧
1
(𝑡)), 𝑔

2
(𝑧
2
(𝑡)), . . . , 𝑔

𝑛
(𝑧
𝑛
(𝑡)))
𝑇 represents the new

nonlinear activation, functions, and 𝑔(𝑧(𝑡 − 𝜏)) = (𝑔
1
(𝑧
1
(𝑡 −

𝜏
1
)), 𝑔
2
(𝑧
2
(𝑡 − 𝜏

2
)), . . . , 𝑔

𝑛
(𝑧
𝑛
(𝑡 − 𝜏

𝑛
)))
𝑇. The activation

functions 𝑔
𝑖
(𝑧
𝑖
(𝑡)) in (25) satisfy

𝑔𝑖 (𝑧𝑖 (𝑡))
 ≤ ℓ𝑖

𝑧𝑖 (𝑡)
 , 𝑖 = 1, 2, . . . , 𝑛. (27)

We can now state the following stability result.

Theorem 5. For the neutral-type neural network model (25),
let ‖𝐸‖

2
< 1 and the activation functions satisfy (27). Then, the

origin of system (25) is globally asymptotically stable if there
exist positive diagonal matrices𝐻 and 𝐷 and positive definite
matrices 𝑃, 𝑄, and 𝑅 such that the following conditions hold:

Υ
1
= 𝐶 − 𝑃 − 𝑄 − 𝐻 − 𝐶

𝑇
𝑅
−1
𝐶 > 0,

Υ
2
= 𝐶L

−2
− 𝐷 − 𝐴

𝑇
𝑃
−1
𝐴 − 𝐴

𝑇
𝑅
−1
𝐴 > 0,

Υ
3
= 𝐷 − 𝐵

𝑇
𝑄
−1
𝐵 − 𝐵
𝑇
𝑅
−1
𝐵 > 0,

Υ
4
= 𝐻 − 3𝐸

𝑇
𝑅𝐸 > 0,

(28)

whereL = diag(ℓ
1
, ℓ
2
, . . . , ℓ

𝑛
).

Proof. Define the following positive definite Lyapunov func-
tional:

𝑉 (𝑧 (𝑡)) = (𝑧 (𝑡) + 𝐸𝑧 (𝑡 − 𝜏))
𝑇
(𝑧 (𝑡) + 𝐸𝑧 (𝑡 − 𝜏))

+

𝑛

∑

𝑖=1

ℎ
𝑖
∫

𝑡

𝑡−𝜏𝑖

𝑧
2

𝑖
(𝑠) 𝑑𝑠 +

𝑛

∑

𝑖=1

𝑑
𝑖
∫

𝑡

𝑡−𝜏𝑖

𝑔
2

𝑖
(𝑧
𝑖 (𝑠)) 𝑑𝑠,

(29)

where 𝑝
𝑖
and 𝑑

𝑖
𝑖 = 1, 2, . . . , 𝑛 are some positive constants.

The time derivative of 𝑉(𝑧(𝑡)) along the trajectories of the
system (25) is obtained as follows:

�̇� (𝑧 (𝑡)) = 2(𝑧 (𝑡) + 𝐸𝑧 (𝑡 − 𝜏))
𝑇
(�̇� (𝑡) + 𝐸�̇� (𝑡 − 𝜏))

+

𝑛

∑

𝑖=1

ℎ
𝑖
𝑧
2

𝑖
(𝑡) −

𝑛

∑

𝑖=1

ℎ
𝑖
𝑧
2

𝑖
(𝑡 − 𝜏

𝑖
)

+

𝑛

∑

𝑖=1

𝑑
𝑖
𝑔
2

𝑖
(𝑧
𝑖 (𝑡)) −

𝑛

∑

𝑖=1

𝑑
𝑖
𝑔
2

𝑖
(𝑧
𝑖
(𝑡 − 𝜏

𝑖
))

= 2(𝑧 (𝑡) + 𝐸𝑧 (𝑡 − 𝜏))
𝑇
(�̇� (𝑡) + 𝐸�̇� (𝑡 − 𝜏))

+ 𝑧
𝑇
(𝑡)𝐻𝑧 (𝑡) − 𝑧

𝑇
(𝑡 − 𝜏)𝐻𝑧 (𝑡 − 𝜏)

+ 𝑔
𝑇
(𝑧 (𝑡))𝐷𝑔 (𝑧 (𝑡))

− 𝑔
𝑇
(𝑧 (𝑡 − 𝜏))𝐷𝑔 (𝑧 (𝑡 − 𝜏)) .

