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We discuss structuralmodels based onMerton’s framework. First, we observe that the classical assumptions of theMertonmodel are
generally rejected. Secondly, we implement a structural credit riskmodel based on stable non-Gaussian processes as a representative
of subordinated models in order to overcome some drawbacks of the Merton one. Finally, following the KMV-Merton estimation
methodology, we propose an empirical comparison between the results obtained from the classical KMV-Merton model and the
stable Paretian one. In particular, we suggest alternative parameter estimation for subordinated processes, and we optimize the
performance for the stable Paretian model.

1. Introduction

Estimating a borrower’s risk level, namely, the probability
of default (PD), by assigning an appropriate PD is a widely
employed strategy by many financial institutions as well as
the supervisory authorities. PD indicates a probability that
a given counterparty will not be able to meet its obliga-
tions. The incorrect estimation of PD leads to, among other
things, unreasonable ratings and incorrect pricing of financial
instruments, and thereby it is one of the causes of the recent
global financial crisis. Undervaluation of the risk caused the
collapse of the financial system which has been extended
through credit derivatives on the global markets. PD is also
a crucial parameter used in the calculation of economic or
regulatory capital, under the Basel II and Basel III Accords for
banking institutions. These reasons highlight how important
the estimation of PD is and why it has been a significant
research topic for a long time.

The probability of default, as one of the key risk param-
eters in the IRB approach, has many methodologies for its
estimation. In general, we can classify the existing method-
ologies into three groups: structural models, reduced-form
models, and credit-scoring (statistical) models. We will focus
on the first type of models only in this paper. This structural

approach was proposed in 1974 by Robert Merton [1] in his
seminal paper on the valuation of corporate debt. Largely as
a logical extension of the Black-Scholes [2] option pricing
framework in 1973, he introduced a model for assessing the
credit risk of a company by characterizing a company’s equity
as a derivative on its assets.

A number of researchers have examined the contribution
of theMertonmodel over the past several years. An overview
of structural credit risk models can be found in Bluhm
et al. [3] and in Duffie and Singleton [4]. Practitioners
employed by either Moody’s or KMV were the first ones who
analysedMertonmodel carefully.Moreover, theKMVdefault
probability model is summarized by Crosbie and Bohn [5].
Bohn et al. [6] argue that the KMV-Merton model captures
all of the information in traditional agency ratings and well-
known accounting variables. The model’s predictive power
is examined, for instance, by Du and Suo [7] and Hillegeist
et al. [8]. Duffie et al. [9] show that the KMV-Merton model
probabilities have significant predictive power in modelling
default probabilities over time. Farmen et al. [10] investigate
default probabilities and their comparative statics in the
Merton framework using objective probability measure. The
main theoretical models of risky debt valuation built on
Merton [1] and Black and Cox [11] are discussed in Bohn
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[12]. In the literature on bank deposit insurance, a contingent
claim valuation of equity has been used extensively. In this
case, the equity call model is reversed to generate estimates
of the market value of assets from observed share prices.This
approach allows for the calculation of fair deposit insurance
premium. Duan [13] proposes anothermethod for estimating
asset value and volatility which is based on the maximum
likelihood estimation using equity prices.

The Merton model requires a number of simplifying
assumptions (the company can default only at debt’s maturity
time 𝑇 but not before; the model is not able to distinguish
among the different types of debt, constant and flat term
structure of interest rates, etc.). Notwithstanding, one of the
most important drawbacks is an assumption that company
value follows the log-normal distribution. It is well known
that log-returns of equities are not Gaussian distributed, and
several empirical investigations have shown that log-returns
of equities present skew distributions with excess kurtosis
which leads to a greater density in the tails, and that the
normal distribution with a comparatively thinner tail simply
cannot describe this phenomenon (see Mandelbrot [14–16],
Fama [17–19], or Rachev and Mittnik [20]).

The main contribution of this paper is twofold. First, we
introduce a structural credit risk model based on the stable
Paretian distributions as a representative of subordinated
models. Secondly, we show that it is possible to use thismodel
in the Merton’s framework, and we propose an empirical
comparison of the KMVmethodology applied to the Merton
model and our subordinated one. In particular, we prove
that the basic assumption of the Merton model is generally
rejected, and thus the log-returns of the company’s assets
value are notGaussian distributed. For this reason, we discuss
the possibility for using other subordinated processes to
approximate the behaviour of the log-returns of the company
value. Thus, we propose to use the Hurst et al. [21] option
pricing model based on the stable Paretian distributions
which generalizes the standard Merton methodology.

The practical and theoretical appeal of the stable non-
Gaussian approach is given by its attractive properties that
are almost the same as the normal ones. As a matter of
fact, the Gaussian law is a particular stable Paretian one,
and thus the stable Paretian model is a generalization of
the Merton one. The first relevant desirable property of the
stable distributional assumption is that stable distributions
have domain of attraction. The generalized central limit
theorem for the normalized sums of i.i.d. random variables
determines the domain of attraction of each stable law.
Therefore, any distribution in the domain of attraction of a
specified stable distributionwill have properties close to those
of the stable distribution. Another attractive aspect of the
stable Paretian assumption is the stability property; that is,
stable distributions are stable with respect to summation of
i.i.d. random stable variables. Hence, the stability governs the
main properties of the underlying distribution. In addition,
in the empirical financial literature, it is well documented that
the asset returns have a distribution whose tail is heavier than
that of the distributions with finite variance.

The idea of using subordinated stable Paretian processes
goes back to the seminal work of Mandelbrot and Taylor

[22]. Stable laws have been applied in several financial sectors
(see Rachev [23] and Rachev and Mittnik [20]). For these
reasons, the stable Paretian law is the first candidate as a
subordinated model investigating for credit risk modeling,
and in this paper we discuss how to use the Hurst et al. [21]
stable subordinated model in the framework of structural
credit risk models. In particular, as for the Merton model,
we propose two different methodologies for the parameter
estimation: the first is to generalize the maximum likelihood
parameter estimation proposed by Duan [13]; the second is a
generalization of the KMVmethodology.

This paper is organized as follows. In Section 2, we
firstly review the theory and the distributional assumptions
of the Merton model. Subsequently, we introduce the credit
risk models with subordinated processes and describe the
Mandelbrot-Taylor distributional assumptions. Section 3 is
devoted to the parameters estimation for both theMerton and
the subordinatedmodels.We characterize empirical data and
make a comparison between the obtained results in Section 4.
Finally, in the last section, we provide a brief summary.

