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We investigate a level-set-type method for solving ill-posed problems, with the assumption that the solutions are piecewise, but
not necessarily constant functions with unknown level sets and unknown level values. In order to get stable approximate solutions
of the inverse problem, we propose a Tikhonov-type regularization approach coupled with a level-set framework. We prove the
existence of generalized minimizers for the Tikhonov functional. Moreover, we prove convergence and stability for regularized
solutions with respect to the noise level, characterizing the level-set approach as a regularization method for inverse problems. We
also show the applicability of the proposed level-set method in some interesting inverse problems arising in elliptic PDE models.

1. Introduction

Since the seminal paper of Santosa [1], level-set techniques
have been successfully developed and have recently become
a standard technique for solving inverse problems with
interfaces (e.g., [2–10]).

In many applications, interfaces represent interesting
physical parameters (inhomogeneities, heat conductivity
between materials with different heat capacity, and interface
diffusion problems) across which one or more of these
physical parameters change value in a discontinuousmanner.
The interfaces divide the domain Ω ⊂ R𝑛 in subdomains Ω

𝑗
,

with 𝑗 = 1, . . . , 𝑘, of different regions with specific internal
parameter profiles. Due to the different physical structures of
each of these regions, differentmathematicalmodelsmight be
the most appropriate for describing them. Solutions of such
models represent a free boundary problem, that is, one in
which interfaces are also unknown and must be determined
in addition to the solution of the governing partial differential
equation. In general such solutions are determined by a
set of data obtained by indirect measurements [2–4, 11–
15]. Applications include image segmentation problems [12–
15], optimal shape designer problems [2, 16], Stefan’s type
problems [2], inverse potential problems [17–19], inverse

conductivity/resistivity problems [4, 5, 10, 11, 20], among
others [2–4, 6, 16].

There is often a large variety of priors information
available for determining the unknown physical parameter,
whose characteristic depends on the given application. In this
paper, we are interested in inverse problems that consist in
the identification of an unknown quantity 𝑢 ∈ 𝐷(𝐹) ⊂ 𝑋
that represents all parameter profiles inside the individual
subregions ofΩ, from data 𝑦 ∈ 𝑌, where𝑋 and 𝑌 are Banach
spaces and 𝐷(𝐹) will be adequately specified in Section 3. In
this particular case, only the interfaces between the different
regions and, possibly, the unknown parameter values need to
be reconstructed from the gathered data. This process can be
formally described by the operator equation

𝐹 (𝑢) = 𝑦, (1)

where 𝐹 : 𝐷(𝐹) ⊂ 𝑋 → 𝑌 is the forward operator.
Neither existence nor uniqueness of a solution to (1) is

a guarantee. For simplicity, we assume that, for exact data
𝑦 ∈ 𝑌, the operator equation (1) admits a solution and
we do not strive to obtain results on uniqueness. However,
in practical applications, data are obtained only by indirect
measurements of the parameter. Hence, in general, exact data
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𝑦 ∈ 𝑌 are not known and we have only access to noise data
𝑦
𝛿

∈ 𝑌, whose level of noise 𝛿 > 0 is assumed to be known a
priori and satisfies


𝑦
𝛿

− 𝑦
𝑌
≤ 𝛿. (2)

We assume that the inverse problem associated with the
operator equation (1) is ill-posed. Indeed, it is the case in
many interesting problems [4, 6, 10, 16, 20–22]. Therefore,
accuracy of an approximated solution calls for a regulariza-
tion method [21]. In this paper, we propose a Tikhonov-type
regularization method coupled with a level-set approach to
obtain a stable approximation of the unknown level sets and
values of the piecewise (not necessarily constant) solution of
(1).

Many approaches, in particular level-set type approaches,
have previously been suggested for such problems. In [1,
11, 23–26], level-set approaches for identification of the
unknown parameter 𝑢 with distinct, but known, piecewise
constant values were investigated.

In [12, 17, 24], level-set approaches were derived to solve
inverse problems, assuming that 𝑢 is defined by several
distinct constant values. In both cases, one needs only to
identify the level sets of 𝑢, that is, the inverse problem reduces
to a shape identification problem. On the other hand, when
the level values of 𝑢 are also unknown, the inverse problem
becomes harder, since we have to identify both the level sets
and the level values of the unknown parameter 𝑢. In this
situation, the dimension of the parameter space increases by
the number of unknown level values. Level-set approaches
to ill-posed problems with unknown constant level values
appeared before in [14, 16, 18, 19, 27]. Level-set regularization
properties of the approximated solution for inverse problems
are described in [17–19, 25, 28].

However, regularization theory for inverse problems
where the components of the parameter 𝑢 are variable and
have discontinuities has not been well investigated. Indeed,
level-set regularization theory applied to inverse problems
[17–19] that recover the shape and the values of variable
discontinuous coefficients is unknown to the author. Some
early results in the numerical implementation of level-set type
methods were previously used to obtain solutions of elliptic
problems with discontinuous and variable coefficients in [4].

In this paper, we propose a level-set type regularization
method to ill-posed problems whose solution is composed by
piecewise components which are not necessarily constants.
In other words, we introduce a level-set type regularization
method to recover the shape and the values of variable
discontinuous coefficients. In this framework, a level-set
function is used to parameterize the solution 𝑢 of (1).
We obtain a regularized solution using a Tikhonov-type
regularization method, since the level values of 𝑢 are not
constant and also unknown.

In the theoretical point of view, the advantage of our
approach in relation to [2, 17–19, 25, 29] is that we are
able to obtain regularized solutions to inverse problems with

piecewise solutions that are more general than those covered
by the regularizationmethods proposed before.We still prove
regularization properties for the approximated solution of
the inverse problem model (1), where the parameter is a
nonconstant piecewise solution. The topologies needed to
guarantee the existence of a minimizer (in a generalized
sense) of the Tikhonov functional (defined in (7)) are quite
complicated and differ in some key points from [18, 19, 25].
In this particular approach, the definition of generalized
minimizers is quite different from other works [17, 19, 25]
(see Definition 3). As a consequence, the arguments used
to prove the well-posedness of the Tikhonov functional,
the stability, and convergence of the regularized solutions
of the inverse problem (1) are quite complicated and need
significant improvements (see Section 3).

The main applicability advantage of the proposed level-
set type method compared to that in the literature is that we
are able to apply this method to problems whose solutions
depend of nonconstant parameters. This implies that we
are able to handle more general and interesting physical
problems, where the components of the desired parameter
are not necessarily homogeneous, as those presented before
in the literature [4, 6, 14, 16, 18, 19, 27, 30–32]. Examples
of such interesting physical problems are heat conduction
between materials of different heat capacity and conductiv-
ity, interface diffusion processes, and many other types of
physical problems where modeling components are related
with embedded boundaries. See, for example, [3, 4, 6, 19,
30, 32] and references therein. As a benchmark problem, we
analyze two inverse problems modeled by elliptic PDEs with
discontinuous and variable coefficients.

In contrast, the nonconstant characteristics of the level
values impose different types of theoretical problems, since
the topologies where we are able to provide regularization
properties of the approximated solution are more compli-
cated than the ones presented before [14, 16, 18, 19, 27].
As a consequence, the numerical implementations become
harder than the other approaches in the literature [18, 19, 29,
32].

This paper is outlined as follows: in Section 2, we
formulate the Tikhonov functional based on the level-set
framework. In Section 3, we present the general assump-
tions needed in this paper and the definition of the set
of admissible solutions. We prove relevant properties about
the admissible set of solutions, in particular convergence
in suitable topologies. We also present relevant properties
of the penalization functional. In Section 4, we prove that
the proposed method is a regularization method to inverse
problems, that is, we prove that the minimizers of the
proposed Tikhonov functional are stable and convergent
with respect to the noise level in the data. In Section 5, a
smooth functional is proposed to approximate minimizers
of the Tikhonov functional defined in the admissible set
of solutions. We provide approximation properties and the
optimality condition for the minimizers of the smooth
Tikhonov functional. In Section 6, we present an application
of the proposed framework to solve some interesting inverse
elliptic problems with variable coefficients. Conclusions and
future directions are presented in Section 7.
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2. The Level-Set Formulation

Our starting point is the assumption that the parameter 𝑢 in
(1) assumes two unknown functional values, that is, 𝑢(𝑥) ∈
{𝜓
1

(𝑥), 𝜓
2

(𝑥)} a.e. inΩ ⊂ R𝑑, whereΩ is a bounded set.More
specifically, we assume the existence of amensurable set𝐷 ⊂⊂
Ω, with 0 < |𝐷| < |Ω|, such that 𝑢(𝑥) = 𝜓1(𝑥) if 𝑥 ∈ 𝐷 and
𝑢(𝑥) = 𝜓

2

(𝑥) if 𝑥 ∈ Ω/𝐷. With this framework, the inverse
problem that we are interested in in this paper is the stable
identification of both the shape of 𝐷 and the value function
𝜓
𝑗

(𝑥) for 𝑥 belonging to 𝐷 and to Ω/𝐷, respectively, from
observation of the data 𝑦𝛿 ∈ 𝑌.

We remark that, if 𝜓1(𝑥) = 𝑐1 and 𝜓2(𝑥) = 𝑐2 with 𝑐1
and 𝑐2 unknown constants values, the problem of identifying
𝑢 was rigorously studied before in [19]. Moreover, many
other approaches to this case appear in the literature; see
[2, 19, 23, 24] and references therein. Recently, in [18], an 𝐿2
level-set approach to identify the level and constant contrast
was investigated.

Our approach differs from the level-set methods pro-
posed in [18, 19], by considering also the identification of
variable unknown levels of the parameter 𝑢. In this situation,
many topological difficulties appear in order to have a
tractable definition of an admissible set of parameters (see
Definition 3).Generalization to problemswithmore than two
levels is possible applying this approach and following the
techniques derived in [17]. As observed before, the present
level-set approach is a rigorous derivation of a regularization
strategy for identification of the shape and nonconstant levels
of discontinuous parameters. Therefore, it can be applied to
physical problems modeled by embedded boundaries whose
components are not necessarily piecewise constant [2, 17–
19, 25].

In many interesting applications, the inverse problem
modeled by (1) is ill-posed.Therefore a regularizationmethod
must be applied in order to obtain a stable approximate
solution. We propose a regularization method by, first,
introducing a parameterization on the parameter space, using
a level-set function𝜙 that belongs to𝐻1(Ω). Note that, we can
identify the distinct level sets of the function 𝜙 ∈ 𝐻1(Ω)with
the definition of the Heaviside projector

𝐻 : 𝐻
1

(Ω) → 𝐿
∞

(Ω) ,

𝜙 → 𝐻(𝜙) := {
1 if 𝜙 (𝑥) > 0,
0 other else.

