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We present a simple numerical method to find the optimal exercise boundary in an American put option. We formulate an
intermediate function with the fixed free boundary that has Lipschitz character near optimal exercise boundary. Employing it,
we can easily determine the optimal exercise boundary by solving a quadratic equation in time-recursive way. We also present
several numerical results which illustrate a comparison to other methods.

1. Introduction

The owner of a put (call) option has the right but no
obligation to sell (buy) an underlying asset at the exercise
price. European options can be exercised only on the expiry
date, while American options can be exercised at any time
until the expiry date. Closed-form solutions for the European
options are derived in papers by Black and Scholes [1] and
Merton [2]. In the case of American options, because of
the early exercise possibility, the pricing problem leads to
complications for analytic calculation. McKean [3] and van
Moerbeke [4] show that the valuation of American options
constitutes a free boundary problem looking for a boundary
changing in time to maturity, mostly called an optimal
exercise boundary. Hence, finance researchers have studied
methods to quickly and accurately find the optimal exercise
boundary. These methods are basically of two types, that
is, analytical approximations such as those developed by
Geske and Johnson [5], MacMillan [6], Barone-Adesi and
Whaley [7], and Ju [8] and numerical methods such as
those of Brennan and Schwartz [9], Hull and White [10],
and Longstaff and Schwartz [11]. Zhu [12] finds an exact
and explicit solution of the Black-Scholes equation for the
valuation of American put options using Taylor series with
infinitely many terms. His work is an excellent result for the

valuation of American put options; however, it seems difficult
to perform his solution numerically.The infinite sum is likely
to yield many computation errors. Zhao andWong [13] study
an extension of Zhu’s work [12] to price American options
under general diffusion processes.

Themajority of numerical methods for pricing American
options, such as the finite difference method of Brennan
and Schwartz [9], the binomial method of Cox et al. [14],
the Monte Carlo simulation method of Grant et al. [15],
the least squares method of Longstaff and Schwartz [11], the
integral-equation method of Ševčovič [16], and the Laplace
transform method of Zhu [17], are time-recursive ways.
Their idea is to discretize the lifetime of an option and
find its optimal exercise boundary backward in time. Since
time-recursive ways yield repeated calculations for every
time step, they require fast computation times and small
pricing errors. Also, front-fixing methods developed by Wu
and Kwok [18] and Nielsen et al. [19] apply a nonlinear
transformation to fix the boundary and solve the resulting
nonlinear problem. A secant method developed by Zhu et
al. [20] needs to solve a nonlinear problem, and a moving
boundary approach developed by Muthuraman [21] converts
the arising linear free boundary partial differential equation
(PDE) problem into a sequence of linear fixed-boundary PDE
problems. More recently, Zhu and Zhang [22] introduced
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a new predictor-corrector scheme to price American put
options under the Black-Scholes model, and then Zhu and
Chen [23] proposed an extension of Zhu and Zhang’s work
[22] to solve for the valuation of American put options with
stochastic volatility model.

Themain contribution of this paper is the development of
a simple numericalmethod to find optimal exercise boundary
in a time-recursive way. Our result is motivated by the
necessity for better understanding of the solution surface
near optimal exercise boundary. We adopt the front-fixing
transformation [18] to change the unknown free boundary
to a known and fixed boundary. We exploit an intermediate
function with the fixed free boundary that has Lipschitz
character which avoids the degeneracy of the solution sur-
face near optimal exercise boundary as in Kim et al. [24].
Indeed, our function from the Black-Scholes equation and
the boundary conditions transforms the surface above the
exercise region onto a new Lipschitz surface which forms a
sufficiently large angle with the hyperplane corresponding
to the exercise region, thereby making the borderline more
easily distinguishable (see Figure 2). We use implicit scheme
in the continuation region and apply extrapolation near
optimal exercise boundary. Thus we can determine the
optimal exercise boundary by solving a quadratic equation
in a time-recursive way. Our method also provides fast and
accurate results for calculating the optimal exercise boundary
and pricing American put options.