(30)

Since �̇�(𝑡) + 𝐸�̇�(𝑡 − 𝜏) = −𝐶𝑧(𝑡) + 𝐴𝑔(𝑧(𝑡)) + 𝐵𝑔(𝑧(𝑡 − 𝜏)), we
can write

�̇� (𝑧 (𝑡)) = 2(𝑧 (𝑡) + 𝐸𝑧 (𝑡 − 𝜏))
𝑇

× (−𝐶𝑧 (𝑡) + 𝐴𝑔 (𝑧 (𝑡)) + 𝐵𝑔 (𝑧 (𝑡 − 𝜏)))

+ 𝑧
𝑇
(𝑡)𝐻𝑧 (𝑡) − 𝑧

𝑇
(𝑡 − 𝜏)𝐻𝑧 (𝑡 − 𝜏)

+ 𝑔
𝑇
(𝑧 (𝑡))𝐷𝑔 (𝑧 (𝑡))

− 𝑔
𝑇
(𝑧 (𝑡 − 𝜏))𝐷𝑔 (𝑧 (𝑡 − 𝜏))

= −2𝑧
𝑇
(𝑡) 𝐶𝑧 (𝑡) + 2𝑧

𝑇
(𝑡) 𝐴𝑔 (𝑧 (𝑡))

+ 2𝑧
𝑇
(𝑡) 𝐵𝑔 (𝑧 (𝑡 − 𝜏))

− 2𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝐶𝑧 (𝑡) + 2𝑧

𝑇
(𝑡 − 𝜏)

× 𝐸
𝑇
𝐴𝑔 (𝑧 (𝑡)) + 2𝑧

𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝐵𝑔 (𝑧 (𝑡 − 𝜏))

+ 𝑧
𝑇
(𝑡)𝐻𝑧 (𝑡) − 𝑧

𝑇
(𝑡 − 𝜏)𝐻𝑧 (𝑡 − 𝜏)

+ 𝑔
𝑇
(𝑧 (𝑡))𝐷𝑔 (𝑧 (𝑡))

− 𝑔
𝑇
(𝑧 (𝑡 − 𝜏))𝐷𝑔 (𝑧 (𝑡 − 𝜏)) .

(31)

We can write the following inequalities:

2𝑧
𝑇
(𝑡) 𝐴𝑔 (𝑧 (𝑡))

≤ 𝑧
𝑇
(𝑡) 𝑃𝑧 (𝑡) + 𝑔

𝑇
(𝑧 (𝑡)) 𝐴

𝑇
𝑃
−1
𝐴𝑔 (𝑧 (𝑡)) ,

2𝑧
𝑇
(𝑡) 𝐵𝑔 (𝑧 (𝑡 − 𝜏))

≤ 𝑧
𝑇
(𝑡) 𝑄𝑧 (𝑡) + 𝑔

𝑇
(𝑧 (𝑡 − 𝜏)) 𝐵

𝑇
𝑄
−1
𝐵𝑔 (𝑧 (𝑡 − 𝜏)) ,

− 2𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝐶𝑧 (𝑡)

≤ 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏) + 𝑧

𝑇
(𝑡) 𝐶
𝑇
𝑅
−1
𝐶𝑧 (𝑡) ,
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2𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝐴𝑔 (𝑧 (𝑡))

≤ 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧(𝑡 − 𝜏) + 𝑔

𝑇
(𝑧 (𝑡)) 𝐴

𝑇
𝑅
−1
𝐴𝑔 (𝑧 (𝑡)) ,

2𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝐵𝑔 (𝑧 (𝑡 − 𝜏))

≤ 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏)