(3)

Now, from the framework introduced above, a solution 𝑢 of
(1) can be represented as

𝑢 (𝑥) = 𝜓
1

(𝑥)𝐻 (𝜙) + 𝜓
2

(𝑥) (1 − 𝐻 (𝜙))

=: 𝑃 (𝜙, 𝜓
1

, 𝜓
2

) (𝑥) .

(4)

With this notation, we are able to determine the shapes of 𝐷
as {𝑥 ∈ Ω; 𝜙(𝑥) > 0} andΩ/𝐷 as {𝑥 ∈ Ω; 𝜙(𝑥) < 0}.

The functional level values 𝜓1(𝑥), 𝜓2(𝑥) are also assumed
be unknown, and they should be determined as well.

Assumption 1. Weassume that𝜓1, 𝜓2 ∈ B := {𝑓 : 𝑓 ismeas-
urable and 𝑓(𝑥) ∈ [𝑚,𝑀], a.e. in Ω}, for some constant
values𝑚,𝑀.

Remark 1. We remark that 𝑓 ∈ B implies that 𝑓 ∈ 𝐿∞(Ω).
SinceΩ is bounded, 𝑓 ∈ 𝐿1(Ω). Moreover,

∫
Ω

𝑓 (𝑥) ∇ ⋅ 𝜑 (𝑥) 𝑑𝑥 ≤ |𝑀|∫
Ω

∇ ⋅ (𝜑) (𝑥)
 𝑑𝑥

≤ |𝑀|
∇ ⋅ 𝜑

𝐿1(Ω)
, ∀𝜑 ∈ 𝐶

1

0
(Ω,R

𝑛

) .

(5)

Hence, 𝑓 ∈ 𝐵𝑉(Ω).

Note that in the case that 𝜓1 and 𝜓2 assume two distinct
constant values (as covered by the analysis done in [2, 18, 19]
and references therein) the assumptions above are satisfied.
Hence, the level-set approach proposed here generalizes the
regularization theory developed in [18, 19].

From (4), the inverse problem in (1), with data given as in
(2), can be abstractly written as the operator equation

𝐹 (𝑃 (𝜙, 𝜓
1

, 𝜓
2

)) = 𝑦
𝛿

. (6)

Once an approximate solution (𝜙, 𝜓
1

, 𝜓
2

) of (6) is
obtained, a corresponding solution of (1) can be computed
using (4).

Therefore, to obtain a regularized approximated solution
to (6), we will consider the least square approach combined
with a regularization term, that is, minimizing the Tikhonov
functional

Ĝ
𝛼
(𝜙, 𝜓
1

, 𝜓
2

) :=

𝐹 (𝑃 (𝜙, 𝜓

1

, 𝜓
2

)) − 𝑦
𝛿


2

𝑌

+ 𝛼
{

{

{

𝛽
1

𝐻 (𝜙)
𝐵𝑉
+ 𝛽
2

𝜙 − 𝜙0


2

𝐻
1
(Ω)

+ 𝛽
3

2

∑

𝑗=1


𝜓
𝑗

− 𝜓
𝑗

0

𝐵𝑉

}

}

}

,

(7)

where 𝜙
0
and 𝜓𝑗

0
represent some a priori information about

the true solution 𝑢∗ of (1).The parameter 𝛼 > 0 plays the role
of a regularization parameter, and the values of 𝛽

𝑖
, 𝑖 = 1, 2, 3,

act as scaling factors. In other words, 𝛽
𝑖
, 𝑖 = 1, 2, 3, needs to

be chosen a priori, but independent of the noise level 𝛿. In
practical, 𝛽

𝑖
, 𝑖 = 1, 2, 3, can be chosen in order to represent

a priori knowledge of features of the parameter solution 𝑢
and/or to improve the numerical algorithm.Amore complete
discussion about how to choose 𝛽

𝑖
, 𝑖 = 1, 2, 3, is provided in

[17–19].
The regularization strategy in this context is based on

𝑇𝑉-𝐻1-𝑇𝑉 penalization. The term on 𝐻1-norm acts simul-
taneously as a control on the size of the norm of the level-
set function and a regularization on the space 𝐻1. The term
on 𝐵𝑉 is a variational measure of𝐻(𝜙). It is well known that
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the 𝐵𝑉 seminorm acts as a penalizing for the length of the
Hausdorff measure of the boundary of the set {𝑥 : 𝜙(𝑥) > 0}
(see [33, Chapter 5] for details). Finally, the last term on 𝐵𝑉
is a variational measure of 𝜓𝑗 that acts as a regularization
term on the setB. This Tikhonov functional extends the ones
proposed in [16, 17, 19, 23, 24] (based on𝑇𝑉-𝐻1 penalization).

Existence of minimizers for the functional (7) in the𝐻1×
B2 topology does not follow by direct arguments, since the
operator 𝑃 is not necessarily continuous in this topology.
Indeed, if𝜓1 = 𝜓2 = 𝜓 is a continuous function at the contact
region, then 𝑃(𝜙1, 𝜓2, 𝜓) = 𝜓 is continuous and the standard
Tikhonov regularization theory to the inverse problem holds
true [21]. On the other hand, in the interesting case where 𝜓1
and 𝜓2 represent the level of discontinuities of the parameter
𝑢, the analysis becomes more complicated and we need a
definition of generalized minimizers (see Definition 3) in
order to handle these difficulties.

3. Generalized Minimizers

As already observed in [25], if 𝐷 ⊂ Ω with H𝑛−1(𝜕𝐷) < ∞,
where H𝑛−1(𝑆) denotes the (𝑛 − 1)-dimensional Hausdorff-
measure of the set 𝑆, then the Heaviside operator 𝐻 maps
𝐻
1

(Ω) into the set

V := {𝜒
𝐷
; 𝐷 ⊂ Ω measurable, : H𝑛−1 (𝜕𝐷) < ∞} . (8)

Therefore, the operator 𝑃 in (4) maps 𝐻1(Ω) × B2 into the
admissible parameter set

𝐷 (𝐹) := {𝑢 = 𝑞 (𝑣, 𝜓
1

, 𝜓
2

) ; 𝑣 ∈V, 𝜓
1

, 𝜓
2

∈ B} , (9)

where

𝑞 :V × B
2

∋ (𝑣, 𝜓
1

, 𝜓
2

) → 𝜓
1

𝑣 + 𝜓
2

(1 − 𝑣) ∈ 𝐵𝑉 (Ω) .

(10)

Consider the model problem described in Section 1. In
this paper, we assume the following.

(A1) Ω ⊆ R𝑛 is bounded with piecewise 𝐶1 boundary 𝜕Ω.
(A2) The operator 𝐹 : 𝐷(𝐹) ⊂ 𝐿1(Ω) → 𝑌 is continuous

on𝐷(𝐹) with respect to the 𝐿1(Ω) topology.
(A3) 𝜀, 𝛼, and 𝛽

𝑗
, 𝑗 = 1, 2, 3, denote positive parameters.

(A4) Equation (1) has a solution, that is, there exists 𝑢
∗
∈

𝐷(𝐹) satisfying𝐹(𝑢
∗
) = 𝑦 and a function 𝜙

∗
∈ 𝐻
1

(Ω)

satisfying |∇𝜙
∗
| ̸= 0, in the neighborhood of {𝜙

∗
= 0}

such that 𝐻(𝜙
∗
) = 𝑧

∗
, for some 𝑧

∗
∈ V. Moreover,

there exist functional values 𝜓1
∗
, 𝜓
2

∗
∈ B such that

𝑞(𝑧
∗
, 𝜓
1

∗
, 𝜓
2

∗
) = 𝑢
∗
.

For each 𝜀 > 0, we define a smooth approximation to the
operator 𝑃 by

𝑃
𝜀
(𝜙, 𝜓
1

, 𝜓
2

) := 𝜓
1

𝐻
𝜀
(𝜙) + 𝜓

2

(1 − 𝐻
𝜀
(𝜙)) , (11)

where𝐻
𝜀
is the smooth approximation to𝐻 described by

𝐻
𝜀
(𝑡) :=

{{

{{

{

1 +
𝑡

𝜀
for 𝑡 ∈ [−𝜀, 0] ,

𝐻 (𝑡) for 𝑡 ∈ R

[−𝜀, 0]
.

(12)

Remark 2. It is worth noting that, for any 𝜙
𝑘
∈ 𝐻
1

(Ω),𝐻
𝜀
(𝜙
𝑘
)

belongs to 𝐿∞(Ω) and satisfies 0 ≤ 𝐻
𝜀
(𝜙
𝑘
) ≤ 1 a.e. in Ω, for

all 𝜀 > 0. Moreover, taking into account that𝜓𝑗 ∈ B, it follows
that the operators 𝑞 and 𝑃

𝜀
, as above, are well defined.

In order to guarantee the existence of a minimizer of G
𝛼

defined in (7) in the space𝐻1(Ω) ×B2, we need to introduce
a suitable topology such that the functional G

𝛼
has a closed

graphic. Therefore, the concept of generalized minimizers
(compare with [17, 25]) in this paper is as follows.

Definition 3. Let the operators 𝐻, 𝑃, 𝐻
𝜀
, and 𝑃

𝜀
be defined

as above and the positive parameters 𝛼, 𝛽
𝑗
, and 𝜀 satisfy the

Assumption (A3).
A quadruple (𝑧, 𝜙, 𝜓1, 𝜓2) ∈ 𝐿∞(Ω) × 𝐻1(Ω) × 𝐵𝑉(Ω)2

is called admissible when

(a) there exists a sequence {𝜙
𝑘
} of 𝐻1(Ω) functions

satisfying lim
𝑘→∞

‖𝜙
𝑘
− 𝜙‖
𝐿
2
(Ω)
= 0,

(b) there exists a sequence {𝜀
𝑘
} ∈ R+ converging to zero

such that lim
𝑘→∞

‖𝐻
𝜀
𝑘

(𝜙
𝑘
) − 𝑧‖

𝐿
1
(Ω)
= 0,

(c) there exist sequences {𝜓1
𝑘
}
𝑘∈N and {𝜓2

𝑘
}
𝑘∈N belonging

to 𝐵𝑉 ∩ 𝐶∞(Ω) such that

𝜓
𝑗

𝑘

𝐵𝑉
→


𝜓
𝑗
𝐵𝑉
, 𝑗 = 1, 2, (13)

(d) a generalized minimizer of Ĝ
𝛼
is considered to be

any admissible quadruple (𝑧, 𝜙, 𝜓1, 𝜓2)minimizing

G
𝛼
(𝑧, 𝜙, 𝜓

1

, 𝜓
2

) :=

𝐹 (𝑞 (𝑧, 𝜓

1

, 𝜓
2

)) − 𝑦
𝛿


2

𝑌

+ 𝛼𝑅 (𝑧, 𝜙, 𝜓
1

, 𝜓
2

)

(14)

on the set of admissible quadruples. Here the func-
tional 𝑅 is defined by

𝑅 (𝑧, 𝜙, 𝜓
1

, 𝜓
2

) = 𝜌 (𝑧, 𝜙) + 𝛽
3

2

∑

𝑗=1


𝜓
𝑗

− 𝜓
𝑗

0

𝐵𝑉
, (15)

and the functional 𝜌 is defined as

𝜌 (𝑧, 𝜙) := inf {lim inf
𝑘→∞

[𝛽
1


𝐻
𝜀
𝑘

(𝜙
𝑘
)
𝐵𝑉
+𝛽
2

𝜙𝑘 − 𝜙0


2

𝐻
1
(Ω)
]} .