The structure of the paper is as follows. Section 2 presents
the model formulation. The intermediate function with
the fixed free boundary to calculate the optimal exercise
boundary is presented in Section 3. Numerical results and
comparative studies are presented in Section 4. Section 5
summarizes the paper.

2. Problem Formulation

In this section, we present amathematical formula for pricing
an American put option.

Consider an American put option on an underlying asset
(stock) with exercise price𝐾 and expiration𝑇. In risk-neutral
probability, an underlying asset price 𝑆(𝑡) is governed by the
following stochastic differentiable equation:

𝑑𝑆 (𝑡) = (𝑟 − 𝛿) 𝑆 (𝑡) 𝑑𝑡 + 𝜎𝑆 (𝑡) 𝑑𝑊 (𝑡) , (1)

where 𝑟 > 0 represents the risk-free interest rate, 𝛿 ≥ 0

represents the continuous dividend yield, 𝜎 > 0 represents
the volatility of the underlying asset price, and 𝑊(𝑡) is the
standard Brownian motion. The payoff function of the put
option at 𝑇 is defined as

(𝐾 − 𝑆 (𝑇))
+

= max {𝐾 − 𝑆 (𝑇) , 0} . (2)

The valuation of an American put option is denoted by
𝑃(𝜏, 𝑆), where 𝜏 (:= 𝑇 − 𝑡) is the time to expiration for 𝜏 ∈

[0, 𝑇] and 𝑆 is the underlying asset price for 𝑆 ∈ [0,∞).
As seen in the previous article by McKean [3], the valua-

tion of an American put option is considered the solution to
a free boundary problem with a parabolic PDE. We suppose
that the optimal exercise boundary 𝛽(𝜏) is continuously

0

𝛽

Ω𝑐

Ω𝑒

(𝐾 − 𝑆)+ − 𝑃 < 0

(𝐾 − 𝑆)+ − 𝑃 = 0

𝜏

𝑆

𝛽(0) ℒ𝑃 − 𝑟𝑃 − 𝑃𝜏 = 0

ℒ𝑃 − 𝑟𝑃 − 𝑃𝜏 < 0

Figure 1: Boundary conditions.

nonincreasing with 𝛽(0) = min{𝐾,𝐾𝑟/𝛿}. The region where
it is optimal to hold, generally called the continuation region,
is defined as Ω

𝑐
= [0, 𝑇] × (𝛽(𝜏),∞), and the region where

it is optimal to exercise, generally called the exercise region,
is defined as Ω

𝑒
= [0, 𝑇] × [0, 𝛽(𝜏)]. Then, 𝑃(⋅, ⋅) and 𝛽(⋅)

uniquely solve

L𝑃 − 𝑟𝑃 − 𝑃
𝜏
= 0 in Ω

𝑐
,

𝑃 (0, 𝑆) = (𝐾 − 𝑆)
+

,

𝑃 (𝜏, 𝛽 (𝜏)) = 𝐾 − 𝛽 (𝜏) ,

lim
𝑆↑∞

max
0≤𝜏≤𝑇

|𝑃 (𝜏, 𝑆)| = 0,

lim
𝑆↓𝛽(𝜏)

𝑃
𝑠
(𝜏, 𝑆) = −1,

𝑃 (𝜏, 𝑆) = 𝐾 − 𝑆 in Ω
𝑒
,

𝑃 (𝜏, 𝑆) ≥ (𝐾 − 𝑆)
+

,

(3)

whereL𝑃 = (1/2)𝜎
2
𝑆
2
𝑃
𝑠𝑠

+ (𝑟 − 𝛿)𝑆𝑃
𝑠
and 𝑃
𝑠
, 𝑃
𝑠𝑠
, and 𝑃

𝜏
are

defined by the infinitesimal generator and partial derivatives,
respectively. Here, we assume 𝑟 > 𝛿 for using the Black-
Scholes equation at 𝜏 = 0. See, for example, Karatzas and
Shreve [25] for general reference.