2. Merton and Subordinated Credit
Risk Models

The core concept of the Merton model [1] introduced in 1974
is to treat company’s equity and debt as a contingent claim
written on company’s assets value. In this framework, the
company is considered to have a very simple capital structure.
It is assumed that the company is financed by one type of
equity with a market value 𝐸

𝑡
at time 𝑡 and a zero-coupon

debt instrument at 𝑡(𝐷
𝑡
) with a face value of 𝐿 maturing

at time 𝑇. (Generally, in a credit risk models framework
we assume one-year time horizon for debt maturity and
subsequent estimation of PD. One year is perceived as being
of sufficient length for a bank to raise additional capital on
account of increase in portfolio credit risk (if any).) The
exercise price of a call option is defined as the value 𝐿.
Let 𝐴

𝑡
be the company’s asset value at time 𝑡. Naturally, the

following accounting identity holds for every time point:

𝐴
𝑡
= 𝐸
𝑡
+ 𝐷
𝑡
. (1)

In the Merton framework the value of company’s equity
at maturity time 𝑇 is given by

𝐸
𝑇
= max [𝐴

𝑇
− 𝐿, 0] . (2)

2.1. The Merton-Black-Scholes Distributional Assumptions.
Under the Merton model, the assets value is assumed to
follow a geometric Brownian motion (GBM) in the following
form:

𝑑𝐴
𝑡
= 𝜇𝐴
𝑡
𝑑𝑡 + 𝜎𝐴

𝑡
𝑑𝑊
𝑡
, (3)

where 𝜇 is the expected return (drift coefficient), 𝜎 is the
volatility (diffusion coefficient), both unobserved, and 𝑊

𝑡
is
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the normal variable 𝑁(0, 1). Using Ito’s lemma, we can obtain
the solution of (3) as follows:

𝐴
𝑇
= 𝐴
𝑡
exp [(𝜇 − 1

2
𝜎
2
) (𝑇 − 𝑡) + 𝜎√(𝑇 − 𝑡)𝑊

𝑡
] ,

(4)

where (𝑇 − 𝑡) is a remaining maturity.
In accordance with the Black-Scholes option pricing

theory [2], the Merton model stipulates that the company’s
equity value satisfies the following equation for pricing the
call option within a risk neutral framework:

𝐸
𝑡
= 𝐴
𝑡
Φ(𝑑
1
) − 𝐿𝑒

−𝑟(𝑇−𝑡)
Φ(𝑑
2
) , (5)

where

𝑑
1
=

ln (𝐴
𝑡
/𝐿) + (𝑟 + (1/2) 𝜎

2
) (𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)

, (6)

𝑑
2
= 𝑑
1
− 𝜎√(𝑇 − 𝑡), (7)

𝑟 is the risk-free interest rate and Φ(⋅) is the cumulative
distribution function of the standard normal variable. (The
Treasury bill yields are commonly used as the risk-free inter-
est rate 𝑟.Their rates are considered an important benchmark
because treasury securities are back by the full faith and credit
of the U.S. Treasury. Therefore, they represent the rate at
which investment is considered risk-free.) Equation (7) is
referred to as the distance-to-default (DD) by Moody’s KMV.
The larger the number in DD is, the less chance the company
will default.

We can estimate PD by rearranging (4) as follows:

PD
𝑡
= 𝑃 [𝐴

𝑇
≤ 𝐿]

= 𝑃 [ln (𝐴
𝑡
) + (𝜇 −

1

2
𝜎
2
) (𝑇 − 𝑡)

+𝜎√(𝑇 − 𝑡) 𝑊
𝑡
≤ ln (𝐿) ]

= ∫

−(ln(𝐴
𝑡
/𝐿)+(𝜇−(1/2)𝜎

2
)(𝑇−𝑡))/𝜎√(𝑇−𝑡)

−∞

𝜙 (𝑥) 𝑑𝑥,

(8)

where 𝜙 is the probability density function of a standard
normal variable. Note that unlike (8), (5) is not a function of
𝜇, but it is a function of 𝑟 (we would get PD under the risk
neutral probabilitymeasure).Whenwe estimate PD, the risk-
free interest rate 𝑟 has to be replacedwith real company drift𝜇
since this step has nothing to dowith option pricing.Thereby,
the default probability of the company under the objective
probability measure is given by

PD
𝑡
= Φ(−𝑑

2
)

= Φ(−

ln (𝐴
𝑡
/𝐿) + (𝜇 − (1/2) 𝜎

2
) (𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)

) .

(9)

Further discussion on this topic can be found in Delian-
des and Geske [24] who showed that risk neutral PDs can
serve as an upper bound to objective PDs.

2.2. Credit Risk Models with Subordinated Assumptions.
Using subordinated processes, we are usually able to capture
empirically observed anomalies which are presented in the
evolution of return processes over time. That is, we substi-
tute the physical (calendar) time with a so-called intrinsic
(operational) time which provides distribution tail effects
often observed in the market (see Hurst et al. [21] and
Rachev and Mittnik [20]). Thus, if 𝑊 = {𝑊(𝑡), 𝑡 ≥ 0} is
a stochastic process and 𝑇 = {𝑇(𝑡), 𝑡 ≥ 0} is a non-
negative stochastic process defined on the same probability
space and adapted to the same filtration, a new process 𝑍 =

{𝑍(𝑡) = 𝑊(𝑇(𝑡)), 𝑡 ≥ 0} may be formed, and it is defined
as subordinated to 𝑊 by the intrinsic time process 𝑇. Next,
we will suppose that 𝑊 is a standard Brownian motion. In
this case, if the intrinsic time process 𝑇 is the deterministic
physical time, that is, 𝑇(𝑡) = 𝑡, we obtain the classical log-
normal model (see Osborne [25]). Typically, subordinated
models with random intrinsic time are leptokurtic with
heavier tails compared to the normal distribution. Feller [26]
showed that if the intrinsic time process has non-negative
stationary independent increments, then the subordinated
process 𝑍 also has stationary independent increments.