(16)

The infimum in (16) is taken over all sequences {𝜀
𝑘
} and {𝜙

𝑘
}

characterizing (𝑧, 𝜙, 𝜓1, 𝜓2) as an admissible quadruple.

The convergence |𝜓𝑗
𝑘
|
𝐵𝑉

→ |𝜓
𝑗

|
𝐵𝑉

in item (c) in
Definition 3 is in the sense of variation measure [33, Chapter
5]. The incorporation of item (c) in the Definition 3 implies
the existence of the Γ-limit of sequences of admissible
quadruples [25, 34].This appears in the proof of Lemmas 7, 8,
and 11, where we prove that the set of admissible quadruples
is closed in the defined topology (see Lemmas 7 and 8) and
in the weak lower semicontinuity of the regularization func-
tional 𝑅 (see Lemma 11). The identification of nonconstant
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level values 𝜓𝑗 implies in a different definition of admissible
quadruples.

As a consequence, the arguments in the proof of regular-
ization properties of the level-set approach are the principal
theoretical novelty and the difference between our definition
of admissible quadruples and the ones in [18, 19, 25].

Remark 4. For 𝑗 = 1, 2, let 𝜓𝑗 ∈ B ∩ 𝐶∞(Ω), 𝜙 ∈ 𝐻1(Ω) be
such that |∇𝜙| ̸= 0 in the neighborhood of the level-set {𝜙(𝑥) =
0} and 𝐻(𝜙) = 𝑧 ∈ V. For each 𝑘 ∈ N, set 𝜓𝑗

𝑘
= 𝜓
𝑗 and

𝜙
𝑘
= 𝜙. Then, for all sequences of {𝜀

𝑘
}
𝑘∈N of positive numbers

converging to zero, we have

𝐻
𝜀
𝑘

(𝜙
𝑘
) − 𝑧

𝐿1(Ω)
=

𝐻
𝜀
𝑘

(𝜙
𝑘
) − 𝐻 (𝜙)

𝐿1(Ω)

= ∫
(𝜙)
−1
[−𝜀
𝑘
,0]



1 −
𝜙

𝜀
𝑘



𝑑𝑥

≤ ∫

0

−𝜀
𝑘

∫
(𝜙)
−1
(𝜏)

1𝑑𝜏

≤ meas {(𝜙)−1 (𝜏)} ∫
0

−𝜀
𝑘

1𝑑𝑡 → 0.

(17)

Here, we use the fact that |∇𝜙| ̸= 0 in the neighborhood of
{𝜙 = 0} implies that 𝜙 is a local diffeomorphism together
with a coarea formula [33, Chapter 4]. Moreover, {𝜓𝑗

𝑘
}
𝑘∈N in

B ∩ 𝐶∞(Ω) satisfies Definition 3, item (c).
Hence, (𝑧, 𝜙, 𝜓1, 𝜓2) is an admissible quadruple. In partic-

ular, we conclude from the general assumption above that the
set of admissible quadruple satisfying 𝐹(𝑢) = 𝑦 is not empty.

3.1. Relevant Properties of Admissible Quadruples. Our first
result is the proof of the continuity properties of operators 𝑃

𝜀
,

𝐻
𝜀
, and 𝑞 in suitable topologies. Such result will be necessary

in the subsequent analysis.
We start with an auxiliary lemma that is well known (see

e.g., [35]). We present it here for the sake of completeness.

Lemma 5. Let Ω be a measurable subset of R𝑛 with finite
measure.

If (𝑓
𝑘
) ∈ B is a convergent sequence in 𝐿𝑝(Ω) for some 𝑝,

1 ≤ 𝑝 < ∞, then it is a convergent sequence in 𝐿𝑝(Ω) for all
1 ≤ 𝑝 < ∞.

In particular, Lemma 5 holds for the sequence 𝑧
𝑘
:=

𝐻
𝜀
(𝜙
𝑘
).

Proof. See [35, Lemma 2.1].

The next two lemmas are auxiliary results in order to
understand the definition of the set of admissible quadruples.

Lemma 6. Let Ω be as in assumption (A1) and 𝑗 = 1, 2.

(i) Let {𝑧
𝑘
}
𝑘∈N be a sequence in 𝐿∞(Ω) with 𝑧

𝑘
∈ [𝑚,𝑀]

a.e. converging in the 𝐿1(Ω)-norm to some element 𝑧
and {𝜓𝑗

𝑘
}
𝑘∈N a sequence in B converging in the 𝐵𝑉-

norm to some 𝜓𝑗 ∈ B. Then 𝑞(𝑧
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) converges to

𝑞(𝑧, 𝜓
1

, 𝜓
2

) in 𝐿1(Ω).

(ii) Let (𝑧, 𝜙) ∈ 𝐿1(Ω) × 𝐻1(Ω) be such that 𝐻
𝜀
(𝜙) →

𝑧 in 𝐿1(Ω) as 𝜀 → 0, and let 𝜓1, 𝜓2 ∈ B. Then
𝑃
𝜀
(𝜙, 𝜓
1

, 𝜓
2

) → 𝑞(𝑧, 𝜓
1

, 𝜓
2

) in 𝐿1(Ω) as 𝜀 → 0.
(iii) Given 𝜀 > 0, let {𝜙

𝑘
}
𝑘∈N be a sequence in 𝐻1(Ω) con-

verging to 𝜙 ∈ 𝐻1(Ω) in the 𝐿2-norm.Then𝐻
𝜀
(𝜙
𝑘
) →

𝐻
𝜀
(𝜙) in 𝐿1(Ω), as 𝑘 → ∞. Moreover, if {𝜓𝑗

𝑘
}
𝑘∈N

are sequences in B, converging to some 𝜓𝑗 in B, with
respect to the 𝐿1(Ω)-norm, then 𝑞(𝐻

𝜀
(𝜙
𝑘
), 𝜓
1

𝑘
, 𝜓
2

𝑘
) →

𝑞(𝐻
𝜀
(𝜙), 𝜓

1

, 𝜓
2

) in 𝐿1(Ω), as 𝑘 → ∞.

Proof. Since Ω is assumed to be bounded, we have 𝐿∞(Ω) ⊂
𝐿
1

(Ω) and 𝐵𝑉(Ω) is continuous embedding in 𝐿2(Ω) [33]. To
prove (i), notice that

𝑞 (𝑧
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) − 𝑞 (𝑧, 𝜓

1

, 𝜓
2

)
𝐿1(Ω)

=

𝜓
1

𝑘
𝑧
𝑘
+ 𝜓
2

𝑘
(1 − 𝑧

𝑘
) − 𝜓
1

𝑧 − 𝜓
2

(1 − 𝑧)
𝐿1(Ω)

≤
𝑧𝑘
𝐿∞(Ω)


𝜓
1

𝑘
− 𝜓
1
𝐿1(Ω)

+

𝜓
1
𝐿2(Ω)

𝑧𝑘 − 𝑧
𝐿2(Ω)

+
1 − 𝑧𝑘

𝐿∞(Ω)


𝜓
2

𝑘
− 𝜓
2
𝐿1(Ω)

+

𝜓
2
𝐿2(Ω)

𝑧𝑘 − 𝑧
𝐿2(Ω)

𝑘→∞

→ 0.

(18)

Here we use Lemma 5 in order to guarantee the convergence
of 𝑧
𝑘
to 𝑧 in 𝐿2(Ω).

Assertion (ii) follows with similar arguments and the fact
that𝐻

𝜀
(𝜙) ∈ 𝐿

∞

(Ω) for all 𝜀 > 0.
As ‖𝐻

𝜀
(𝜙
𝑘
) − 𝐻

𝜀
(𝜙)‖
𝐿
1
(Ω)
≤ 𝜀
−1
√meas(Ω)‖𝜙

𝑘
− 𝜙‖
𝐿
2
(Ω)

,
the first part of assertion (iii) follows. The second part of the
assertion (iii) holds by a combination of the inequality above
and inequalities in the proof of assertion (i).

Lemma 7. Let {𝜓𝑗
𝑘
}
𝑘∈N be a sequence of functions satisfying

Definition 3 converging in 𝐿1(Ω) to some 𝜓𝑗, for 𝑗 = 1, 2. Then
𝜓
𝑗 also satisfies Definition 3.

Proof (sketch of the proof). Let 𝑘 ∈ N and 𝑗 = 1, 2. Since 𝜓𝑗
𝑘

satisfies Definition 3, 𝜓𝑗
𝑘
∈ 𝐵𝑉. From [33, Theorem 2, p. 172],

there exist sequences {𝜓𝑗
𝑘,𝑙
}
𝑙∈N in 𝐵𝑉 × 𝐶∞(Ω) such that

𝜓
𝑗

𝑘,𝑙

𝑙→∞

→ 𝜓
𝑗

𝑘
in 𝐿1 (Ω) ,


𝜓
𝑗

𝑘,𝑙

𝐵𝑉

𝑙→∞

→

𝜓
𝑗

𝑘

𝐵𝑉
.

(19)

In particular, for the subsequence {𝜓𝑗
𝑘,𝑙(𝑘)

}
𝑘∈N, it follows that

𝜓
𝑗

𝑘,𝑙(𝑘)

𝑘→∞

→ 𝜓
𝑗 in 𝐿1 (Ω) ,


𝜓
𝑗

𝑘,𝑙(𝑘)

𝐵𝑉

𝑘→∞

→

𝜓
𝑗
𝐵𝑉
.

(20)

Moreover, by assumption 𝜓𝑗 ∈ 𝐿
1

(Ω). From the lower
semicontinuity of variational measure (see [33, Theorem 1, p.
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172]), (20), and the definition of 𝐵𝑉 space, it follows that
𝜓
𝑗

∈ 𝐵𝑉.