+ 𝑔
𝑇
(𝑧 (𝑡 − 𝜏)) 𝐵

𝑇
𝑅
−1
𝐵𝑔 (𝑧 (𝑡 − 𝜏)) ,

(32)

where 𝑃, 𝑄, and 𝑅 are some positive definite matrices. Using
(32) in (31) yields

�̇� (𝑧 (𝑡)) ≤ − 𝑧
𝑇
(𝑡) 𝐶𝑧 (𝑡) − 𝑧

𝑇
(𝑡) 𝐶𝑧 (𝑡) + 𝑧

𝑇
(𝑡) 𝑃𝑧 (𝑡)

+ 𝑔
𝑇
(𝑧 (𝑡)) 𝐴

𝑇
𝑃
−1
𝐴𝑔 (𝑧 (𝑡)) + 𝑧

𝑇
(𝑡) 𝑄𝑧 (𝑡)

+ 𝑔
𝑇
(𝑧 (𝑡 − 𝜏)) 𝐵

𝑇
𝑄
−1
𝐵𝑔 (𝑧 (𝑡 − 𝜏))

+ 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏) + 𝑧

𝑇
(𝑡) 𝐶
𝑇
𝑅
−1
𝐶𝑧 (𝑡)

+ 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏) + 𝑔

𝑇
(𝑧 (𝑡)) 𝐴

𝑇
𝑅
−1

× 𝐴𝑔 (𝑧 (𝑡)) + 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏)

+ 𝑔
𝑇
(𝑧 (𝑡 − 𝜏)) 𝐵

𝑇
𝑅
−1
𝐵𝑔 (𝑧 (𝑡 − 𝜏)) + 𝑧

𝑇
(𝑡)

× 𝐻𝑧 (𝑡) − 𝑧
𝑇
(𝑡 − 𝜏)𝐻𝑧 (𝑡 − 𝜏) + 𝑔

𝑇
(𝑧 (𝑡))

× 𝐷𝑔 (𝑧 (𝑡)) − 𝑔
𝑇
(𝑧 (𝑡 − 𝜏))𝐷𝑔 (𝑧 (𝑡 − 𝜏)) .

(33)

Equation (27) implies that

𝑧
𝑇
(𝑡) 𝐶𝑧 (𝑡) ≥ 𝑔

𝑇
(𝑧 (𝑡)) 𝐶L

−2
𝑔 (𝑧 (𝑡)) . (34)

Hence, we have

�̇� (𝑧 (𝑡)) ≤ − 𝑧
𝑇
(𝑡) 𝐶𝑧 (𝑡) − 𝑔

𝑇
(𝑧 (𝑡)) 𝐶L

−2
𝑔 (𝑧 (𝑡))

+ 𝑧
𝑇
(𝑡) 𝑃𝑧 (𝑡) + 𝑔

𝑇
(𝑧 (𝑡)) 𝐴

𝑇
𝑃
−1
𝐴𝑔 (𝑧 (𝑡))

+ 𝑧
𝑇
(𝑡) 𝑄𝑧 (𝑡) + 𝑔

𝑇
(𝑧 (𝑡 − 𝜏)) 𝐵

𝑇
𝑄
−1
𝐵𝑔

× (𝑧 (𝑡 − 𝜏)) + 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏)

+ 𝑧
𝑇
(𝑡) 𝐶
𝑇
𝑅
−1
𝐶𝑧 (𝑡) + 𝑧

𝑇
(𝑡 − 𝜏) 𝐸

𝑇

× 𝑅𝐸𝑧 (𝑡 − 𝜏) + 𝑔
𝑇
(𝑧 (𝑡)) 𝐴

𝑇
𝑅
−1
𝐴𝑔 (𝑧 (𝑡))

+ 𝑧
𝑇
(𝑡 − 𝜏) 𝐸

𝑇
𝑅𝐸𝑧 (𝑡 − 𝜏) + 𝑔

𝑇
(𝑧 (𝑡 − 𝜏))

× 𝐵
𝑇
𝑅
−1
𝐵𝑔 (𝑧 (𝑡 − 𝜏))

+ 𝑧
𝑇
(𝑡)𝐻𝑧 (𝑡) − 𝑧

𝑇
(𝑡 − 𝜏)