Generally, we assume frictionless markets, where the log-
price process 𝑍 is subordinated to a standard Brownian
motion 𝑊 by the independent intrinsic time process 𝑇.
Therefore, we model the assets price process 𝐴

𝑡
(the com-

pany’s assets value in our case) by a stochastic equation of the
type as follows:

𝐴 (𝑡) = 𝐴 (𝑡
0
) exp{∫

𝑡

𝑡
0

𝜇 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡
0

𝜌 (𝑠) 𝑑𝑇 (𝑠)

+∫

𝑡

𝑡
0

𝜎 (𝑠) 𝑑𝑊 (𝑇 (𝑠))} ,

(10)

where the drift in the physical time scale 𝜇(𝑠), the drift
in the intrinsic time scale 𝜌(𝑠), and the volatility 𝜎(𝑠)

are generally assumed to be constant. The appeal of pro-
cesses subordinated to a standard Brownian motion 𝑊 by
an intrinsic time process 𝑇 with non-negative stationary
independent increments is also due to the option pricing
formula which follows from the classical Black-Scholes one
in a frictionless complete market and a risk-minimizing
strategy in incomplete markets. (In incomplete markets,
there exist nonredundant claims carrying an intrinsic risk.
In order to evaluate a contingent claim, a risk-minimizing
strategy is often applied (see Hofmann et al. [27], Follmer
and Sondermann [28], and Follmer and Schweizer [29]).)
Hurst et al.’s stable subordinated model [21] uses the unique
continuous martingale that makes sense in a discrete setting,
but a priori it is not derived from a risk-minimizing strategy
even if the markets are incomplete (see Rachev and Mittnik
[20]). Following the same notation as inMerton’s framework,
the value of a European call option at time 𝑡 (the value of
company’s equity) with exercise price 𝐿 (face value of a zero-
coupon debt instrument) and time to maturity 𝑡(here, we
change the notation of maturity time from 𝑇 (used in the
Merton’s framework) to t since 𝑇 denotes the intrinsic time
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process in the subordinated option pricing models) is given
by

𝐸
𝑡
= 𝐴 (𝑡

0
) 𝐹
+
(ln(

𝐴 (𝑡
0
)

𝐿
𝑟,𝑡
0
,𝑡

)) − 𝐿
𝑟,𝑡
0,
𝑡
𝐹
−
(ln(

𝐴 (𝑡
0
)

𝐿
𝑟,𝑡
0
,𝑡

)) ,

(11)

where

𝐹
±
(𝑥) = ∫

+∞

0

Φ(
𝑥 ± (1/2) 𝑦

√𝑦
)𝑑𝐹
𝑌
(𝑦) , (12)

Φ(⋅) is the cumulative distribution function of the standard
normal variable, 𝐹

𝑌
is the cumulative distribution function

of a random variable 𝑌 = ∫
𝑡

𝑡
0

𝜎
2
(𝑠)𝑑𝑇(𝑠), and 𝐿

𝑟,𝑡
0
,𝑡

=

𝐿 exp(− ∫𝑡
𝑡
0

𝑟(𝑠)𝑑𝑠) is the discounted exercise price (the right
continuous with left-hand limits (RCLL) time-dependent
function 𝑟(𝑡) defines the short term interest rate). Consid-
ering a continuous distribution of the random variable 𝑌

with density function 𝑓
𝑌
, then 𝐹

±
(𝑥) can now be numerically

integrated over the finite interval [0, 1] the transformation
𝑦 = 𝑢(1 − 𝑢)

−3 (see Rachev and Mittnik [20]); that is,

𝐹
±
(𝑥) = ∫

+∞

0

Φ(
𝑥 ± (1/2) 𝜆𝑦

√𝜆𝑦
)𝑓
𝑌
(𝑦) 𝑑𝑦

= ∫

1

0

Φ(
𝑥 ± (1/2) 𝜆𝑢 (1 − 𝑢)

−3

√𝜆𝑢 (1 − 𝑢)
−3

)

× 𝑓
𝑌
(𝑢 (1 − 𝑢)

−3
)
1 + 2𝑢

(1 − 𝑢)
4
𝑑𝑢.

(13)

Moreover, as for the classical Black-Scholes model, in the
case of subordinated models, we can also monitor the vari-
ation in the derivative price with respect to the parameters
that enter into the option formula (i.e., the Greeks). For our
purposes, it is sufficient to define delta, which is given by

delta = Δ
𝐸
=
𝜕𝐸
𝑡

𝜕𝐴
= 𝐹
+
(ln(

𝐴 (𝑡
0
)

𝐿
𝑟,𝑡
0
,𝑡

)) . (14)

Analogously to the Merton model, the probability of
default can be estimated under the risk neutral probability
measure as follows:

PD
𝑡
= 𝐹
+
(ln(

𝐿
𝑟,𝑡
0
,𝑡

𝐴 (𝑡
0
)
))

= ∫

+∞

0

Φ(

ln (𝐿
𝑟,𝑡
0
,𝑡
/𝐴 (𝑡
0
)) + (1/2) 𝑦

√𝑦
)𝑑𝐹
𝑌
(𝑦) .

(15)

Recall that under the risk neutral measure the stationary
increment 𝑍(𝑡 + 𝑠) − 𝑍(𝑡) has mean 𝜇

𝑍,𝑠
= 0 and variance

𝜎
2

𝑍,𝑠
= 𝜇
𝑇,𝑠
𝜎
2, where 𝜎 and 𝜇

𝑇,𝑠
are, respectively, the volatility

and the mean of the increment of the stationary process 𝑇

when they exist (see [21]). The skewness coefficient of this
increment is zero (models are symmetric around the zero
mean). Kurtosis of the subordinated models is defined as
𝑘
𝑍,𝑠

= 3((1 + 𝜎
2

𝑇,𝑠
)/𝜇
𝑇,𝑠
), for all 𝑠 ≥ 0 (where 𝜎2

𝑇,𝑠
is the

variance of the random variable𝑇(𝑡+𝑠)−𝑇(𝑡)when it exists);
that is, subordinated models with intrinsic random time are
leptokurtic. Thereby, the model we consider in the following
presents heavier tails and higher peaks around the origin than
the normal distribution.