In the following lemmawe prove that the set of admissible
quadruples is closed with respect to the 𝐿1(Ω) × 𝐿2(Ω) ×
(𝐿
1

(Ω))
2 topology.

Lemma 8. Let (𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) be a sequence of admissible

quadruples converging in 𝐿1(Ω) × 𝐿2(Ω) × (𝐿1(Ω))2 to some
(𝑧, 𝜙, 𝜓

1

, 𝜓
2

), with 𝜙 ∈ 𝐻1(Ω). Then, (𝑧, 𝜙, 𝜓1, 𝜓2) is also an
admissible quadruple.

Proof (sketch of the proof). Let 𝑘 ∈ N. Since (𝑧1
𝑘
, 𝜙
1

𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)

is an admissible quadruple, it follows from Definition 3 that
there exist sequences {𝜙

𝑘,𝑙
}
𝑙∈N, in 𝐻

1

(Ω), {𝜓1
𝑘,𝑙
}
𝑙∈N, {𝜓

2

𝑘,𝑙
}
𝑙∈N

in 𝐵𝑉 × 𝐶
∞

(Ω) and a correspondent sequence {𝜀𝑙
𝑘
}
𝑙∈N

converging to zero such that

𝜙
𝑘,𝑙

𝑙→∞

→ 𝜙
𝑘

in 𝐿2 (Ω) ,

𝐻
𝜀
𝑙

𝑘

(𝜙
𝑘,𝑙
)
𝑙→∞

→ 𝑧
𝑘

in 𝐿1 (Ω) ,


𝜓
𝑗

𝑘,𝑙

𝐵𝑉

𝑙→∞

→

𝜓
𝑗

𝑘

𝐵𝑉
, 𝑗 = 1, 2.

(21)

Define the monotone increasing function 𝜏 : N → N

such that, for every 𝑘 ∈ N, it holds

𝜀
𝜏(𝑘)

𝑘
≤
1

2
𝜀
𝜏(𝑘−1)

𝑘−1
,

𝜙𝑘,𝜏(𝑘) − 𝜙𝑘
𝐿2(Ω)

≤
1

𝑘
,


𝐻
𝜀
𝜏(𝑘)

𝑘

(𝜙
𝑘,𝜏(𝑘)

) − 𝑧
𝑘

𝐿1(Ω)
≤
1

𝑘
,


𝜓
𝑗

𝑘,𝜏(𝑘)

𝐵𝑉
→


𝜓
𝑗

𝑘

𝐵𝑉
, 𝑗 = 1, 2.

(22)

Hence, for each 𝑘 ∈ N,
𝜙 − 𝜙𝑘,𝜏(𝑘)

𝐿2(Ω)

≤
𝜙 − 𝜙𝑘

𝐿2(Ω)
+
𝜙𝑘,𝜏(𝑘) − 𝜙𝑘

𝐿2(Ω)
,


𝑧 − 𝐻

𝜀
𝜏(𝑘)

𝑘

(𝜙
𝑘,𝜏(𝑘)

)
𝐿1(Ω)

≤
𝑧 − 𝑧𝑘

𝐿1(Ω)
+

𝐻
𝜀
𝜏(𝑘)

𝑘

(𝜙
𝑘,𝜏(𝑘)

) − 𝑧
𝑘

𝐿1(Ω)
.

(23)

From (22),

lim
𝑘→∞

𝜙 − 𝜙𝑘,𝜏(𝑘)
𝐿2(Ω)

= 0,

lim
𝑘→∞


𝑧 − 𝐻

𝜀
𝜏(𝑘)

𝑘

(𝜙
𝑘,𝜏(𝑘)

)
𝐿1(Ω)

= 0.

(24)

Moreover, with the same arguments as Lemma 7, it follows
that


𝜓
𝑗

𝑘,𝜏(𝑘)

𝐵𝑉
→


𝜓
𝑗
𝐵𝑉
, 𝑗 = 1, 2, (25)

and 𝜓𝑗 ∈ 𝐵𝑉(Ω). Therefore, it remains to prove that (𝑧, 𝜙, 𝜓1,
𝜓
2

) is an admissible quadruple. From Definition 3 and

Lemma 7, it is enough to prove that 𝑧 ∈ 𝐿∞(Ω). If this is
not the case, there would exist a Ω ⊂ Ω with |Ω| > 0 and
𝛾 > 0 such that 𝑧(𝑥) > 1 + 𝛾 in Ω (the other case, 𝑧(𝑥) < −𝛾
is analogous). Since (𝐻

𝜀
𝜏(𝑘)

𝑘

(𝜙
𝑘,𝜏(𝑘)

))(𝑥) ∈ [0, 1] a.e. in Ω for
𝑘 ∈ N (see remark after Definition 3), we would have


𝑧 − 𝐻

𝜀
𝜏(𝑘)

𝑘

(𝜙
𝑘,𝜏(𝑘)

)
𝐿1(Ω)

≥

𝑧 − 𝐻

𝜀
𝜏(𝑘)

𝑘

(𝜙
𝑘,𝜏(𝑘)

)
𝐿1(Ω)

≥ 𝛾

Ω


, 𝑘 ∈ N,

(26)

contradicting the second limit in (24).

3.2. Relevant Properties of the Penalization Functional. In the
following lemmas, we verify properties of the functional 𝑅
which are fundamental for the convergence analysis outlined
in Section 4. In particular, these properties imply that the
level sets of G

𝛼
are compact in the set of admissible quadru-

ple, that is, G
𝛼
assumes a minimizer on this set. First, we

prove a lemma that simplifies the functional 𝑅 in (15). Here
we present the sketch of the proof. For more details, see the
arguments in [19, Lemma 3].

Lemma9. Let (𝑧, 𝜙, 𝜓1, 𝜓2) be an admissible quadruple.Then,
there exist sequences {𝜀

𝑘
}
𝑘∈N, {𝜙𝑘}𝑘∈N, and {𝜓

𝑗

𝑘
}
𝑘∈N, as in the

Definition 3, such that

𝑅 (𝑧, 𝜙, 𝜓
1

, 𝜓
2

) = lim
𝑘→∞

{

{

{

𝛽
1


𝐻
𝜀
𝑘

(𝜙
𝑘
)
𝐵𝑉
+ 𝛽
2

𝜙𝑘 − 𝜙0


2

𝐻
1
(Ω)

+ 𝛽
3

2

∑

𝑗=1


𝜓
𝑗

𝑘
− 𝜓
𝑗

0

𝐵𝑉

}

}

}

.

(27)
Proof (sketch of the proof). For each 𝑙 ∈ N, the definition of
𝑅 (see Definition 3) guaranties the existence of sequences 𝜀𝑙

𝑘
,

{𝜙
𝑗

𝑘,𝑙
} ∈ 𝐻

1

(Ω), and {𝜓𝑗
𝑘,𝑙
} ∈ B such that

𝑅 (𝑧, 𝜙, 𝜓
1

, 𝜓
2

)

= lim
𝑙→∞

{

{

{

lim inf
𝑘→∞

{𝛽
1


𝐻
𝜀
𝑙

𝑘

(𝜙
𝑘,𝑙
)
𝐵𝑉
+ 𝛽
2

𝜙𝑘,𝑙 − 𝜙0


2

𝐻
1
(Ω)
}

+ 𝛽
3

2

∑

𝑗=1


𝜓
𝑗

𝑘,𝑙
− 𝜓
𝑗

0

𝐵𝑉

}

}

}

.

(28)
Now a similar extraction of subsequences as in Lemma 8
complete the proof.

In the following, we prove two lemmas that are essential
to the proof of well posedness of the Tikhonov functional (7).

Lemma 10. The functional 𝑅 in (15) is coercive on the set of
admissible quadruples. In other words, given any admissible
quadruple (𝑧, 𝜙, 𝜓1, 𝜓2), one has
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𝑅 (𝑧, 𝜙, 𝜓
1

, 𝜓
2

)

≥ (𝛽
1
|𝑧|
𝐵𝑉
+ 𝛽
2

𝜙 − 𝜙0


2

𝐻
1
(Ω)
+ 𝛽
2

2

∑

𝑗=1


𝜓
𝑗

− 𝜓
𝑗

0

𝐵𝑉
) .

(29)

Proof (sketch of the proof). Let (𝑧, 𝜙, 𝜓1, 𝜓2) be an admissible
quadruple. From [17, Lemma 4], it follows that

𝜌 (𝑧, 𝜙) ≥ (𝛽
1
|𝑧|
𝐵𝑉
+ 𝛽
2

𝜙 − 𝜙0


2

𝐻
1
(Ω)
) . (30)

Now, from (30) and the definition of 𝑅 in (15), we have

(𝛽
1
|𝑧|
𝐵𝑉
+ 𝛽
2

𝜙 − 𝜙0


2

𝐻
1
(Ω)
+ 𝛽
3

2

∑

𝑗=1


𝜓
𝑗

− 𝜓
𝑗

0

𝐵𝑉
)

≤ 𝜌 (𝑧, 𝜙) + 𝛽
3

2

∑

𝑗=1


𝜓
𝑗

− 𝜓
𝑗

0

𝐵𝑉
= 𝑅 (𝑧, 𝜙, 𝜓

1

, 𝜓
2

) ,

(31)

concluding the proof.