Figure 1 shows an illustration of an optimal exercise
boundary with 𝑃. The two regions are separated by the
optimal exercise boundary. From Figure 1 it is necessary that
𝑃 must satisfy max

𝜏,𝑆
{L𝑃 − 𝑟𝑃 − 𝑃

𝜏
, (𝐾 − 𝑆)

+

− 𝑃} = 0. This
condition is known as the Hamilton-Jacobi Bellman (HJB)
equation. As Chockalingam and Muthuraman [26] point
out, the continuation and exercise regions are determined
by which term in the HJB equation is tight. Their method
requires iterations till convergence of the boundaries. How-
ever, we emphasize that there is no iteration in our method
using a square root transformation. Refer to Chockalingam
and Muthuraman [26], and Pham [27].

A front-fixing method, proposed in Wu and Kwok [18],
uses a change in variables to transform the free boundary
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Figure 2: Transformation fromP(𝜏, 𝑢) to 𝑄(𝜏, 𝑢).

problem into a nonlinear problem on a fixed domain. The
following transformation of state variable serves for such a
purpose:

𝑢 = ln 𝑆 − ln𝛽 (𝜏) . (4)
They derive the equation and the boundary conditions with
respect to 𝑢 as follows:

L̃P − 𝑟P − P
𝜏
= 0, 𝑢 ∈ (0,∞) ,

P (0, 𝑢) = 0, 𝑢 ∈ (0,∞) ,

P (𝜏, 0) = 𝐾 − 𝛽 (𝜏) ,

P
𝑢
(𝜏, 0) = −𝛽 (𝜏) ,

P (𝜏,∞) = 0,

(5)

where L̃P = (1/2)𝜎
2P
𝑢𝑢

+(𝑟−𝛿−(𝜎
2
/2)+(𝛽


(𝜏)/𝛽(𝜏)))P

𝑢

and P
𝑢
and P

𝑢𝑢
are defined by infinitesimal generator

and partial derivatives, respectively. Note that 𝛽(𝜏) is a
monotonically decreasing function of 𝜏 with a nontrivial
asymptotic limit as follows:

𝛽 (∞) =
𝜃

𝜃 − 1
𝐾, (6)

where

𝜃 =

− (𝑟 − 𝛿 − (1/2) 𝜎
2
) − √(𝑟 − 𝛿 − (1/2)𝜎2)

2

+ 2𝜎2𝑟

𝜎2
.

(7)

Namely, the optimal exercise boundary does not change with
time. Especially, plugging 𝛿 = 0 into (6), we have the
asymptotically optimal exercise boundary as follows:

𝛽 (∞) =
𝛾

𝛾 + 1
𝐾, (8)

where 𝛾 = 2𝑟/𝜎
2. Note that transformation (4) is valid

because 𝛽(𝜏) > 0 holds for all 𝜏 ≥ 0. Refer to Kim [28].

3. Intermediate Function with
the Fixed Free Boundary

In this section, we present an intermediate function with the
fixed free boundary and can determine the optimal exercise
boundary by solving a quadratic equation in a time-recursive
way.

Under the assumption of the Black-Scholes model, the
time for optimal exercise can be shown to be the first hitting
time of a boundary, the optimal exercise boundary, in the
plane consisting of pairs of the underlying asset price and the
time to expiration. Namely, the price curve of an American
put option touches the line representing the intrinsic value
tangentially. With a careful examination of the solution
surface near optimal exercise boundary, we find a Lipschitz
surface which avoids the degeneracy of the solution surface
near optimal exercise boundary. To find the optimal exercise
boundary, we present an intermediate function with the
fixed free boundary that has Lipschitz character near optimal
exercise boundary as follows:

𝑄 (𝜏, 𝑢) := √P (𝜏, 𝑢) − 𝐾 + 𝑒𝑢𝛽 (𝜏). (9)