2.3. The Mandelbrot-Taylor Distributional Assumptions.
Mandelbrot [14–16] and Mandelbrot and Taylor [22] have
proposed the stable Paretian distribution to estimate the
log-returns. An 𝛼-stable distribution 𝑆

𝛼
= (𝜎, 𝛽, 𝜇) depends

on four parameters: the index of stability 𝛼 ∈ (0, 2] (𝛼 = 2

in the Gaussian case), the skewness parameter 𝛽 ∈ [−1, 1],
the scale parameter 𝜎 ∈ (0, +∞), and the location parameter
𝜇 ∈ (−∞, +∞) (see Samorodnitsky and Taqqu [30] for
further details on stable distributions). Mandelbrot and
Taylor [22] supposed that the intrinsic time process 𝑇 has
stationary independent increments as follows:

𝑇 (𝑡 + 𝑠) − 𝑇 (𝑡)
𝑑

= 𝑆
𝛼/2

(𝑐𝑠
2/𝛼
, 1, 0) , (16)

for all 𝑠, 𝑡 ≥ 0, 𝛼 ∈ (0, 2), and 𝑐 > 0. Here, the index
of stability is 𝛼/2; the scale parameter is 𝑐𝑠𝛼/2; the stable
skewness is 1; and the location parameter is zero. Under the
Mandelbrot-Taylor assumptions; the subordinated process
𝑍(𝑡) = ln(𝐴

𝑡ℎ
) is a symmetric 𝛼-stable Lévy motion with

stationary independent increments as follows:

𝑍 (𝑡 + 𝑠) − 𝑍 (𝑡) = ln(
𝐴
𝑡ℎ

𝐴
(𝑡−𝑠)ℎ

)
𝑑

= 𝑆
𝛼
(]𝑠1/𝛼, 0, 0) , (17)

for all 𝑠, 𝑡 > 0, where

] =
𝜎√𝑐

√2(cos (𝜋𝛼/4))1/𝛼
. (18)

If we consider the constant scalar parameter 𝜎, then the
random variable 𝑌 in (11) is as follows:

𝑌 = 𝜎
2
(𝑇 (𝑡) − 𝑇 (𝑡

0
)) = 𝜆𝑉, (19)

where 𝜆 = 𝑐𝜎
2
(𝑡 − 𝑡
0
)
2/𝛼 and 𝑉 = 𝑆

𝛼/2
(1, 1, 0). Hence, with

𝑐 = 2 (cos(𝜋𝛼
4
))

2/𝛼

, (20)

it follows that 𝑍(𝑡) 𝑑= 𝑆
𝛼
(𝜎𝑡
1/𝛼
, 0, 0). Thus, we can estimate

the index of stability 𝛼 and the scalar parameter 𝜎 using the
maximum likelihood method (see [20] and the references
therein). Moreover, considering the density function 𝑓

𝑉
of

the 𝛼/2 stable random variable 𝑉, we obtain the following
expression for 𝐹

±
(𝑥):

𝐹
±
(𝑥) = ∫

1

0

Φ(
𝑥 ± (1/2) 𝜆𝑢 (1 − 𝑢)

−3

√𝜆𝑢 (1 − 𝑢)
−3

)

× 𝑓
𝑉
(𝑢 (1 − 𝑢)

−3
)
1 + 2𝑢

(1 − 𝑢)
4
𝑑𝑢.

(21)
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The probability of default under the risk neutral probabil-
ity measure is then given by

PD
𝑡
= ∫

1

0

Φ(

ln (𝐿
𝑟,𝑡
0
,𝑡
/𝐴 (𝑡
0
)) + (1/2) 𝜆𝑢 (1 − 𝑢)

−3

√𝜆𝑢(1 − 𝑢)
−3

)

× 𝑓
𝑉
(𝑢 (1 − 𝑢)

−3
)
1 + 2𝑢

(1 − 𝑢)
4
𝑑𝑢.

(22)

3. Estimation Methodology

While for the Merton model there are just three parameters
necessary for the estimation of default probabilities—namely,
the company’s market value𝐴

𝑡
at time 𝑡, the asset drift 𝜇, and

the asset volatility 𝜎—in the case of the subordinatedmodels,
we have to estimate the company’s market value at time 𝑡 and
the parameters of the subordinated process. Clearly, different
distributional hypothesis of the subordinated model could
require the estimation of several different parameters. For
example, in the 𝛼 stable Lévy process, once the index of
stability 𝛼 is estimated, the scalar parameter 𝜎 is the unique
parameter that should be estimated since the skewness
parameter and the location parameter have been fixed equal
to zero in the model.

3.1. Parameter Estimates for the KMV-Merton Model. The
unknown parameters of KMV-Merton model come from
(5). Since the market value of assets is a random variable
and cannot be observed directly, it is impossible to directly
estimate the drift and the volatility in a movement of log-
returns on 𝐴

𝑡
. Therefore, these three parameters have to be

estimated in a different way. In fact, we use the observed
market value of equity 𝐸

𝑡
along with (5) to estimate them

indirectly.
Generally, the starting point for the two iterativemethod-

ologies proposed in literature (the maximum likelihood
estimation method and the Moody’s KMV method) is based
on the so-called calibration method (see [3, 5, 31] or [32]),
which finds two unknown parameters (𝐴

𝑡
and 𝜎) by solving

the system of two equations as follows:

𝐸
𝑡
= 𝐴
𝑡
Φ(𝑑
1
) − 𝐿𝑒

−𝑟(𝑇−𝑡)
Φ(𝑑
2
) ,

𝜎
𝐸
=
𝐴
𝑡

𝐸
𝑡

Φ(𝑑
1
) 𝜎,

(23)

where 𝜎
𝐸
is the standard deviation of the equity log returns

ln(𝐸
𝑡ℎ
/𝐸
(𝑡−1)ℎ

). Nevertheless, this method does not estimate
asset drift 𝜇; it determines the risk neutral probability of
default PD using the risk free asset 𝑟. As a consequence, Jovan
[33] showed that this method provides different estimates
of probability of defaults for the same obligors compared
to the two following iterative methodologies: the maximum
likelihood estimation method and the Moody KMVmethod.