Lemma 11. The functional 𝑅 in (15) is weak lower semicon-
tinuous on the set of admissible quadruples, that is, given a
sequence {(𝑧

𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)} of admissible quadruples such that

𝑧
𝑘
→ 𝑧 in 𝐿1(Ω), 𝜙

𝑘
⇀ 𝜙 in𝐻1(Ω), and 𝜓𝑗

𝑘
→ 𝜓
𝑗 in 𝐿1(Ω),

for some admissible quadruple (𝑧, 𝜙, 𝜓1, 𝜓2), then

𝑅 (𝑧, 𝜙, 𝜓
1

, 𝜓
2

) ≤ lim inf
𝑘∈N

𝑅 (𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) . (32)

Proof. The functional 𝜌(𝑧, 𝜙) is weak lower semicontinuous
(cf. [17, Lemma 5]). As𝜓𝑗

𝑘
∈ 𝐵𝑉, it follows from [33,Theorem

2, p. 172] that there exist sequences {𝜓𝑗
𝑘,𝑙
} ∈ 𝐵𝑉∩𝐶

∞

(Ω) such
that ‖𝜓𝑗

𝑘,𝑙
− 𝜓
𝑗

𝑘
‖
𝐿
1
(Ω)

≤ 1/𝑙. From a diagonal argument, we can
extract a subsequence {𝜓𝑗

𝑘,𝑙(𝑘)
} of {𝜓𝑗

𝑘,𝑙
} such that {𝜓𝑗

𝑘,𝑙(𝑘)
} →

𝜓
𝑗 in 𝐿1(Ω) as 𝑘 → ∞. Let 𝜉 ∈ 𝐶1

𝑐
(Ω,R𝑛), |𝜉| ≤ 1. Then,

from [33, Theorem 1, p. 167], it follows that

∫
Ω

𝜓
𝑗

∇ ⋅ 𝜉𝑑𝑥

= lim
𝑘→∞

∫
Ω

𝜓
𝑗

𝑘,𝑙(𝑘)
∇ ⋅ 𝜉𝑑𝑥

= lim
𝑘→∞

[∫
Ω

(𝜓
𝑗

𝑘,𝑙(𝑘)
− 𝜓
𝑗

𝑘
) ∇ ⋅ 𝜉𝑑𝑥 + ∫

Ω

𝜓
𝑗

𝑘
∇ ⋅ 𝜉𝑑𝑥]

≤ lim
𝑘→∞

[

𝜓
𝑗

𝑘,𝑙(𝑘)
− 𝜓
𝑗

𝑘

𝐿1(Ω)

∇ ⋅ 𝜉
𝐿∞(Ω) |

Ω|

− ∫
Ω

𝜉 ⋅ 𝜎
𝑘
𝑑

𝜓
𝑗

𝑘

𝐵𝑉
]

≤ lim inf
𝑘→∞


𝜓
𝑗

𝑘

𝐵𝑉
.

(33)

Thus, form the definition of | ⋅ |
𝐵𝑉

(see [33]), we have


𝜓
𝑗
𝐵𝑉
= sup {∫

Ω

𝜓
𝑗

∇ ⋅ 𝜉𝑑𝑥; 𝜉 ∈ 𝐶
1

𝑐
(Ω,R

𝑛

) ,
𝜉
 ≤ 1}

≤ lim inf
𝑘→∞


𝜓
𝑗

𝑘

𝐵𝑉
.

(34)

Now, the lemma follows from the fact that the functional
𝑅 in (15) is a linear combination of lower semicontinuous
functionals.

4. Convergence Analysis

In the following, we consider any positive parameter
𝛼, 𝛽
𝑗
, 𝑗 = 1, 2, 3, as in the general assumption to this paper.

First, we prove that the functionalG
𝛼
in (14) is well posed.

Theorem 12 (well-posedness). The functional G
𝛼
in (14)

attains minimizers on the set of admissible quadruples.

Proof. Notice that the set of admissible quadruples is not
empty, since (0, 0, 0, 0) is admissible. Let {(𝑧

𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)} be a

minimizing sequence forG
𝛼
, that is, a sequence of admissible

quadruples satisfying G
𝛼
(𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) → inf G

𝛼
≤

G
𝛼
(0, 0, 0, 0) < ∞. Then, {G

𝛼
(𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)} is a bounded

sequence of real numbers. Therefore, {(𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)} is uni-

formly bounded in𝐵𝑉×𝐻1(Ω)×𝐵𝑉2.Thus, from the Sobolev
Embedding Theorem [33, 36], we guarantee the existence of
a subsequence (denoted again by {(𝑧

𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)}) and the

existence of (𝑧, 𝜙, 𝜓1, 𝜓2) ∈ 𝐿1(Ω) × 𝐻1(Ω) × 𝐵𝑉2 such that
𝜙
𝑘
→ 𝜙 in 𝐿2(Ω), 𝜙

𝑘
⇀ 𝜙 in𝐻1(Ω), 𝑧

𝑘
→ 𝑧 in 𝐿1(Ω), and

𝜓
𝑗

𝑘
→ 𝜓
𝑗 in 𝐿

1

(Ω). Moreover, 𝑧, 𝜓1, and 𝜓2 ∈ 𝐵𝑉. See [33,
Theorem 4, p. 176].

From Lemma 8, we conclude that (𝑧, 𝜙, 𝜓1, 𝜓2) is an
admissible quadruple. Moreover, from the weak lower semi-
continuity of 𝑅 (Lemma 11), together with the continuity of 𝑞
(Lemma 6) and continuity of 𝐹 (see the general assumption),
we obtain

inf G
𝛼
= lim
𝑘→∞

G
𝛼
(𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)

= lim
𝑘→∞

{

𝐹 (𝑞 (𝑧

𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)) − 𝑦

𝛿


2

𝑌

+ 𝛼𝑅 (𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) }

≥

𝐹 (𝑞 (𝑧, 𝜓

1

, 𝜓
2

)) − 𝑦
𝛿


2

𝑌

+ 𝛼𝑅 (𝑧, 𝜙, 𝜓
1

, 𝜓
2

) = G
𝛼
(𝑧, 𝜙, 𝜓

1

, 𝜓
2

) ,

(35)

proving that (𝑧, 𝜙, 𝜓1, 𝜓2)minimizesG
𝛼
.

In what follows, we will denote a minimizer of G
𝛼
by

(𝑧
𝛼
, 𝜙
𝛼
, 𝜓
1

𝛼
, 𝜓
2

𝛼
). In particular the functional Ĝ

𝛼
in (50) attains

a generalized minimizer in the sense of Definition 3. In the
following theorem, we summarize some convergence results
for the regularizedminimizers.These results are based on the
existence of a generalizedminimum norm solutions.
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Definition 13. An admissible quadruple (𝑧†, 𝜙†, 𝜓1,†, 𝜓2,†) is
called an 𝑅-minimizing solution if it satisfies

(i) 𝐹(𝑞(𝑧†, 𝜓1,†, 𝜓2,†)) = 𝑦,
(ii) 𝑅(𝑧†, 𝜙†, 𝜓1,†, 𝜓2,†) = 𝑚𝑠 := inf{𝑅(𝑧, 𝜙, 𝜓1, 𝜓2); (𝑧,
𝜙, 𝜓
1

, 𝜓
2

) is an admissible quadruple and 𝐹(𝑞(𝑧,
𝜓
1

, 𝜓
2

)) = 𝑦}.

Theorem 14 (𝑅-minimizing solutions). Under the general
assumptions of this paper, there exists a𝑅-minimizing solution.

Proof. From the general assumption on this paper and
Remark 4, we conclude that the set of admissible quadruple
satisfying 𝐹(𝑞(𝑧, 𝜓1, 𝜓2)) = 𝑦 is not empty. Thus, 𝑚𝑠 in (ii)
is finite and there exists a sequence {(𝑧

𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)}
𝑘∈N of

admissible quadruple satisfying

𝐹 (𝑞 (𝑧
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)) = 𝑦,

𝑅 (𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) → 𝑚𝑠 < ∞.

(36)

Now, form the definition of 𝑅, it follows that the sequences
{𝜙
𝑘
}
𝑘∈N, {𝑧𝑘}𝑘∈N, and {𝜓

𝑗

𝑘
}
𝑗=1,2

𝑘∈N
are uniformly bounded in

𝐻
1

(Ω) and 𝐵𝑉(Ω), respectively. Then, from the Sobolev
Compact Embedding Theorem [33, 36], we have (up to
subsequences) that

𝜙
𝑘
→ 𝜙

† in 𝐿2 (Ω) ,

𝑧
𝑘
→ 𝑧
† in 𝐿1 (Ω) ,

𝜓
𝑗

𝑘
→ 𝜓

𝑗,† in 𝐿1 (Ω) , 𝑗 = 1, 2.

(37)

Lemma 8 implies that (𝑧†, 𝜙†, 𝜓1,†, 𝜓2,†) is an admissible
quadruple. Since 𝑅 is weakly lower semicontinuous (cf.
Lemma 11), it follows that

𝑚𝑠 = lim inf
𝑘→∞

𝑅 (𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) ≥ 𝑅 (𝑧

†

, 𝜙
†

, 𝜓
1,†

, 𝜓
2,†

) .

(38)

Moreover, we conclude from Lemma 6 that

𝑞 (𝑧
†

, 𝜓
1,†

, 𝜓
1,†

) = lim
𝑘→∞

𝑞 (𝑧
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) ,

𝐹 (𝑞 (𝑧
†

, 𝜓
1,†

, 𝜓
2,†

)) = lim
𝑘→∞

𝐹 (𝑞 (𝑧
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)) = 𝑦.

(39)

Thus, (𝑧†, 𝜙†, 𝜓1,†, 𝜓2,†) is an 𝑅-minimizing solution.

Using classical techniques from the analysis of Tikhonov
regularization methods (see [21, 37]), we present in the
following themain convergence and stability theorems of this
paper. The arguments in the proof are somewhat different of
those presented in [18, 19]. But, for sake of completeness, we
present the proof.

Theorem 15 (convergence for exact data). Assume that one
has exact data, that is, 𝑦𝛿 = 𝑦. For every 𝛼 > 0, let (𝑧

𝛼
, 𝜙
𝛼
,

𝜓
1

𝛼
, 𝜓
2

𝛼
) denote a minimizer of G

𝛼
on the set of admissible

quadruples. Then, for every sequence of positive numbers
{𝛼
𝑘
}
𝑘∈N converging to zero, there exists a subsequence, denoted

again by {𝛼
𝑘
}
𝑙∈N, such that (𝑧

𝛼
𝑘

, 𝜙
𝛼
𝑘

, 𝜓
1

𝛼
𝑘

, 𝜓
2

𝛼
𝑘

) is strongly
convergent in 𝐿1(Ω) × 𝐿2(Ω) × (𝐿1(Ω))2. Moreover, the limit is
a solution of (1).

Proof. Let (𝑧†, 𝜙†, 𝜓1,†, 𝜓2,†) be an 𝑅-minimizing solution of
(1)—its existence is guaranteed byTheorem 14. Let {𝛼

𝑘
}
𝑘∈N be

a sequence of positive numbers converging to zero. For each
𝑘 ∈ N, denote (𝑧

𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) := (𝑧

𝛼
𝑘

, 𝜙
𝛼
𝑘

, 𝜓
1

𝛼
𝑘

, 𝜓
2

𝛼
𝑘

) to be a
minimizer of 𝐺

𝛼
𝑘

. Then, for each 𝑘 ∈ N, we have

𝐺
𝛼
𝑘

(𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) ≤


𝐹 (𝑞 (𝑧

†

, 𝜓
1,†

, 𝜓
2,†

)) − 𝑦


+ 𝛼
𝑘
𝑅 (𝑧
†

, 𝜙
†

, 𝜓
1,†

, 𝜓
2,†

)

= 𝛼
𝑘
𝑅 (𝑧
†

, 𝜙
†

, 𝜓
1,†

, 𝜓
2,†

) .