× 𝐻𝑧 (𝑡 − 𝜏) + 𝑔
𝑇
(𝑧 (𝑡))𝐷𝑔 (𝑧 (𝑡))

− 𝑔
𝑇
(𝑧 (𝑡 − 𝜏))𝐷𝑔 (𝑧 (𝑡 − 𝜏))

(35)

which can be written as

�̇� (𝑧 (𝑡)) ≤ − 𝑧
𝑇
(𝑡) (𝐶 − 𝑃 − 𝑄 − 𝐻 − 𝐶

𝑇
𝑅
−1
𝐶) 𝑧 (𝑡)

− 𝑔
𝑇
(𝑧 (𝑡))

× (𝐶L
−2
− 𝐷 − 𝐴

𝑇
𝑃
−1
𝐴 − 𝐴

𝑇
𝑅
−1
𝐴)

× 𝑔 (𝑧 (𝑡)) − 𝑔
𝑇
(𝑧 (𝑡 − 𝜏))

× (𝐷 − 𝐵
𝑇
𝑄
−1
𝐵 − 𝐵
𝑇
𝑅
−1
𝐵)

× 𝑔 (𝑧 (𝑡 − 𝜏)) − 𝑧
𝑇
(𝑡 − 𝜏)

× (𝐻 − 3𝐸
𝑇
𝑅𝐸) 𝑧 (𝑡 − 𝜏)

(36)

or equivalently

�̇� (𝑧 (𝑡)) ≤ − 𝑧
𝑇
(𝑡) Υ1𝑧 (𝑡) − 𝑔

𝑇
(𝑧 (𝑡)) Υ2𝑔 (𝑧 (𝑡))

− 𝑔
𝑇
(𝑧 (𝑡 − 𝜏)) Υ3𝑔 (𝑧 (𝑡 − 𝜏))

− 𝑧
𝑇
(𝑡 − 𝜏) Υ4𝑧 (𝑡 − 𝜏) .

(37)

Clearly, Υ
1
> 0, Υ

2
> 0, Υ

3
> 0, and Υ

4
> 0 imply that

�̇�(𝑧(𝑡)) < 0 if any of the vectors 𝑧(𝑡), 𝑔(𝑧(𝑡 − 𝜏)), 𝑔𝑇(𝑧(𝑡)),
and 𝑧(𝑡 − 𝜏) is nonzero, thus implying that �̇�(𝑧(𝑡)) = 0 if and
only if 𝑧(𝑡) = 𝑧(𝑡−𝜏) = 𝑔(𝑧(𝑡−𝜏)) = 𝑧(𝑡−𝜏) = 0which is the
origin of system (25). On the other hand, 𝑉(𝑧(𝑡)) → ∞ as
‖𝑧(𝑡)‖

2
→ ∞, meaning that the Lyapunov functional used

for the stability analysis is radially unbounded. Thus, it can
be concluded from the standard Lyapunov theorems [34] that
the origin of system (25) or equivalently the equilibriumpoint
of system (1) is globally asymptotically stable.

We can directly state the following corollaries.

Corollary 6. For the neutral-type neural network model (25),
let ‖𝐸‖

2
< 1 and the activation functions satisfy (27). Then, the

origin of system (25) is globally asymptotically stable if there
exist some positive constants ℎ, 𝑑, 𝑝, 𝑞, and 𝑟 such that the
following conditions hold:

Υ
∗

1
= 𝐶 − (𝑝 + 𝑞 + ℎ) 𝐼 −

1

𝑟
𝐶
2
> 0,

Υ
∗

2
= 𝐶L

−2
− 𝑑𝐼 −

1

𝑝
𝐴
𝑇
𝐴 −

1

𝑟
𝐴
𝑇
𝐴 > 0,

Υ
∗

3
= 𝑑𝐼 −

1

𝑞
𝐵
𝑇
𝐵 −

1

𝑟
𝐵
𝑇
𝐵 > 0,

Υ
∗

4
= ℎ𝐼 − 3𝑟𝐸

𝑇
𝐸 > 0,

(38)

whereL = diag(ℓ
1
, ℓ
2
, . . . , ℓ

𝑛
).
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Corollary 7. For the neutral-type neural network model (25),
let ‖𝐸‖