3.1.1.MaximumLikelihood EstimationMethod. Thismethod-
ology was initially proposed by Duan [13] and enhanced by

Duan et al. [34] later. The time series of daily market value
of equity 𝐸

𝑡
is equal to 𝑛 days, where 𝑡 = (0, . . . , 𝑛). In Duan

et al. [34] the time step ℎ is introduced. Typically, the value
of this coefficient for daily data would be ℎ = 1/250. The
methodology is iterative. Then, the following log-likelihood
function for the estimation of 𝜇 and 𝜎 of model (3), where
𝑡ℎ = (0, . . . , 𝑛ℎ), is defined on the basis of observed values of
𝐸
𝑡
as follows:

𝐿 (𝜃; 𝐴
𝑡ℎ
| 𝐸
𝑡ℎ
) = −

𝑛

2
ln (2𝜋�̂�2ℎ)

−
1

2

𝑛

∑

𝑡=1

(�̂�
𝑡
− (𝜇 − (1/2) �̂�

2
) ℎ)
2

�̂�2ℎ

−

𝑛

∑

𝑡=1

ln (𝐴
𝑡ℎ
) −

𝑛

∑

𝑡=1

ln (Φ (𝑑
1
)) ,

(24)

where

�̂�
𝑡
= ln(

𝐴
𝑡ℎ

𝐴
(𝑡−1)ℎ

) (25)

and where 𝜃 ≡ (𝜇, �̂�) and 𝐴
𝑡ℎ

is estimated from (5). To
launch the iteration process we could insert as initial values
entered into the iteration process the values obtained by
solving the system (23). Despite the fact that these estimates
are not the best ones from a solution point of view, they can
be good enough as the initial values for different kinds of
iterative procedures. Each iteration produces a time series of
daily values 𝐴(𝑖)

𝑡ℎ
, where the debt maturity ranges over 1 ≤

(𝑇 − 𝑡ℎ) ≤ 𝑇. We maximize (24) to obtain estimates of
the unobserved asset drift and volatility 𝜃(𝑖). Since this is an
iterative procedure, we use the new estimates obtained from
(24) and the new market value of assets obtained from (5)
for maximizing (24) once again. The procedure is repeated
until the differences in 𝜇

(𝑖) and �̂�
(𝑖) between the successive

iterations are sufficiently small (i.e., until |𝜇(𝑖+1) − 𝜇
(𝑖)
| +

|�̂�
(𝑖+1)

− �̂�
(𝑖)
| ≤ 𝜀 for a given small 𝜀).

Duan et al. [34] found that the Moody’s KMV method
provides the same estimates as theMLEmethod, even though
they state that the latter method is preferable for inference
statistics.

3.1.2. Moody’s KMV Methodology. This iterative procedure
follows a disclosed part of Moody’s KMV methodology for
a calculation of expected default frequency (see Duan et al.
[34], Duffie et al. [9], Crosbie and Bohn [5], or Vassalou and
Xing [35]). This method is quite similar to the MLE method.
The unique difference is that in order to obtain estimates of
the asset drift and volatility, instead of maximizing the log-
likelihood function, we have explicit formulas.

The first step is exactly the same calculation of the daily
value of 𝐴(𝑖)

𝑡ℎ
, 𝑡ℎ = (0, . . . , 𝑛ℎ) from (5). As the initial values

can be used again, the estimates can be obtained by solving
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the system (23). Then, the arithmetic mean of the sample is
given by

𝑅
(𝑖)

=
1

𝑛

𝑛

∑

𝑡=1

�̂�
(𝑖)

𝑡
, (26)

where �̂�
𝑡
is defined in (25). Another step is the calculation of

estimates of the asset volatility �̂� and the drift 𝜇 of model (3)
which are defined as follows:

�̂�
(𝑖+1)

= √
1

𝑛ℎ

𝑛

∑

𝑡=1

(�̂�
(𝑖)

𝑡
− 𝑅
(𝑖)

)

2

,

𝜇
(𝑖+1)

= 𝑅
(𝑖) 1

ℎ
+
1

2
�̂�
2(𝑖+1)

.

(27)

Since this is again an iterative procedure, we use the
new estimates obtained from (27) to calculate 𝐴

(𝑖+1)

𝑡ℎ
. The

procedure is repeated until the differences in 𝜇 and �̂� among
successive iterations are sufficiently small.

It is worth tomention that theMertonmodel with param-
eters estimated according to the methodology described
above differs from the one actually employed by Moody’s
KMV. How well the Merton model performs substantially
relies on the simplifying assumptions facilitating its imple-
mentation. These simplifying assumptions are not really
realistic in practice, though. That is why Moody’s KMV does
not rely solely on these assumptions. (In 2002, Moody’s Cor-
poration completed acquisition of KMV. KMV Corporation
is now renamed as Moody’s KMV.) Indeed, the founders
of KMV, Oldrich Vasicek and Stephen Kealhofer, developed
a new model called Vasicek-Kealhofer (VK) (see Arora et
al. [36]) to estimate the distance-to-default of an individual
company. One of the most important differences is that
while we use the cumulative normal distribution to convert
distances-to-default into “real” (non risk-neutral) default
probabilities in classical Merton model, Moody’s KMV uses
its large historical database to estimate the real empirical
distribution of distances-to-default, and it calculates default
probabilities based on that distribution.

3.2. Parameter Estimates for Subordinated Models. We can
extend the estimationmethodologies proposed for the KMV-
Merton model in order to estimate the parameters of a
subordinated model.

3.2.1. MaximumLikelihood EstimationMethod. Obviously, in
order to use this method, we have to revise (24). Actually,
(24) can be derived from themore general formula which can
be used for the derivation of log-likelihood functions for any
subordinated model. This formula is defined in the following
way:

𝐿 (𝜃; 𝐴
𝑡ℎ
| 𝐸
𝑡ℎ
)

=

𝑛

∑

𝑡=1

ln (𝑓
𝑍
(�̂�
𝑡
)) −

𝑛

∑

𝑡=1

ln (𝐴
𝑡ℎ
) −

𝑛

∑

𝑡=1

ln (Δ
𝐸
) ,

(28)

where 𝜃 represents the set of the parameters in the density
function𝑓

𝑍
(�̂�
𝑡
)of the stationary increment ln(𝐴

𝑡ℎ
/𝐴
(𝑡−1)ℎ

) =

𝑍(𝑡 + 1) − 𝑍(𝑡), 𝐴
𝑡ℎ

is estimated from (11), �̂�
𝑡
is defined

in (25), and Δ
𝐸
is given by (14). The initial values 𝐴

(1)

𝑡ℎ

of the iteration process could be the ones obtained by
solving the system (23). The procedure continues iteratively
till the distance ‖𝜃(𝑖+1) − 𝜃

(𝑖)
‖ is sufficiently small. Typically,

there are two problems regarding this maximum likelihood
method. The first difficulty is related to computation time.
This method generally presents more local optima, and it can
be very time consuming to reach a global optimum. Secondly,
it is often very problematic to implement this methodology
since many subordinated models do not have close form
equation for the density function 𝑓

𝑍
.