(40)

Since𝛼
𝑘
𝑅(𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) ≤ 𝐺
𝛼
𝑘

(𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
), it follows from

(40) that

𝑅 (𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) ≤ 𝑅 (𝑧

†

, 𝜙
†

, 𝜓
1,†

, 𝜓
2,†

) < ∞. (41)

Moreover, from the assumption on the sequence {𝛼
𝑘
}, it

follows that

lim
𝑘→∞

𝛼
𝑘
𝑅 (𝑧
†

, 𝜙
†

, 𝜓
1,†

, 𝜓
1,†

) = 0. (42)

From (41) and Lemma 10, we conclude that sequences {𝜙
𝑘
},

{𝑧
𝑘
}, and {𝜓𝑗

𝑘
} are bounded in 𝐻1(Ω) and 𝐵𝑉, respectively,

for 𝑗 = 1, 2. Using an argument of extraction of diagonal
subsequences (see proof of Lemma 8), we can guarantee the
existence of an admissible quadruple (�̃�, 𝜙, �̃�1, �̃�2) such that

(𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)

→ (�̃�, 𝜙, �̃�
1

, �̃�
2

) in 𝐿1 (Ω) × 𝐿2 (Ω) × (𝐿1 (Ω))
2

.

(43)

Now, from Lemma 6(i), it follows that 𝑞(�̃�, �̃�1, �̃�2) =

lim
𝑘→∞

𝑞(𝑧
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) in 𝐿1(Ω). Using the continuity of the

operator 𝐹 together with (40) and (42), we conclude that

𝑦 = lim
𝑘→∞

𝐹 (𝑞 (𝑧
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)) = 𝐹 (𝑞 (�̃�, �̃�

1

, �̃�
2

)) . (44)

On the other hand, from the lower semicontinuity of 𝑅 and
(41), it follows that

𝑅 (�̃�, 𝜙, �̃�
1

, �̃�
2

) ≤ lim inf
𝑘→∞

𝑅 (𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)

≤ lim sup
𝑘→∞

𝑅 (𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)

≤ (𝑧
†

, 𝜙
†

, �̃�
1

, �̃�
2

) ,

(45)

concluding the proof.
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Theorem 16 (stability). Let 𝛼 = 𝛼(𝛿) be a function satisfying
lim
𝛿→0

𝛼(𝛿) = 0 and lim
𝛿→0

𝛿
2

𝛼(𝛿)
−1

= 0. Moreover, let
{𝛿
𝑘
}
𝑘∈N be a sequence of positive numbers converging to zero

and 𝑦𝛿𝑘 ∈ 𝑌 corresponding noisy data satisfying (2). Then,
there exists a subsequence, denoted again by {𝛿

𝑘
} and a

sequence {𝛼
𝑘
:= 𝛼(𝛿

𝑘
)} such that (𝑧

𝛼
𝑘

, 𝜙
𝛼
𝑘

, 𝜓
1

𝛼
𝑘

, 𝜓
2

𝛼
𝑘

) converges
in 𝐿1(Ω) × 𝐿2(Ω) × (𝐿1(Ω))2 to solution of (1).

Proof. Let (𝑧†, 𝜙†, 𝜓1,†, 𝜓1,†) be an 𝑅-minimizer solution of
(1) (such existence is guaranteed by Theorem 14). For each
𝑘 ∈ N, let (𝑧

𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) := (𝑧

𝛼(𝛿
𝑘
)
, 𝜙
𝛼(𝛿
𝑘
)
, 𝜓
1

𝛼(𝛿
𝑘
)
, 𝜓
2

𝛼(𝛿
𝑘
)
) be

a minimizer of 𝐺
𝛼(𝛿
𝑘
)
. Then, for each 𝑘 ∈ N, we have

𝐺
𝛼
𝑘

(𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) ≤


𝐹 (𝑞 (𝑧

†

, 𝜓
1,†

, 𝜓
1,†

)) − 𝑦
𝛿
𝑘


2

𝑌

+ 𝛼 (𝛿
𝑘
) 𝑅 (𝑧

†

, 𝜙
†

, 𝜓
1,†

, 𝜓
2,†

)

≤ 𝛿
2

𝑘
+ 𝛼 (𝛿

𝑘
) 𝑅 (𝑧

†

, 𝜙
†

, 𝜓
1,†

, 𝜓
2,†

) .

(46)

From (46) and the definition of 𝐺
𝛼
𝑘

, it follows that

𝑅 (𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) ≤

𝛿
2

𝑘

𝛼 (𝛿
𝑘
)
+ 𝑅 (𝑧

†

, 𝜙
†

, 𝜓
1,†

, 𝜓
2,†

) . (47)

Taking the limit as 𝑘 → ∞ in (47), it follows from
theorem assumptions on 𝛼(𝛿

𝑘
) that

lim
𝑘→∞


𝐹 (𝑞 (𝑧

𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)) − 𝑦

𝛿
𝑘


≤ lim
𝑘→∞

(𝛿
2

𝑘
+ 𝛼 (𝛿

𝑘
) 𝑅 (𝑧

†

, 𝜙
†

, 𝜓
1,†

, 𝜓
2,†

)) = 0,

lim sup
𝑘→∞

𝑅 (𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) ≤ (𝑧

†

, 𝜙
†

, 𝜓
1,†

, 𝜓
2,†

) .

(48)

With the same arguments as in the proof of Theorem 15, we
conclude that at least a subsequence that we denote again by
(𝑧
𝑘
, 𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) converges in 𝐿1(Ω)×𝐿2(Ω)×(𝐿1(Ω))2 to some

admissible quadruple (𝑧, 𝜙, 𝜓1, 𝜓2). Moreover, by taking the
limit as 𝑘 → ∞ in (46), it follows from the assumption on 𝐹
and Lemma 6 that

𝐹 (𝑞 (𝑧, 𝜙, 𝜓
1

, 𝜓
2

)) = lim
𝑘→∞

𝐹 (𝑞 (𝑧
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)) = 𝑦. (49)

The functional G
𝛼
defined in (14) is not easy to be

handled numerically, that is, we are not able to derive a
suitable optimality condition to the minimizers ofG

𝛼
. In the

following section, we work in sight to surpass such difficulty.

5. Numerical Solution

In this section, we introduce a functional which can be
handled numerically and whose minimizers are “near” to the

minimizers ofG
𝛼
. LetG

𝜀,𝛼
be the functional defined by

G
𝜀,𝛼
(𝜙, 𝜓
1

, 𝜓
2

) :=

𝐹 (𝑃
𝜀
(𝜙, 𝜓
1

, 𝜓
2

)) − 𝑦
𝛿


2

𝑌

+ 𝛼(𝛽
1

𝐻𝜀 (𝜙)
𝐵𝑉
+ 𝛽
2

𝜙 − 𝜙0


2

𝐻
1

+ 𝛽
3

2

∑

𝑗=1


𝜓
𝑗

− 𝜓
𝑗

0

𝐵𝑉
) ,

(50)

where 𝑃
𝜀
(𝜙, 𝜓
1

, 𝜓
2

) := 𝑞(𝐻
𝜀
(𝜙), 𝜓

1

, 𝜓
2

) is defined in (11). The
functionalG

𝜀,𝛼
is well posed as the following lemma shows.

Lemma 17. Given positive constants 𝛼, 𝜀, 𝛽
𝑗
as in the general

assumption of this paper, 𝜙
0
∈ 𝐻
1

(Ω) and 𝜓𝑗
0
∈ B, 𝑗 =

1, 2. Then, the functional G
𝜀,𝛼

in (50) attains a minimizer on
𝐻
1

(Ω) × (𝐵𝑉)
2.

Proof. Since inf{G
𝜀,𝛼
(𝜙, 𝜓
1

, 𝜓
2

) : (𝜙, 𝜓
1

, 𝜓
2

) ∈ 𝐻
1

(Ω) ×

(𝐵𝑉)
2

} ≤ G
𝜀,𝛼
(0, 0, 0) < ∞, there exists a minimizing

sequence {(𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)} in𝐻1(Ω) × B2 satisfying

lim
𝑘→∞

G
𝜀,𝛼
(𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)

= inf {G
𝜀,𝛼
(𝜙, 𝜓
1

, 𝜓
2

) : (𝜙, 𝜓
1

, 𝜓
2

) ∈ 𝐻
1

(Ω) × B
2

} .

(51)

Then, for fixed 𝛼 > 0, the definition of G
𝜀,𝛼

in (50) implies
that the sequences {𝜙

𝑘
} and {𝜓𝑗

𝑘
}
𝑗=1,2 are bounded in 𝐻1(Ω)

and (𝐵𝑉)2, respectively. Therefore, from Banach-Alaoglu-
Bourbaki Theorem [38] 𝜙

𝑘
⇀ 𝜙 in 𝐻1(Ω) and from [33,

Theorem 4, p. 176], 𝜓𝑗
𝑘
→ 𝜓

𝑗 in 𝐿1(Ω), 𝑗 = 1, 2. Now, a
similar argument as in Lemma 7 implies that 𝜓𝑗 ∈ B, for
𝑗 = 1, 2. Moreover, by the weak lower semicontinuity of the
𝐻
1-norm [38] and |⋅|

𝐵𝑉
measure (see [33,Theorem 1, p. 172]),

it follows that

𝜙 − 𝜙0


2

𝐻
1 ≤ lim inf
𝑘→∞

𝜙𝑘 − 𝜙0


2

𝐻
1 ,


𝜓
𝑗

− 𝜓
𝑗

0

𝐵𝑉
≤ lim inf
𝑘→∞


𝜓
𝑗

𝑘
− 𝜓
𝑗

0

𝐵𝑉
.

(52)

The compact embedding of 𝐻1(Ω) into 𝐿2(Ω) [36]
implies in the existence of a subsequence of {𝜙

𝑘
} (that we

denote with the same index) such that 𝜙
𝑘
→ 𝜙 in 𝐿2(Ω).

It follows from Lemma 6 and [33, Theorem 1, p. 172] that
|𝐻
𝜀
(𝜙)|
𝐵𝑉
≤ lim inf

𝑘→∞
|𝐻
𝜀
(𝜙
𝑘
)|
𝐵𝑉
. Hence, from continuity
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of 𝐹 in 𝐿1, continuity of 𝑞 (see Lemma 6), together with the
estimates above, we conclude that

G
𝜀,𝛼
(𝜙, 𝜓
1

, 𝜓
2

) ≤ lim
𝑘→∞


𝐹(𝑃
𝜀
(𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)) − 𝑦

𝛿


2

𝑌

+ 𝛼(𝛽
1
lim inf
𝑘→∞

𝐻𝜀 (𝜙𝑘)
𝐵𝑉

+ 𝛽
2
lim inf
𝑘→∞

𝜙𝑘 − 𝜙0


2

𝐻
1
(Ω)

+ 𝛽
3
lim inf
𝑘→∞

2

∑

𝑗=1


𝜓
𝑗

𝑘
− 𝜓
𝑗

0

𝐵𝑉
)

≤ lim inf
𝑘→∞

G
𝜀,𝛼
(𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) = inf G

𝜀,𝛼
.