The transformed function 𝑄(𝜏, 𝑢) provides that the solution
surface in Ω

𝑒
is a horizontal plane, and it is an inclined plain

in Ω
𝑐
. Namely, this function forms a sufficiently large angle

with the hyperplane corresponding to the exercise region,
thereby making the borderline more easily distinguishable.
𝑄(𝜏, 𝑢) also has a Lipschitz character with nonsingularity in
(0,∞) and a nondegeneracy property near optimal exercise
boundary. Hence, we have

{
𝑄 (𝜏, 𝑢) = 0 if 𝑢 ∈ [ln𝛽 (∞) − ln𝛽 (𝜏) , 0] ,

𝑄 (𝜏, 𝑢) > 0 if 𝑢 ∈ (0,∞) .
(10)

Figure 2(a) shows that P(𝜏, 𝑢) is transformed to 𝑄(𝜏, 𝑢),
and Figure 2(b) is a magnified view of the optimal exercise
boundary.
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We find the intermediate function with the fixed free
boundary to decide the optimal exercise boundary by the
Taylor series. From P(𝜏, 𝑢) = 𝑄

2
(𝜏, 𝑢) + 𝐾 − 𝑒

𝑢
𝛽(𝜏), we

obtain the following relations near optimal exercise boundary
(𝑢 = 0):

P
𝑢𝑢

= 2𝑄
2

𝑢
− 𝛽, P

𝑢
= −𝛽,

P = 𝐾 − 𝛽, P
𝜏
= −𝛽


.

(11)

Plugging (11) into (5), we obtain

1

2
𝜎
2

(2𝑄
2

𝑢
− 𝛽) + (𝑟 − 𝛿 −

1

2
𝜎
2

+
𝛽


𝛽
) (−𝛽)

− 𝑟 (𝐾 − 𝛽) + 𝛽


= 0,

(12)

and then we get 𝑄2
𝑢
= (𝑟𝐾 − 𝛿𝛽)/𝜎

2. More precisely, we have

𝑄
𝑢
(𝜏, 0) =

√𝑟𝐾

𝜎
,

√𝑟

𝜎√𝐾

< 𝑄
𝑢
(𝜏, 0) <

√𝑟𝐾

𝜎𝑒𝑢
∗

(13)

with 𝛿 = 0, where 𝑢
∗

= ln𝛽(∞) − ln𝛽(𝜏) < 0. Then, we have
|P − 𝐾 + 𝑒

𝑢
𝛽(𝜏)| ≤ 𝑐|𝑢 − 0|

2 for some constant 𝑐 because
𝑄(𝜏, 𝑢) is Lipschitz and a natural candidate for computation
in (0,∞). We obtain an angle between exercise surface (𝑄 =

0) and 𝑄 surface (𝑄 > 0) such that 0 < 𝜆
0

< 𝜕𝑄/𝜕𝑢 < 𝜆
1

for some constants 𝜆
0
and 𝜆

1
. We also calculate the partial

derivative with respect to 𝑢 in (5) as follows:

1

2
𝜎
2

P
𝑢𝑢𝑢

+ (𝑟 − 𝛿 −
1

2
𝜎
2

+
𝛽


𝛽
)P
𝑢𝑢

− 𝑟P
𝑢
− P
𝜏𝑢

= 0.

(14)

FromP(𝜏, 𝑢) = 𝑄
2
(𝜏, 𝑢)+𝐾−𝑒

𝑢
𝛽(𝜏), we obtain the following

relations near optimal exercise boundary (𝑢 = 0):

P
𝑢𝑢𝑢

= 6𝑄
𝑢
𝑄
𝑢𝑢

− 𝛽, P
𝜏𝑢

= −𝛽


. (15)