3.2.2. An Extended KMVMethodology. As forMoody’s KMV
iterative methodology, we have first to compute the daily
value of 𝐴(𝑖)

𝑡ℎ
, 𝑡ℎ = (0, . . . , 𝑛ℎ) solving (11), then the other

parameters of the subordinated process 𝜃(𝑖+1) are estimated
on the series �̂�(𝑖)

𝑡
= ln(𝐴(𝑖)

𝑡ℎ
/𝐴
(𝑖)

(𝑡−1)ℎ
) considering the distribu-

tional assumption of the subordinated model. The procedure
continues iteratively till the distance ‖𝜃(𝑖+1) − 𝜃

(𝑖)
‖ is suffi-

ciently small. In particular, for the 𝛼 stable Lévy model, we
first suggest to determine the index of stability 𝛼. Secondly,
the unique parameter that must be estimated is the scalar
parameter 𝜎 since the skewness parameter and the location
parameter are fixed equal to zero. Clearly, even in this case, we
need to insert some initial values𝐴(1)

𝑡ℎ
of the iteration process

that could be the ones obtained by solving the system (23).
Moreover (as for the Merton model—see Duan et al. [34]),
the extendedKMVmethodology provides the same estimates
as the MLE method when the parameter estimates 𝜃(𝑖+1) are
the MLE on the series �̂�(𝑖)

𝑡
.

4. Application and Results

In this section, we first describe the data used in the computa-
tional analysis and apply theMertonmodel. Secondly, we test
the distributional assumption of this model. Finally, we apply
the Stable Lévy model and compare it with the Merton one.
In the application of the models, we use the extended KMV
methodology.

To apply the previous models to a particular company, we
need the market value of equity 𝐸

𝑡
, the face value of the zero-

coupon debt instrument 𝐿, and the risk-free interest rate 𝑟.
For risk-free interest rate we used 13-week Treasury bill and
Thomson Reuters Datastream dataset to obtain the market
value of equity and the face value of the zero-coupon debt
instrument of 24 US companies with strong capitalization in
USmarket. (The companies are (1) Boeing, (2) Cisco Systems,
(3) Chevron, (4) E. I. du Pont de Nemours, (5) Walt Disney,
(6) HomeDepot, (7) Hewlett-Packard, (8) IBM, (9) Intel, (10)
Johnson& Johnson, (11) Coca Cola, (12)McDonalds, (13) 3M,
(14) Merck & Co., (15) Microsoft, (16) Pfizer, (17) Procter &
Gamble, (18) AT & T, (19) UnitedHealth Group, (20) United
Technologies, (21) Verizon Communications, (22) WalMart
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Stores, (23) Exxon Mobil, and (24) Travelers Companies.)
For a sample period we used data from January 3, 2000,
to December 30, 2011. As market value of equity, we used
consolidated market value of a company which is defined as
a share price multiplied by the number of ordinary shares
in issue. Finally, for the face value of the zero-coupon debt
instrument, we used the sum of the short-term debt, current
portion of the long-term debt, and half of the long-term
debt. (There need to be chosen an amount of the debt that
is relevant to a potential default during a one year period.
Total debt is inadequate when not all of it is due in one
year (it is assumed one-year time horizon for debt maturity
and subsequent estimation of PD), as the firm may remain
solvent even when the value of assets falls below its total
liabilities. Using the short-term debt for the default barrier
would be often wrong, for instance, when there are covenants
that force the company to serve other debts when its financial
situation deteriorates. Prior studies generally follow KMV
methodology and choose the short-term debt plus half of
the long-term debt for the default barrier (see Bharath and
Shumway [37], Vassalou and Xing [35] or Duffie et al. [9]).)
While the short-term debt and current portion of the long-
term debt represent that portion of the debt payable within
one year including current portion of the long-term debt and
sinking fund requirements of preferred stock or debentures,
the long-term debt represents all interest bearing financial
obligations excluding amounts due within one year.

4.1. Analysis of the Distributional Assumption of the Com-
pany Value Log-Returns. The Merton model distributional
assumption implies that the unobservable company value
log-returns are Gaussian distributed. In order to test this
assumption, we use the daily log-returns of the companies’
assets value obtained from both the KMV-Merton model
and the alpha stable Lévy model, from January 3, 2000, to
December 30, 2011 (for a total of 3157 daily values).

First of all, we test the Gaussian and the stable non-
Gaussian hypotheses on the company value log-returns
obtained from the KMV-Merton model. Thus, we com-
pute different statistics every day on the last 250 daily
company values (1 year of daily values). Table 1 reports
the average among all the firms and for all the expost
period of different statistics applied to company value log-
returns to test the Gaussian hypothesis and the stable
non-Gaussian hypothesis. In particular we consider the
average of the follwing: the mean, the standard deviation,
the skewness𝐸((𝑋 − 𝐸(𝑋))

3
)/𝐸((𝑋 − 𝐸(𝑋))

2
)
1.5, the kurtosis

𝐸((𝑋 − 𝐸(𝑋))
4
)/𝐸((𝑋 − 𝐸(𝑋))

2
)
2, the percentage of rejection

of the Gaussian hypothesis using the Jarque-Bera (JB) test
(at the 5% significance level) (see [38]), the stable index
of stability “alpha,” the stable index of skewness “beta,” the
stable scalar parameter “sigma,” the stable location parameter
“mu,” and the percentage of rejection of the stable Paretian
hypothesis using the Kolmogorov-Smirnov (K-S) test (at the
5% significance level).

In particular, the results reported in Table 1 suggest that
(1) the returns exhibit heavy tails since the average of the
stability parameters alpha is always less than 2 and the average

Table 1: Average of some statistics for the daily log-returns of the
companies’ assets value obtained from the KMV-Merton model.

Mean 0.00002
St.dev. 0.0196
Skewness −0.6140
Kurtosis 33.4351
JB test (95%) 96.77%
Alpha 1.7089
Beta 0.0062
Sigma 0.0106
Mu 0.0001
K-S test (95%) 16.56%

of kurtosis is much higher than 3; (2) the returns are slightly
asymmetric since the average of the skewness parameter and
the average of the stable parameter beta are always different
from zero; and (3) the Gaussian hypothesis is almost always
rejected for all companieswhile the stable Paretian hypothesis
is generally rejected for four companies of the considered
sample.