(53)

Therefore, (𝜙, 𝜓1, 𝜓2) is a minimizer ofG
𝜀,𝛼
.

In the sequel, we prove that, when 𝜀 → 0, theminimizers
ofG
𝜀,𝛼

approximate aminimizer of the functionalG
𝛼
. Hence,

numerically, the minimizer of G
𝜀,𝛼

can be used as a suitable
approximation for the minimizers ofG

𝛼
.

Theorem 18. Let 𝛼 and 𝛽
𝑗
be given as in the general assump-

tion of this paper. For each 𝜀 > 0, denote by (𝜙
𝜀,𝛼
, 𝜓
1

𝜀,𝛼
, 𝜓
2

𝜀,𝛼
)

a minimizer of G
𝜀,𝛼

(that exists form Lemma 17). Then, there
exists a sequence of positive numbers 𝜀

𝑘
→ 0 such that

(𝐻
𝜀
𝑘

(𝜙
𝜀
𝑘
,𝛼
), 𝜙
𝜀
𝑘
,𝛼
, 𝜓
1

𝜀
𝑘
,𝛼
, 𝜓
2

𝜀
𝑘
,𝛼
) converges strongly in 𝐿1(Ω) ×

𝐿
2

(Ω) × (𝐿
1

(Ω))
2 and the limit minimizes G

𝛼
on the set of

admissible quadruples.

Proof. Let (𝑧
𝛼
, 𝜙
𝛼
, 𝜓
1

𝛼
, 𝜓
2

𝛼
) be a minimizer of the functional

G
𝛼
on the set of admissible quadruples (cf. Theorem 12).

From Definition 3, there exists a sequence {𝜀
𝑘
} of positive

numbers converging to zero and corresponding sequences
{𝜙
𝑘
} in 𝐻1(Ω) satisfying 𝜙

𝑘
→ 𝜙
𝛼
in 𝐿2(Ω), 𝐻

𝜀
𝑘

(𝜙
𝑘
) → 𝑧

𝛼

in 𝐿1(Ω) and, finally, sequences {𝜓𝑗
𝑘
} in 𝐵𝑉 × 𝐶∞

𝑐
(Ω) such

that |𝜓𝑗
𝑘
|
𝐵𝑉
→ |𝜓

𝑗

|
𝐵𝑉
. Moreover, we can further assume (see

Lemma 9) that

𝑅 (𝑧
𝛼
, 𝜙
𝛼
, 𝜓
1

𝛼
, 𝜓
2

𝛼
)

= lim
𝑘→∞

(𝛽
1


𝐻
𝜀
𝑘

(𝜙
𝑘
)
𝐵𝑉
+ 𝛽
2

𝜙𝑘 − 𝜙0


2

𝐻
1
(Ω)

+ 𝛽
3

2

∑

𝑗=1


𝜓
𝑗

𝑘
− 𝜓
𝑗

0

𝐵𝑉
) .

(54)

Let (𝜙
𝜀
𝑘

, 𝜓
1

𝜀
𝑘

, 𝜓
2

𝜀
𝑘

) be a minimizer of G
𝜀
𝑘
,𝛼
. Hence, (𝜙

𝜀
𝑘

, 𝜓
1

𝜀
𝑘

,

𝜓
2

𝜀
𝑘

) belongs to 𝐻1(Ω) × B2 (see Lemma 17). The sequences
{𝐻
𝜀
𝑘

(𝜙
𝜀
𝑘

)}, {𝜙
𝜀
𝑘

}, and {𝜓𝑗
𝜀
𝑘

} are uniformly bounded in 𝐵𝑉(Ω),
𝐻
1

(Ω), and 𝐵𝑉(Ω), for 𝑗 = 1, 2, respectively. Form compact
embedding (see Theorems [36] and [33, Theorem 4, p. 176]),
there exist convergent subsequenceswhose limits are denoted

by �̃�, 𝜙, and �̃�𝑗 belonging to 𝐵𝑉(Ω),𝐻1(Ω), and 𝐵𝑉(Ω), for
𝑗 = 1, 2, respectively.

Summarizing, we have 𝜙
𝜀
𝑘

→ 𝜙 in 𝐿2(Ω),𝐻
𝜀
𝑘

(𝜙
𝜀
𝑘

) → �̃�

in𝐿1(Ω), and𝜓𝑗
𝜀
𝑘

→ �̃�
𝑗 in𝐿1(Ω), 𝑗 = 1, 2.Thus, (�̃�, 𝜙, �̃�1, �̃�2)

∈ 𝐿
1

(Ω) × 𝐻
1

(Ω) × �𝐿(Ω) is an admissible quadruple (cf.
Lemma 8).

From the definition of 𝑅, Lemma 6, and the continuity of
𝐹, it follows that


𝐹 (𝑞 (�̃�, �̃�

1

, �̃�
2

)) − 𝑦
𝛿


2

𝑌

= lim
𝑘→∞


𝐹 (𝑃
𝜀
𝑘

(𝜙
𝜀
𝑘

, 𝜓
1

𝜀
𝑘

, 𝜓
2

𝜀
𝑘

)) − 𝑦
𝛿


2

𝑌

,

𝑅 (�̃�, 𝜙, �̃�
1

, �̃�
2

)

≤ lim inf
𝑘→∞

(𝛽
1


𝐻
𝜀
𝑘

(𝜙
𝜀
𝑘

)
𝐵𝑉
+ 𝛽
2


𝜙
𝜀
𝑘

− 𝜙
0



2

𝐻
1
(Ω)

+ 𝛽
3

2

∑

𝑗=1


𝜓
𝑗

𝜀
𝑘

− 𝜓
𝑗

0

𝐵𝑉
) .

(55)

Therefore,

G
𝛼
(�̃�, 𝜙, �̃�

1

, �̃�
2

)

=

𝐹 (𝑞 (�̃�, �̃�

1

, �̃�
2

)) − 𝑦
𝛿


2

𝑌

+ 𝛼𝑅 (�̃�, 𝜙, �̃�
1

, �̃�
2

)

≤ lim inf
𝑘→∞

G
𝜀
𝑘
,𝛼
(𝜙
𝜀
𝑘

, 𝜓
1

𝜀
𝑘

, 𝜓
2

𝜀
𝑘

)

≤ lim inf
𝑘→∞

G
𝜀
𝑘
,𝛼
(𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)

≤ lim sup
𝑘→∞


𝐹 (𝑃
𝜀
𝑘

(𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)) − 𝑦

𝛿


2

𝑌

+ 𝛼 lim sup
𝑘→∞

(𝛽
1


𝐻
𝜀
𝑘

(𝜙
𝑘
)
𝐵𝑉
+ 𝛽
2

𝜙𝑘 − 𝜙0


2

𝐻
1
(Ω)

+ 𝛽
3

2

∑

𝑗=1


𝜓
𝑗

𝑘
− 𝜓
𝑗

0

𝐵𝑉
)

=

𝐹 (𝑞 (𝑧

𝛼
, 𝜓
1

𝛼
, 𝜓
2

𝛼
)) − 𝑦

𝛿


2

𝑌

+ 𝛼𝑅 (𝑧
𝛼
, 𝜙
𝛼
, 𝜓
1

𝛼
, 𝜓
2

𝛼
)

= G
𝛼
(𝑧
𝛼
, 𝜙
1

𝛼
, 𝜓
1

𝛼
, 𝜓
2

𝛼
) ,

(56)

characterizing (�̃�, 𝜙, 𝜓1
𝛼
, 𝜓
2

𝛼
) as a minimizer ofG

𝛼
.

5.1. Optimality Conditions for the Stabilized Functional. For
numerical purposes it is convenient to derive first-order
optimality conditions for minimizers of functionalG

𝛼
. Since

𝑃 is a discontinuous operator, it is not possible. However,
thanks to Theorem 16, the minimizers of the stabilized
functionals G

𝜀,𝛼
can be used for approximate minimizers of

the functional G
𝛼
. Therefore, we consider G

𝜀,𝛼
in (50), with
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𝑌 a Hilbert space, and we look for the Gâteaux directional
derivatives with respect to 𝜙 and the unknown𝜓𝑗 for 𝑗 = 1, 2.

Since 𝐻


𝜀
(𝜙) is self-adjoint (note that 𝐻

𝜀
(𝑡) =

{
1/𝜀 𝑡 ∈ (−𝜀,0)

0 other else.), we can write the optimality conditions for the
functionalG

𝜀,𝛼
in the form of the system

𝛼 (Δ − 𝐼) (𝜙 − 𝜙
0
) = 𝐿
𝜀,𝛼,𝛽

(𝜙, 𝜓
1

, 𝜓
2

) , in Ω, (57)

(𝜙 − 𝜙
0
) ⋅ 𝜈 = 0, at 𝜕Ω, (58)

𝛼∇ ⋅ [

[

∇ (𝜓
𝑗

− 𝜓
𝑗

0
)


∇ (𝜓𝑗 − 𝜓

𝑗

0
)


]

]

= 𝐿
𝑗

𝜀,𝛼,𝛽
(𝜙, 𝜓
1

, 𝜓
2

) , 𝑗 = 1, 2. (59)

Here 𝜈(𝑥) represents the external unit normal quadruple at
𝑥 ∈ 𝜕Ω and

𝐿
𝜀,𝛼,𝛽

(𝜙, 𝜓
1

, 𝜓
2

) = (𝜓
1

− 𝜓
2

) 𝛽
−1

2
𝐻


𝜀
(𝜙)
∗

𝐹


× (𝑃
𝜀
(𝜙, 𝜓
1

, 𝜓
2

))
∗

× (𝐹 (𝑃
𝜀
(𝜙, 𝜓
1

, 𝜓
2

)) − 𝑦
𝛿

)

− 𝛽
1
(2𝛽
2
)
−1

𝐻


𝜀
(𝜙) ∇ ⋅ [

∇𝐻
𝜀
(𝜙)

∇𝐻𝜀 (𝜙)


] ,

(60)

𝐿
1

𝜀,𝛼,𝛽
(𝜙, 𝜓
1

, 𝜓
2

) = (2𝛽
3
)
−1

(𝐹


(𝑃
𝜀
(𝜙, 𝜓
1

, 𝜓
2

))𝐻
𝜀
(𝜙))
∗

× (𝐹 (𝑃
𝜀
(𝜙, 𝜓
1

, 𝜓
2

)) − 𝑦
𝛿

) ,

(61)

𝐿
2

𝜀,𝛼,𝛽
(𝜙, 𝜓
1

, 𝜓
2

) = (2𝛽
3
)
−1

× (𝐹


(𝑃
𝜀
(𝜙, 𝜓
1

, 𝜓
2

)) (1 − 𝐻
𝜀
(𝜙)))
∗

× (𝐹 (𝑃
𝜀
(𝜙, 𝜓
1

, 𝜓
2

)) − 𝑦
𝛿

) .