Hence, plugging (15) into (14), we get

𝑄
𝑢𝑢

= −
2𝜉𝜂

3𝜎3
−

𝛿𝛽

3𝜎𝜂
, (16)

where 𝜉 = 𝑟 − 𝛿 − 𝜎
2
/2 + 𝛽


/𝛽 and 𝜂 = √𝑟𝐾 − 𝛿𝛽. From

(6) we easily show that 𝜉 and 𝜂 are bounded parameters such
that 𝑐
1

≤ 𝜉 ≤ 𝑐
2
for some negative constants 𝑐

1
and 𝑐
2
and

√(𝑟 − 𝛿)𝐾 ≤ 𝜂 ≤ √𝑟𝐾, respectively.
Using the similar arguments, we can obtain the following

equations near optimal exercise boundary (𝑢 = 0) as follows:

1

2
𝜎
2

P
𝑢𝑢𝑢𝑢

+ (𝑟 − 𝛿 −
1

2
𝜎
2

+
𝛽


𝛽
)P
𝑢𝑢𝑢

− 𝑟P
𝑢𝑢

− P
𝜏𝑢𝑢

= 0,

(17)

P
𝑢𝑢𝑢𝑢

= 6𝑄
2

𝑢𝑢
+ 8𝑄
𝑢
𝑄
𝑢𝑢𝑢

− 𝛽, P
𝜏𝑢𝑢

= −(
2𝛿

𝜎2
+ 1)𝛽



.

(18)

Hence, plugging (18) into (17), we get

𝑄
𝑢𝑢𝑢

=
2𝜉
2
𝜂

3𝜎5
+

𝜉𝛿𝛽

6𝜎3𝜂
−

𝛿
2
𝛽
2

12𝜎𝜂3
−

𝛿𝛽

4𝜎𝜂
+

𝑟𝜂

2𝜎3
−

𝛿𝛽


2𝜎3𝜂
.

(19)

Furthermore, we recognize that P is analytic up to the
optimal exercise boundary and 𝑢 is locally analytic. Hence,
the approximation for 𝑄(𝜏, 𝑢) at 𝛽(𝜏) can be written as

𝑄 (𝜏, 𝑢) = 𝑄 (𝜏, 0) + 𝑄
𝑢
(𝜏, 0) 𝑢 +

1

2!
𝑄
𝑢𝑢

(𝜏, 0) 𝑢
2

+
1

3!
𝑄
𝑢𝑢𝑢

(𝜏, 0) 𝑢
3

+ O (𝑢
4

) .

(20)

We introduce the equilibrium parameter �̃� > 0which enables
us to adjust the location of optimal exercise boundary in a
mesh size. So, plugging𝑄

𝑢
(𝜏, 0),𝑄

𝑢𝑢
(𝜏, 0), and𝑄

𝑢𝑢𝑢
(𝜏, 0) into

(20), we obtain 𝑄(𝜏, �̃�) as follows:

𝑄 (𝜏, �̃�) =
𝜂

𝜎
�̃� −

1

2
(

2𝜉𝜂

3𝜎3
+

𝛿𝛽

3𝜎𝜂
) �̃�
2

+
1

6
(

2𝜉
2
𝜂

3𝜎5
+

𝜉𝛿𝛽

6𝜎3𝜂
−

𝛿
2
𝛽
2

12𝜎𝜂3

−
𝛿𝛽

4𝜎𝜂
+

𝑟𝜂

2𝜎3
−

𝛿𝛽


2𝜎3𝜂
) �̃�
3

.

(21)

We rewrite (21) with respect to 𝜉 as follows:

�̃�(𝛽


)
2

+ 𝑏 (𝛽


) + �̃� = 0, (22)

where

�̃� =
𝜂�̃�
3

9𝜎5𝛽2
,

�̃� = −
𝜂�̃�
2

3𝜎3𝛽
+

2𝜂𝜈�̃�
3

9𝜎5𝛽
+

𝛿�̃�
3

36𝜎3𝜂
−

𝛿�̃�
3

12𝜎3𝜂
,

�̃� = − 𝑄 (𝜏, �̃�) +
𝜂�̃�

𝜎
−

1

3
(
𝜂𝜈

𝜎3
+

𝛿𝛽

2𝜎𝜂
) �̃�
2

+
1

6
(

2𝜂𝜈
2

3𝜎5
+

𝛿𝜈𝛽

6𝜎3𝜂
−

𝛿
2
𝛽
2

12𝜎𝜂3
−

𝛿𝛽

4𝜎𝜂
+

𝑟𝜂

2𝜎3
) �̃�
3

,

𝜉 = 𝜈 +
𝛽


𝛽
,

𝜈 = 𝑟 − 𝛿 −
𝜎
2

2
.

