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Collision between 2D circular particles suspension in Couette flow is simulated by using multiple-relaxation-time based lattice
Boltzmann and direct forcing/fictitious domainmethod in this paper.The patterns of particle collisions are simulated and analyzed
in detail by changing the velocity of top and bottom walls in the Couette flow. It can be seen from the simulation results that, while
the velocity is large enough, the number of collisions between particles will change little as this velocity varies.

1. Introduction

Multiphase flow is a very important branch of fluid mechan-
ics, while fluid-solid two-phase flow is the main part of such
flow. And fluid-solid two-phase flow is very common in
nature and industry, such as raindrop formation, material
science, chemical industry, aerosol deposition, fluidized beds,
and injection molding machine [1, 2]. Particle collisions,
which will influence the performance of product, happen
occasionally in those processes. So it is very meaningful to
do some research to understand particle collisions and then
take control to improve the performance of product.

Even with the help of the precise and advanced particle
image velocity (PIV) instrument, it is very difficult to observe
the phenomenon of particle collisions in detail. Compar-
ing the experimental measurement, numerical simulation
has great advantages to investigate particle collisions in
fluid-solid two-phase flow, especially for direct numerical
simulation (DNS) methods. The lattice Boltzmann method
(LBM), one of the best DNSmethods with several remarkable
advantages, was first proposed by Ladd [3] and then improved
byAidun et al. [4] to simulate particles suspended in a viscous
fluid. Feng and Michaelides [5] and Tian et al. [6] united
immersed boundary method (IBM) into LBM to deal with

fluid-solid interface problem. In the past several decades the
LBM method was proved robust and efficient for particulate
flows, especially in the case of large number of particles [7–
12].Nie andLin [13] developed a single-relaxation-time (SRT)
based lattice Boltzmann-direct forcing/fictitious domain
(SRT LB-DF/FD) method to simulate particle suspensions
and then improved to multiple-relaxation-time (MRT LB-
DF/FD).

Several papers investigated particle collisions in three-
dimensional homogeneous isotropic turbulence [14–18] but
not by using DNS method. In this paper, DNS method is
adopted to simulate particle collisions. Because the MRT
model has better ability of computing pressure and more
time saving than the SRT model, the MRT LB DF/FD
method is utilized. Firstly, this method is introduced in
detail in Section 2. Secondly, simulation problem is described
in Section 3. And finally, several simulation results and
conclusions are presented in Section 4.

2. Numerical Method

2.1. The MRT LB DF/FD Method. The lattice Boltzmann
method based on the multiple-relaxation-time (MRT)
collision model is adopted in this paper [13]. The discrete
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equations can be written as follows:
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The moment space spanned bym
𝑖
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spanned by 𝑓
𝑖
are related by a linear mapping,m = 𝑀𝑓; that

is,𝑓 = 𝑀−1m.TheD2Q9model is used in 2D simulation, and
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where 𝑐 = Δ𝑥/Δ𝑡 is the lattice speed, among which Δ𝑥 is the
lattice spacing, and Δ𝑡 is the time step. For D2Q9 model, the
corresponding nine moments are given by [19]
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According to Guo et al. [20], the forcing term F is defined
as follows:
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where 𝛼 is the acceleration due to the external force and 𝑤
𝑖

are weights related to the lattice model which are chosen as
𝑤
0
= 4/9; 𝑤
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𝑠
is equal to 𝑐/31/2. By applying the Taylor expansion
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Figure 1: Schematic diagram of geometry.

techniques and theChapman-Enskog analysis, (1) leads to the
hydrodynamic equations that are shown as follows:

∇ ⋅ u = 0, 𝜌
𝑓
(
𝜕u
𝜕𝑡

+ (u ⋅ ∇)u) = −∇𝑝 + 𝜇∇2u + a. (7)

The shear viscosity and the bulk viscosity can be defined
as follows [21]:
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2.2. Collisions Model. A collision model is needed to avoid
particles overlapping. Then the short-range repulsive force
developed by Wan and Turek [22] is utilized in this paper
because it is easily carried out in the code. For particle-
particle collisions, the short-range repulsive force is calcu-
lated by
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where X
𝑖
and X

𝑗
are the mass center coordinates of the

𝑖th and 𝑗th particle, 𝑅
𝑖
and 𝑅

𝑗
are their radius, 𝑑

𝑖,𝑗
is the

distance between their mass centers which equals to |X
𝑖
−X
𝑗
|,

𝜉 is the force range which is usually set to be one or two
lattice spacing, and 𝜀

𝑝
and 𝜀
𝑝
are two small positive stiffness

parameters for particle-particle collisions.
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Figure 2: Arrangements of Lagrangian points.