2
< 1 and the activation functions satisfy (27). Then, the

origin of system (25) is globally asymptotically stable if there
exist some positive constants ℎ, 𝑑, 𝑝, 𝑞, and 𝑟 such that the
following conditions hold:

𝜌
1
= 𝑐
𝑚
− (𝑝 + 𝑞 + ℎ) −

1

𝑟
𝑐
2

𝑀
> 0,

𝜌
2
= 𝑐
𝑚
ℓ
−2

𝑀
− 𝑑 − (

1

𝑝
+
1

𝑟
) ‖𝐴‖

2

2
> 0,

𝜌
3
= 𝑑 − (

1

𝑞
+
1

𝑟
) ‖𝐵‖

2

2
> 0,

𝜌
4
= ℎ − 3𝑟‖𝐸‖

2

2
> 0,

(39)

where 𝑐
𝑚
= min

1≤𝑖≤𝑛
(𝑐
𝑖
), 𝑐
𝑀

= max
1≤𝑖≤𝑛

(𝑐
𝑖
), and ℓ

𝑀
=

max
1≤𝑖≤𝑛

(ℓ
𝑖
).

5. A Comparative Example

In this section, we will give a numerical example to make a
comparison between our results and some previous corre-
sponding results derived in the literature. We should point
our here that the stability results regarding the neutral-type
neural networks involve complicated relationships between
the network parameters and some positive definite matrices
to be determined, which is a difficult task to achieve. There-
fore, the example we give will show that, in a particular case,
our results seem to be equivalent to the previous correspond-
ing literature results. We now state some of the previous
results.

Theorem 8 (see [23]). For the neutral-type neural network
model (1), let ‖𝐸‖

2
< 1 and the activation functions satisfy (2).

Then, system (1) is globally asymptotically stable if there exist
some positive constants 𝑘, 𝑝, 𝑞, and 𝑟 such that the following
conditions hold:

𝛿
1
= (1 − 𝑘) 𝛾

2
− (1 +

1

𝑝
+
1

𝑞
) ‖𝐴‖

2

2
> 0,

𝛿
2
= 𝑘𝛾
2
− (1 + 𝑝 +

1

𝑟
) ‖𝐵‖

2

2
> 0,

𝛿
3
= 1 − (1 + 𝑞 + 𝑟) ‖𝐸‖

2

2
> 0,

(40)

where 𝛾 = min
1≤𝑖≤𝑛

(𝑐
𝑖
/ℓ
𝑖
).

Theorem 9 (see [22]). For the neutral-type neural network
model (1), let ‖𝐸‖

2
< 1 and the activation functions satisfy (2).

Then, system (1) is globally asymptotically stable if there exist
positive constants 𝑝, 𝑝, 𝑞, and 𝑞 such that the following
conditions hold:

𝜖 = (2 − 𝑟) 𝑐𝑚 − (𝑝 + 𝑞) − 2𝑐𝑚‖𝐸‖ 2 − (𝑝 + 𝑞) ‖𝐸‖
2

2
> 0,

Φ = 𝑟𝑐
𝑚
ℓ
−2

𝑀
− (

1

𝑝
+
1

𝑝
) ‖𝐴‖

2

2
− (

1

𝑞
+
1

𝑞
) ‖𝐵‖

2

2
≥ 0,

(41)

where 𝑐
𝑚
= min

1≤𝑖≤𝑛
(𝑐
𝑖
), 𝑐
𝑀

= max
1≤𝑖≤𝑛

(𝑐
𝑖
), and ℓ

𝑀
=

max
1≤𝑖≤𝑛

(ℓ
𝑖
).

Theorem 10 (see [24]). For the neutral-type neural network
model (1), let ‖𝐸‖

2
< 1 and the activation functions satisfy (2).

Then, system (1) is globally asymptotically stable if the following
condition holds:

𝛿 = 𝑐
𝑚
− ℓ
𝑀‖𝐴‖ 2 (1 + ‖𝐸‖ 2)

− ℓ
𝑀‖𝐵‖ 2 (1 + ‖𝐸‖ 2) − 𝑐𝑚‖𝐸‖ 2 > 0,

(42)

where 𝑐
𝑚
= min

1≤𝑖≤𝑛
(𝑐
𝑖
), ℓ
𝑀
= max

1≤𝑖≤𝑛
(ℓ
𝑖
).