Secondly, we test the different distributional hypothesis
of the companies value log-returns obtained by the stable
Lévy model using a Kolmogorov-Smirnov (K-S) test (at the
5% significance level). From this test, we observe almost
the same percentage of rejection (16.55%) we get using the
companies value log-returns as that obtained from theKMV-
Mertonmodel (16.56%). Similarly, we get 98.44% of rejection
of the Gaussian hypothesis applying the Jarque-Bera test to
the companies value log-returns obtained by stable Lévy
model (compared to 96.77% obtained from theKMV-Merton
model).

From this preliminary analysis, we deduce that the clas-
sical distributional hypothesis of the Merton model is almost
never verified. Moreover, the stable non-Gaussian hypothesis
appears more realistic than the Gaussian one. Therefore, it
is appropriate to apply a Stable Lévy model which is able to
capture empirically observed anomalies that contradict the
classical normality assumption. The results we get here are
not a real surprise since the stable Paretian laws generalize
the Gaussian one.

4.2. Estimate of Default Probabilities with KMV-Merton
Model. We used Moody’s KMV methodology (We perform
our analysis using MATLAB.) for the estimation of the
parameters for the Merton model used for the computation
of the probability of default of any company. The results of
the empirical analysis are reported in Figure 1 and Table 2.
In Table 2, there are listed average values of ratio between the
debt and the company’s assets value and average values of risk
neutral PD and distance-to-default obtained from the KMV-
Mertonmodel for any company. In particular, we observe that
generally when the average ratio between debt and company
value is high, we observe an analogous higher probability of
default and a lower distance to default. This aspect could be
a problem when the KMV-Merton model is used to compute
the risk neutral and real probabilities of default of a bank since



8 Journal of Applied Mathematics

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pr
ob

ab
ili

ty
 o

f d
ef

au
lt

PD-Merton model
D

ec
em

be
r 1

4,
20

00

Au
gu

st 
19

,
20

04

Ap
ril

 2
4,

20
08

D
ec

em
be

r 2
9,

20
11

Date
Boeing
Cisco Systems
Chevron
 E. I. du Pont de Nemours
Walt Disney
Home Depot
Hewlett-Packard
IBM
Intel
Johnson & Johnson
Coca Cola
McDonalds

3M
Merck & Co.
Microsoft
Pfizer
Procter & Gamble
AT&T
UnitedHealth Group
United Technologies
Verizon Communications
Wal Mart Stores
Exxon Mobil
Travelers Companies

Figure 1: PDs-KMV-Merton model.

financial institutions have significantly greater debt compared
to other companies. Therefore, the Merton model is not
plausible for the estimation of PDs of financial institutions
unless some adjustments are made. (For example, Byström
[39] shows that one of the main implications of his simplified
“spread sheet” version of theMertonmodel is the fact that the
default probability’s insensitivity to the leverage ratio at high
levels of debt makes it possible to apply his model to banks
and other highly leveraged firms.)

Moreover, Figure 1 describes the evolution of the risk
neutral PDs on the monthly basis. These probabilities are
almost null during all the decade. However, we can distin-
guish three periods of increased PDs for some companies
which are as follows: at the beginning of the century after
the high tech crisis and September 11, during the subprime
crisis, and during the country credit risk crisis. During the
first period and the country credit risk crisis, the most
evident grown of PD is due to the Hewlett-Packard firm
(its PD increased up to 2.1% in the first period and to 1%
in the last one). The period with more significant growth
in PDs is dated from September 2008. This might be easily
explained by the subprime mortgage crisis that reached a
critical stage during the first week of September 2008 and
was characterized by severely contracted liquidity in the
global credit markets and insolvency threats to investment
banks and other institutions. Beginning with bankruptcy of
Lehman Brothers on September 14, 2008, the financial crisis
entered an acute phase marked by the failures of prominent

Table 2: Average values of ratio (𝐿/𝐴) and risk neutral PD and DD
obtained from the KMV-Merton model.

Company Average ratio
(𝐿/𝐴)

Average
PD

Average
DD

(1) Boeing 0.1326 0.000830 8.9020
(2) Cisco Systems 0.0262 0.000000 20.6010
(3) Chevron 0.0613 0.000000 13.8524
(4) E. I. du Pont de
Nemours 0.1169 0.000845 9.9706

(5) Walt Disney 0.1312 0.000083 8.5109
(6) Home Depot 0.0600 0.000002 11.8297
(7) Hewlett-Packard 0.0909 0.000511 8.3242
(8) IBM 0.1037 0.000000 11.4799
(9) Intel 0.0099 0.000000 14.2761
(10) Johnson &
Johnson 0.0331 0.000000 22.8225

(11) Coca Cola 0.0615 0.000000 17.5142
(12) McDonalds 0.1031 0.000015 12.2037
(13) 3M 0.0493 0.000000 14.9342
(14) Merck & Co. 0.0611 0.000037 11.1672
(15) Microsoft 0.0068 0.000000 21.4008
(16) Pfizer 0.0815 0.000019 11.0915
(17) Procter &
Gamble 0.1010 0.000000 13.9819

(18) AT&T 0.1619 0.000013 8.4346
(19) UnitedHealth
Group 0.0924 0.002424 10.2912

(20) United
Technologies 0.0800 0.000001 12.1045

(21) Verizon
Communications 0.2117 0.000106 8.8750

(22) Wal Mart Stores 0.0957 0.000000 12.4895
(23) Exxon Mobil 0.0208 0.000000 18.0516
(24) Travelers
Companies 0.1298 0.000035 8.9095

American and European banks and efforts by the American
and European governments to rescue distressed financial
institutions. Among the companies from our sample which
were affected the most by this crisis belong UnitedHealth
Group, E. I. du Pont de Nemours, and Boeing. UnitedHealth
Group is a care company which offers a spectrum of products
and services. This company suffered a jump in PD from 0%
in May 2008 up to 14.6% in November 2008. E. I. du Pont
de Nemours is a chemical company and was the world’s third
largest chemical company based on market capitalization in
2009.This company’s PD increased from 0% in October 2008
to 8.1% in February 2009. Finally, Boeing as a representative
of aerospace industry suffered an increase in PD from 0%
in October 2008 to 6.2% in February 2009. This phase of
financial crisis lasted approximately one year, and in October
2009 the values of PD of observed companies went back to
zero.
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Table 3: Indexes of stability alpha average values of ratio (𝐿/𝐴), and
risk neutral PD and DD obtained from the stable Lévy model.