(a) 𝑡 = 1.5 (b) 𝑡 = 3.0 (c) 𝑡 = 4.0

(d) 𝑡 = 5.5 (e) 𝑡 = 6.5 (f) 𝑡 = 7.0

(g) 𝑡 = 8.0 (h) 𝑡 = 9.0 (i) 𝑡 = 10.0

Figure 3: Vorticity contours when 𝑈
0
= 0.1m/s.
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(a) 𝑡 = 1.5 (b) 𝑡 = 3.0 (c) 𝑡 = 4.0

(d) 𝑡 = 5.3 (e) 𝑡 = 6.6 (f) 𝑡 = 7.0

(g) 𝑡 = 7.4 (h) 𝑡 = 7.8 (i) 𝑡 = 8.2

Figure 4: Vorticity contours when 𝑈
0
= 0.2m/s.

But for particle-wall collisions, the corresponding short-
range repulsive force is determined as follows:
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where X
𝑖
is the coordinate of the nearest imaginary particle

located on the boundary nearby the 𝑖th particle, 𝑑
𝑖
is

the distance between the imaginary particle and the real one
which equals to |X

𝑖
− X
𝑖
|, and 𝜀

𝑊
and 𝜀
𝑊

are the other two

small positive stiffness parameters for particle-wall collisions.
In this paper, 𝜀

𝑝
, 𝜀
𝑝
, 𝜀
𝑊
, and 𝜀

𝑊
are all set to be 1e-7.

3. Problem Description

The main purpose of this paper is to study collisions
between 2D circular particles suspension in Couette flow.The
schematic diagram of geometry is shown in Figure 1 which is
constructed by four solid walls, 𝑙𝑥 = 𝑙𝑦 = 8 cm, and mesh
element is 640000. The left and right walls are fixed, while
the top wall moves in the right direction with a velocity of𝑈

0

and the bottom wall moves in the left direction at the same
velocity. 128 circular particles (8 rows, 16 columns) are placed
in themiddle of this domain, and the distance of center of two
neighborhood particles in horizontal and vertical direction is
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(a) 𝑡 = 1.5 (b) 𝑡 = 3.0 (c) 𝑡 = 4.0

(d) 𝑡 = 5.3 (e) 𝑡 = 6.6 (f) 𝑡 = 7.0

(g) 𝑡 = 7.4 (h) 𝑡 = 7.8 (i) 𝑡 = 8.2

Figure 5: Vorticity contours when 𝑈
0
= 0.3m/s.

two times of the diameter of particle. In order to ignore the
influence of gravity, the density of particles is set to be same
as the suspension fluid, 𝜌

𝑝
= 𝜌
𝑓
= 1.0 g/cm3. The kinematic

viscosity of the fluid is set to be 0.01 cm2 s−1. For each particle,
the diameter is 0.2 cm and the arrangement of Lagrangian
points is shown in Figure 2.

4. Simulation Results and Conclusions

In this paper, when 𝑡 = 𝑡/104 s ≤ 1.5, the circular particles
are fixed to generate a fully developed Couette flow which
can be seen from Figures 3(a), 4(a), and 5(a). And when
𝑡 > 1.5, those particles begin tomove in the suspension fluid.
At first, 𝑈

0
is set to be very small which equals to 0.1m/s and

the instantaneous vorticity contours can be seen fromFigures

3(a)–3(i). Obviously, the vorticity is not strong enough which
makes the number of collisions very big.

Instantaneous vorticity contours for 𝑈
0

= 0.2m/s at
several interval times are shown in Figures 4(a)–4(i). It can
be seen from those figures that the particles are moving by
the influence of the two main symmetry vortices. Even when
𝑡 = 8.2, the vortex contour is rotational symmetry from the
center of the simulation domain.

But when 𝑈
0
= 0.3m/s, Figures 5(a)–5(i) show that the

circular particles are agglomerated near the four sidewalls by
the influence of the twomain vortices. Andwhen 𝑡 > 7.8, the
particles are no longer rotational symmetry from the center
of the simulation domain, distributed at completely random.
The vortex patterns are totally different when 𝑈

0
varies from

0.1m/s to 0.3m/s; however, the number of particle collisions



6 Abstract and Applied Analysis

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
0

1

2

3

4

5

6

7

8

U0 =

U0 =

U0 =

N
um

be
r o

f c
ol

lis
io

ns
 (1

0
5
)

Time (104 s)

0.1m/s
0.2m/s
0.3m/s

Figure 6: Comparison of collision number with different 𝑈
0
.

varies little when 𝑈
0
is large enough which can be seen from

Figure 6.
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