We now consider the following example.

Example 11. Assume that the network parameters of neutral-
type neural system (1) are given as follows:

𝐴 = 𝐵 =

[
[
[

[

𝑎 𝑎 𝑎 𝑎

−𝑎 −𝑎 𝑎 𝑎

𝑎 −𝑎 𝑎 −𝑎

−𝑎 𝑎 𝑎 −𝑎

]
]
]

]

, (43)

where 𝑎 > 0 is real number. Assume that 𝑐
1
= 𝑐
2
= 𝑐
3
= 𝑐
4
= 1

and ℓ
1
= ℓ
2
= ℓ
3
= ℓ
4
= 1. We have ‖𝐴‖

2
= ‖𝐵‖

2
= 2𝑎.

For the sufficiently small values of ‖𝐸‖
2
and ℎ and

sufficiently large value of 𝑟, 𝑑 = 1/2, and𝑝 = 𝑞, the conditions
of Corollary 7 can be approximately stated as follows:

𝜌
1
≅ 1 − 2𝑝 > 0,

𝜌
2
≅
1

2
−
1

𝑝
4𝑎
2
> 0,

𝜌
3
≅
1

2
−
1

𝑝
4𝑎
2
> 0,

𝜌
4
≅ ℎ − 3𝑟‖𝐸‖

2

2
> 0.

(44)

The two required conditions for stability are 𝑝 < 1/2 and 𝑎2 <
𝑝/8, implying that 𝑎 < 1/4.

In the case ofTheorem 8, for the sufficiently small value of
‖𝐸‖
2
and sufficiently large values of 𝑟 and 𝑞, 𝑘 = 1/2, and 𝑝 =

1, the conditions ofTheorem 8 can be approximately stated as
follows:

𝛿
1
≅
1

2
− 8𝑎
2
> 0,

𝛿
2
≅
1

2
− 8𝑎
2
> 0,

𝛿
3
≅ 1 − (1 + 𝑞 + 𝑟) ‖𝐸‖

2

2
> 0.

(45)

The required condition for stability is 𝑎 < 1/4.
In the case ofTheorem 9, for the sufficiently small value of

‖𝐸‖
2
and sufficiently large values of 𝑝 and 𝑞, 𝑟 = 1, and 𝑝 = 𝑞,

the conditions of Theorem 9 can be approximately stated as
follows:

𝜖 ≅ 1 − 2𝑝 > 0,

Φ ≅ 1 −
2

𝑝
4𝑎
2
≥ 0.

(46)
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The two required conditions for stability are 𝑝 < 1/2 and 𝑎2 <
𝑝/8, implying that 𝑎 < 1/4.

In the case of Theorem 10, for a sufficiently small value
of ‖𝐸‖

2
, the condition of Theorem 10 can be approximately

stated as follows:

𝛿 ≅ 1 − 4𝑎 > 0. (47)

The required condition for stability is 𝑎 < 1/4.

6. Conclusions

In this paper, we have obtained some sufficient conditions for
the existence, uniqueness, and global asymptotic stability of
the equilibrium point for the class of neutral-type systems
with discrete time delays. The results we obtained establish
various relationships between the network parameters of the
system.Wehave also given an example to show the applicabil-
ity of our results and make a comparison between our results
and some previous corresponding results derived in the liter-
ature. Most of the literature results express the stability con-
ditions in terms of LMIs (linear matrix inequalities), which
are then solved by some software tools. Such results may
give less conservative results; however, the computational
burden of this method can be high. Our results establish less
complex relationships between the network parameters of the
system. We should also point out that the delay-independent
conditions may be more conservative than delay-dependent
ones. In our paper, our stability conditions are independent of
the time delays; this is due to the Lyapunov functional that we
have employed in the analysis of our networkmodel. In order
to apply our techniques to obtain some delay-dependent
conditions, one needs tomodify the Lyapunov functional that
we have used to include time delays in the conditions, which
probably could be the subject of another study.
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