(23)

Combining (22) with 𝛽

< 0, we have

𝛽


=
−�̃� −

√
�̃�
2

− 4�̃� �̃�

2�̃�
.

(24)
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For discretization (Δ𝜏, Δ𝑢), we introduce a two-dimensional
mesh in the first quadrant of the 𝜏 − 𝑢 plane. From (24) we
have

𝛽
𝑛+1

− 𝛽
𝑛

Δ𝜏
=

−�̂� −
√

�̂�
2

− 4�̂� �̂�

2�̂�
,

(25)

where

𝑛 = 0, 1, 2, . . . , 𝑁,

𝑚 = 0, 1, 2, . . . ,𝑀,

�̂� = 𝜌Δ𝑢 (𝜌 > 0) ,

𝑄
𝑛

𝑧
is the numerical approximation to 𝑄 (𝑛Δ𝜏, 𝑧Δ𝑢)

(𝑧 = 𝜌,𝑚) ,

𝛽
𝑛
is the numerical approximation to 𝛽 (𝑛Δ𝜏) ,

�̂� =
𝜂�̂�
3

9𝜎5𝛽2
,

�̂� = −
𝜂�̂�
2

3𝜎3𝛽
+

2𝜂𝜈�̂�
3

9𝜎5𝛽
+

𝛿�̂�
3

36𝜎3𝜂
−

𝛿�̂�
3

12𝜎3𝜂
,

�̂� = − 𝑄 (𝜏, �̂�) +
𝜂�̂�

𝜎
−

1

3
(
𝜂𝜈

𝜎3
+

𝛿𝛽

2𝜎𝜂
) �̂�
2

+
1

6
(

2𝜂𝜈
2

3𝜎5
+

𝛿𝜈𝛽

6𝜎3𝜂
−

𝛿
2
𝛽
2

12𝜎𝜂3
−

𝛿𝛽

4𝜎𝜂
+

𝑟𝜂

2𝜎3
) �̂�
3

,

(26)

respectively. Hence, we rewrite (25) with respect to 𝛽
𝑛
as

follows:

𝛽
𝑛+1

= 𝛽
𝑛
+ (

−�̂� −
√

�̂�
2

− 4�̂��̂�

2�̂�
)Δ𝜏. (27)

When the initial values are given by𝑄
0

𝜌
(transformed price of

theAmerican put option) and𝛽
0
(optimal exercise boundary)

at 𝜏 = 0, we can determine 𝛽
1
(optimal exercise boundary)

at Δ𝜏 using (27). More importantly, for updating the optimal
exercise boundary our method dose not include iteration
until sufficient accuracy is obtained. So, we repeat the pre-
viously mentioned process until𝑁Δ𝜏 and obtain the optimal
exercise boundary in a time-recursive way.

4. Numerical Examples

In this section, we provide numerical examples to illustrate
our method. We also make runtimes and computation errors
compared with the results obtained by other numerical
methods such as the binomial method (Binomial) developed
by Cox et al. [14], the front-fixing method (Front-fixing)
developed by Wu and Kwok [18], and the finite difference
implementation of the moving boundary method (MBM-
FDM) developed by Muthuraman [21].
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Figure 3: RMSE of the safety parameter 𝜌.

Table 1: Valuation of the American put options.