Company Alpha
Average
ratio
(𝐿/𝐴)

Average
PD

Average
DD

(1) Boeing 1.6619 0.1308 0.0149 8.9153
(2) Cisco Systems 1.5756 0.0262 0.0116 20.4104
(3) Chevron 1.6671 0.0606 0.0067 13.7868
(4) E. I. du Pont de
Nemours 1.6575 0.1169 0.0137 10.0480

(5) Walt Disney 1.5680 0.1305 0.0265 8.5155
(6) Home Depot 1.6101 0.0599 0.0173 11.9741
(7) Hewlett-Packard 1.5850 0.0914 0.0253 8.3069
(8) IBM 1.6110 0.1032 0.0120 11.5404
(9) Intel 1.6411 0.0098 0.0131 14.3321
(10) Johnson &
Johnson 1.5803 0.0330 0.0068 22.9854

(11) Coca Cola 1.5505 0.0614 0.0120 17.6094
(12) McDonalds 1.7570 0.1012 0.0032 12.3247
(13) 3M 1.5590 0.0494 0.0136 14.9028
(14) Merck & Co. 1.5909 0.0610 0.0150 11.1738
(15) Microsoft 1.5459 0.0068 0.0082 21.1204
(16) Pfizer 1.6691 0.0813 0.0085 11.2040
(17) Procter &
Gamble 1.4745 0.1010 0.0204 13.9846

(18) AT&T 1.5985 0.1607 0.0176 8.5163
(19) UnitedHealth
Group 1.5839 0.0925 0.0256 10.3436

(20) United
Technologies 1.6064 0.0798 0.0138 12.0951

(21) Verizon
Communications 1.6645 0.2106 0.0114 8.9470

(22) Wal Mart Stores 1.6398 0.0955 0.0080 12.5641
(23) Exxon Mobil 1.6494 0.0207 0.0060 18.1822
(24) Travelers
Companies 1.4659 0.1291 0.0464 8.9419

4.3. Estimate of Default Probabilities with the Stable Lévy
Model. In order to evaluate the stable Lévy model, we esti-
mate the parameters using the extended KMVmethodology.
First of all, we compute the indices of stability on the daily
log-returns of the companies’ asset values, obtained by the
stable Lévy model, which are reported in Table 3. To evaluate
the stable parameters and the distributions of subordinator
𝑓
𝑉
in (21), we perform a maximum likelihood estimator that

uses the fast Fourier transform (see [1, 20, 40]).The estimated
index of stability is maintained constant for each firm and
for all the period of analysis. Clearly, we could adapt more
dynamically the model requiring that the index of stability
changes periodically with the scalar and location stable
parameters. However, this should require the knowledge of
the subordinator density distribution 𝑓

𝑉
that changes with

the index of stability. Since this distribution is obtained by
inverting the Fourier transform, the iterating procedure of the
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Figure 2: PDs-stable Lévy model.

KMV methodology would require too long computational
time in that case. In Table 3, there are also listed the average
values of ratio between the debt and the company’s assets
value and average values of risk neutral PD and distance-to-
default obtained from the stable Lévymodel for any company.

4.4. Comparison of the TwoModels. In particular, we observe
that there are not very large differences between the com-
pany values obtained by the stable Lévy model and the
company values obtained by the Merton model. This aspect
is important since we couldn’t expect strong differences in
the company values that represent an unobservable objective
variable whose big differences could not be easily justifiable.
This observation implies that there are not large differences
between the two models with respect to the follwing: (1)
the average ratio between debt and company value; (2) the
average distance-to-default.

Figure 3 reports the main differences between the two
models for those companies which present the highest peaks
in default probabilities (E. I. du Pont de Nemours, Walt
Disney, Hewlett-Packard, UnitedHealthGroup, andTravelers
Companies). In particular, Figures 3(a) and 3(b) show that
the main differences in the ratio between the debt and the
company value and between the distances-to-default are con-
centrated during the high volatility period after September
11, 2001. However, this difference (as remarked previously)
is almost null during the big crisis following the Lehman
Brothers bankruptcy. Figures 3(c) and 3(d) show default
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Figure 3: Differences between Stable Lévy model and KMV-Merton model. (a) Difference between stable ratio 𝐿/𝐴 and Gaussian ratio. (b)
Difference between the stable and Gaussian distance-to-default. (c) Probabilities of default during “calm periods.” (d) Probabilities of default
during the crisis.

probabilities of chosen companies during “calm” periods and
during periods of the crisis. In this case, we observe very
big differences among PDs. On one hand, the probabilities of
default computed by theMertonmodel are almost null during
the “calm” periods and increase during one or two months
of the crisis. On the other hand, the probabilities of default
computed by the Lévy stable model are never null during the
“calm” periods and become very high during the months of
the crisis and in the close subsequent periods.

In particular, we observe the biggest difference for the
Travelers Companies for which the Merton model does not
register any significant difference in the default probabilities
while the stable Lévymodel shows the highest values.The rea-
son of this difference is essentially caused by the combination
of two aspects. First, the index of stability of the Travelers
Companies is very small, and that means very fat tails with
high probability of losses. Secondly, the ratio between the
debt and the Travelers Companies value is high.This analysis
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confirms the previous one that shows the average default
probabilities obtained by the stable Lévy model are much
higher than those obtained by the Merton model. This is
not a real surprise because while the probability tails of the
Gaussian distribution tend to zero exponentially, the proba-
bility tails of stable non-Gaussian distribution tend to zero in
polynomial order.Thus the probability of losses computed by
the stable Lévy model is much higher than the one computed
by the Merton model. This effect is also emphasized in
Figure 2 that reports the evolution of default probabilities
during the decade 2001–2011. Figure 2 shows a much higher
sensitivity of these probabilities of all companies with respect
to the periods of crises. Moreover, since all the tests have
shown that the stable non-Gaussian hypothesis appears more
realistic than the Gaussian one, we deduce that the KMV-
Merton model underestimates the probability of default.

5. Conclusion

In this paper, we propose alternative structural credit risk
models, and we discuss how to evaluate the probability of
default of a given firmunder different distributional hypothe-
ses. Finally, we apply and compare the stable Lévy credit risk
model with the Merton one. The empirical analysis suggests
that the probability of default is generally underestimated
by the Merton model. Clearly, these first results should be
further discussed and compared with other distributional
models in a future research.
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