Safty
parameter 𝜌

RMSE 𝛽(𝑇) 𝑃(𝑇, 90) 𝑃(𝑇, 100) 𝑃(𝑇, 110)

5.00 0.0005816 80.8760 11.4926 6.0911 2.9869
5.10 0.0005443 80.8761 11.4925 6.0911 2.9868
5.20 0.0005110 80.8762 11.4925 6.0910 2.9868
5.30 0.0004831 80.8764 11.4924 6.0909 2.9867
5.40 0.0004623 80.8765 11.4924 6.0908 2.9866
5.50 0.0004503 80.8767 11.4923 6.0907 2.9865
5.60 0.0004484 80.8769 11.8760 6.0906 2.9864
5.70 0.0004576 80.8771 11.8771 6.0906 2.9863
5.80 0.0004780 80.8773 11.4922 6.0905 2.9863
5.90 0.0005088 80.8776 11.4921 6.0904 2.9862
6.00 0.0005491 80.8779 11.4920 6.0903 2.9861
Maximum
difference 0.0001336 0.0019 0.0006 0.0008 0.0008

All implementations are carried out using a C++ imple-
mentation with the a 2.66Ghz Intel 4 Core CPU with
3GB RAM. A finite difference method with Crank-Nicolson
scheme is proposed for our method. The benchmark results
are obtained using the Binomial with 10, 000 time steps,
and we consider these results to be the exact values of
the American put options. Here, root mean squared error
(RMSE) is calculated by the values of the Binomial.

The parameter values used to calculate the optimal
exercise boundary and values of the American put options
are 𝑟 = 0.05, 𝜎 = 0.20, 𝛿 = 0, 𝐾 = 100, 𝑇 = 1, 𝑢 ∈ [0, 2],
and a discrete mesh of 2000 × 300 nodes.

In Figure 3, we find a numerical optimization 𝜌 =

5.5702. Table 1 also shows the results of the optimal exercise
boundary and the values of American put options with
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Figure 4: Comparison of RMSE and runtime.

safety parameters. One can see from Table 1 that the optimal
exercise boundary monotonically increases as the value of 𝜌
increases, but the value of American put options monoton-
ically decreases when 𝜌 increases. They are so gradual that
they are not very susceptible to change in the value of 𝜌.

Table 2 reports the values of the American put options
for the specific parameter set associated with the table. In
Figure 4 and Table 3, we take the parameter values used in
Figure 3 except for the discrete mesh and plot runtimes and
computational errors compared with various methods. Note
that the discrete meshes of 125 × 25, 250 × 50, 500 × 100,
1000 × 200, and 2000 × 400 nodes are plotted in Figure 4 and
Table 3.

As is shown in Table 2, Figure 4, and Table 3, although
four different methods have similar values of the American
put option, our method is computationally faster and more
accurate than other methods. Especially, Figure 4 and Table 3
show the numerical convergence of our method. So our
method is superior to the others in accuracy and computa-
tional efficiency.

5. Final Remarks

The front-fixing method suggested by Wu and Kwok [18]
shows a degeneracy near optimal exercise boundary, while
our method adopts a square root function to avoid the
quadratic behavior of solution surface that causes degeneracy.
Our method employing an intermediate function with the
fixed free boundary solves a nonlinear problem on a fixed
domain derived from a free boundary problem. Since the
computation process depends on Lipschitz surface, we need
to focus on the motion of the solution surface which would
be simple to see the minute behavior of solution surface.

Table 2: Comparison of the values of the American put options.

(𝑆, 𝑇, 𝑟, 𝜎, 𝛿) Binomial Front fixing MBM-FDM Our
method

( 80, 0.5, 0.05, 0.20, 0.00) 20.0000 20.0000 20.0000 20.0000
( 90, 0.5, 0.05, 0.20, 0.00) 10.6661 10.6643 10.6680 10.6661
(100, 0.5, 0.05, 0.20, 0.00) 4.6556 4.6501 4.6504 4.6549
(110, 0.5, 0.05, 0.20, 0.00) 1.6681 1.6629 1.6631 1.6686
(120, 0.5, 0.05, 0.20, 0.00) 0.4976 0.4961 0.4993 0.4985

( 80, 0.5, 0.05, 0.20, 0.03) 20.0000 20.0000 20.0000 20.0000
( 90, 0.5, 0.05, 0.20, 0.03) 11.1551 11.1513 11.1526 11.1544
(100, 0.5, 0.05, 0.20, 0.03) 5.1496 5.1435 5.1444 5.1496
(110, 0.5, 0.05, 0.20, 0.03) 1.9491 1.9461 1.9455 1.9509
(120, 0.5, 0.05, 0.20, 0.03) 0.6132 0.6113 0.6155 0.6153

( 80, 1.0, 0.05, 0.20, 0.00) 20.0000 20.0000 20.0000 20.0000
( 90, 1.0, 0.05, 0.20, 0.00) 11.4928 11.4924 11.4857 11.4929
(100, 1.0, 0.05, 0.20, 0.00) 6.0903 6.0893 6.0829 6.0905
(110, 1.0, 0.05, 0.20, 0.00) 2.9866 2.9856 2.9854 2.9868
(120, 1.0, 0.05, 0.20, 0.00) 1.3672 1.3654 1.3643 1.3674

( 80, 1.0, 0.07, 0.40, 0.03) 24.0068 24.0054 23.9987 24.0057
( 90, 1.0, 0.07, 0.40, 0.03) 18.2760 18.2741 18.2697 18.2746
(100, 1.0, 0.07, 0.40, 0.03) 13.7886 13.7879 13.7852 13.7873
(110, 1.0, 0.07, 0.40, 0.03) 10.3317 10.3312 10.3235 10.3307
(120, 1.0, 0.07, 0.40, 0.03) 7.7027 7.7014 7.7016 7.7018

( 80, 3.0, 0.08, 0.20, 0.00) 20.0000 20.0000 20.0000 20.0000
( 90, 3.0, 0.08, 0.20, 0.00) 11.6974 11.9029 11.6892 11.6977
(100, 3.0, 0.08, 0.20, 0.00) 6.9320 7.2527 6.9221 6.9321
(110, 3.0, 0.08, 0.20, 0.00) 4.1550 4.4841 4.1443 4.1548
(120, 3.0, 0.08, 0.20, 0.00) 2.5102 2.7760 2.4997 2.5102

( 80, 3.0, 0.08, 0.20, 0.03) 20.1345 20.2396 20.1282 20.1349
( 90, 3.0, 0.08, 0.20, 0.03) 12.9694 13.1798 12.9611 12.9697
(100, 3.0, 0.08, 0.20, 0.03) 8.3791 8.5901 8.3690 8.3792
(110, 3.0, 0.08, 0.20, 0.03) 5.4152 5.5223 5.4041 5.4151
(120, 3.0, 0.08, 0.20, 0.03) 3.4981 3.5983 3.4879 3.4979

Table 3: Comparison of RMSE and runtime.

Mesh size
(𝑁×𝑀)

Front fixing
(runtime, RMSE)

MBM-FDM
(runtime, RMSE)

Our Method
(runtime, RMSE)

125 × 25 (6.690, 3.10070) (0.415, 0.04640) (0.023, 0.10901)
250 × 50 (26.767, 2.76880) (1.922, 0.02510) (0.109, 0.01395)
500 × 100 (175.508, 3.61630) (9.953, 0.01210) (0.741, 0.00392)
1000 × 200 (1223.615, 2.49460) (57.531, 0.00620) (5.997, 0.00089)
2000 × 400 (7998.379, 2.41980) (345.759, 0.00290) (56.444, 0.00021)

The moving boundary approach developed by Mutheraman
[21] requires iterations till the convergence of the bound-
aries. However, we emphasize that there is no iteration in
our method. In such a rapidly changing environment, our
straightforwardmethod is a very powerful tool to understand
financial market. Numerical study also shows that overall
speed and accuracy comparisons have demonstrated the
superiority of our method over other methods. Our method
can be easily extended to other models under stochastic
volatility and jump diffusion processes. These remain as
topics for future research.
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