(62)

It is worth noticing that the derivation of (57), (58),
and (59) is purely formal, since the 𝐵𝑉 seminorm is not
differentiable. Moreover the terms |∇𝐻

𝜀
(𝜙)| and |∇(𝜓𝑗 − 𝜓𝑗

0
)|

appear in the denominators of (57), (58), (59), (60), (61), and
(62), respectively.

In Section 6, systems (57), (58), (59), (60), (61), and (62),
are used as starting point for the derivation of a level-set-type
method.

6. Inverse Elliptic Problems

In this section, we discuss the proposed level-set approach
and its application in some physical problems modeled
by elliptic PDEs. We also discuss briefly the numerical
implementations of the iterative method based on the level-
set approach. We remark that in the case of noise data the
iterative algorithm derived by the level-set approach needs an
early stooping criteria [21].

6.1. The Inverse Potential Problem. In this subsection, we
apply the level-set regularization framework in an inverse
potential problem [18, 22, 32]. Differently from [10, 18, 19, 25,
29, 32, 39], we assume that the source 𝑢 is not necessarily
piecewise constant. For relevant applications of the inverse
potential problem, see [20, 22, 32, 39] and references therein.

The forward problem consists of solving the Poisson
boundary value problem

−∇ ⋅ (𝜎∇𝑤) = 𝑢, in Ω,

𝛾
1
𝑤 + 𝛾
2
𝑤
𝜈
= 𝑔 on 𝜕Ω,

(63)

on a given domain Ω ⊂ R𝑛 with 𝜕Ω Lipschitz, for a given
source function 𝑢 ∈ 𝐿2(Ω) and a boundary function 𝑔 ∈
𝐿
2

(𝜕Ω). In (71), 𝜈 represents the outer normal vector to 𝜕Ω,
and 𝜎 is a known sufficient smooth function. Note that,
depending of 𝛾

1
, 𝛾
2
∈ {0, 1}, we have Dirichlet, Neumann, or

Robin boundary condition. In this paper, we only consider
the case of Dirichlet boundary condition that corresponds
to 𝛾
1
= 1 and 𝛾

2
= 0 in (71). Therefore, it is well known

that there exists a unique solution 𝑤 ∈ 𝐻1(Ω) of (71) with
𝑤 − 𝑔 ∈ 𝐻

1

0
(Ω), [40].

Assuming homogeneousDirichlet boundary condition in
(63), the problem can be modeled by the operator equation

𝐹
1
: 𝐿
2

(Ω) → 𝐿
2

(𝜕Ω)

𝑢 → 𝐹
1
(𝑢) := 𝑤

𝜈

𝜕Ω
.

(64)

The corresponding inverse problem consists in recov-
ering the 𝐿2 source function 𝑢, from measurements of
the Cauchy data of its corresponding potential 𝑤 on the
boundary ofΩ.

Using this notation, the inverse potential problem can
be written in the abbreviated form 𝐹

1
(𝑢) = 𝑦

𝛿, where the
available noisy data 𝑦𝛿 ∈ 𝐿

2

(𝜕Ω) has the same meaning
as in (2). It is worth noticing that this inverse problem has,
in general, nonunique solution [22]. Therefore, we restrict
our attention to minimum-norm solutions [21]. Sufficient
conditions for identifiability are given in [20]. Moreover,
we restrict our attention to solve the inverse problem (64)
in 𝐷(𝐹), that is, we assume the unknown parameter 𝑢 ∈

𝐷(𝐹), as defined in Section 3. Note that, in this situation, the
operator 𝐹

1
is linear. However, the inverse potential problem

is well known to be exponentially ill-posed [20]. Therefore,
the solution calls for a regularization strategy [20–22].

The following lemma implies that the operator 𝐹
1
satisfies

the assumption (A2).

Lemma 19. The operator 𝐹
1
: 𝐷(𝐹) ⊂ 𝐿

1

(Ω) → 𝐿
2

(𝜕Ω) is
continuous with respect to the 𝐿1(Ω) topology.

Proof. It is well known from the elliptic regularity theory [40]
that ‖𝑤‖

𝐻
1
(Ω)

≤ 𝑐
1
‖𝑢‖
𝐿
2
(Ω)

. Let 𝑢
𝑛
, 𝑢
0
∈ 𝐷(𝐹) and 𝑤

𝑛
, 𝑤
0

the respective solution of (63). Then, from the linearity and
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continuity of the trace operator from𝐻1(Ω) to 𝐿2(𝜕Ω) [40],
we have that

𝐹1(𝑢𝑛) − 𝐹1(𝑢0)
𝐿2(𝜕Ω)

≤ 𝐶
𝑤𝑛 − 𝑤0

𝐻1(Ω)

≤ 𝐶
𝑢𝑛 − 𝑢0

𝐿2(Ω)

≤ 𝐶
1

𝑢𝑛 − 𝑢0
𝐿1(Ω)

,

(65)

where we use Lemma 5 to obtain the last inequality. There-
fore, 𝐹

1
is sequentially continuous on the 𝐿1(Ω) topology.

Since 𝐿1(Ω) is a metrizable spaces [38], the proof is com-
plete.

6.1.1. A Level-Set Algorithm for the Inverse Potential Problem.
We propose an explicit iterative algorithm derived from the
optimality conditions (57), (58), (59), (60), (61), and (62), for
the Tikhonov functionalG

𝜀,𝛼
.

For the inverse potential problem with Dirichlet bound-
ary condition (𝛾

1
= 1 and 𝛾

2
= 0), the algorithm reads as

shown in Algorithm 20.

Algorithm 20 (iterative algorithm based on the level-set
approach for the inverse potential problem). Given 𝜎 and 𝑔,

(1) evaluate the residual 𝑟
𝑘
:= 𝐹
1
(𝑃
𝜀
(𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
)) − 𝑦

𝛿

=

(𝑤
𝑘
)
𝜈
|
𝜕Ω
− 𝑦
𝛿, where 𝑤

𝑘
solves

−∇ ⋅ (𝜎∇𝑤
𝑘
) = 𝑃
𝜀
(𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) , in Ω;

𝑤
𝑘
= 𝑔, at 𝜕Ω.

(66)

(2) evaluate ℎ
𝑘
:= 𝐹


1
(𝑃
𝜀
(𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
))
∗

(𝑟
𝑘
) ∈ 𝐿
2

(Ω), solv-
ing

Δℎ
𝑘
= 0, in Ω;

ℎ
𝑘
= 𝑟
𝑘
, at 𝜕Ω.

(67)

(3) calculate 𝛿𝜙
𝑘
:= 𝐿
𝜀,𝛼,𝛽
(𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
) and 𝛿𝜓𝑗

𝑘
:= 𝐿
𝑗

𝜀,𝛼,𝛽
⋅

(𝜙
𝑘
, 𝜓
1

𝑘
, 𝜓
2

𝑘
), as in (60), (61), and (62),

(4) update the level-set function 𝜙
𝑘
and the level values

𝜓
𝑗

𝑘
, 𝑗 = 1, 2,

𝜙
𝑘+1
= 𝜙
𝑘
+
1

𝛼
𝛿𝜙
𝑘
,

𝜓
𝑗

𝑘+1
= 𝜓
𝑗

𝑘
+
1

𝛼
𝛿𝜓
𝑗

𝑘
.

(68)

Each step of this iterative method consists of three parts
(see Algorithm 20): (1) the residual 𝑟

𝑘
∈ 𝐿
2

(𝜕Ω) of the iterate
(𝜙
𝑘
, 𝜓
𝑗

𝑘
) is evaluated (this requires solving one elliptic BVP of

Dirichlet type); (2) the 𝐿2-solution ℎ
𝑘
of the adjoint problem

for the residual is evaluated (this corresponds to solving one
elliptic BVP of Dirichlet type); (3) the update 𝛿𝜙

𝑘
for the

level-set function and the updates 𝛿𝜓𝑗
𝑘
for the level values are

evaluated (this corresponds to multiplying two functions).

In [29], a level-set method was proposed, where the
iteration is based on an inexact Newton type method. The
inner iteration is implemented using the conjugate gradient
method. Moreover, the regularization parameter 𝛼 > 0 is
kept fixed. In contrast to [29], in Algorithm 20, we define
𝛿𝑡 = 1/𝛼 (as a time increment) in order to derive an
evolution equation for the level-set function. Therefore, we
are looking for a fixed-point equation related to the system of
optimality conditions for the Tikhonov functional.Moreover,
the iteration is based on a gradient-type method as in [18].

6.2. The Inverse Problem in Nonlinear Electromagnetism.
Many interesting physical problems are model by quasilin-
ear elliptic equations. Examples of applications include the
identification of inhomogeneity inside nonlinear magnetic
materials form indirect or local measurements. Electromag-
netic nondestructive tests aim to localize cracks or inhomo-
geneities in the steel production process, where impurities
can be described by a piecewise smooth function [2–4, 11].

In this section, we assume that𝐷 ⊂⊂ Ω is measurable and

𝑢 = {
𝜓
1
, 𝑥 ∈ 𝐷,

𝜓
2
, 𝑥 ∈ Ω𝐷,

(69)

where 𝜓
1
, 𝜓
2
∈ B and𝑚 > 0.

The forward problem consists of solving the Poisson
boundary value problem

−∇ ⋅ (𝑢∇𝑤) = 𝑓, in Ω,

𝑤 = 𝑔 on 𝜕Ω,
(70)

whereΩ ⊂ R𝑛 with 𝜕ΩLipschitz, the source𝑓 ∈ 𝐻−1(Ω), and
boundary condition𝑔 ∈ 𝐻1/2(𝜕Ω). It is well known that there
exists a unique solution𝑤 ∈ 𝐻1(Ω) such that 𝑤− 𝑔 ∈ 𝐻1

0
(Ω)

for the PDE (70), [40].
Assuming that during the production process the work-

piece is contaminated by impurities and that such impurities
are described by piecewise smooth function, the inverse
electromagnetic problem consists in the identification and
the localization of the inhomogeneities as well as the function
values of the impurities. The localization of support and
the tabulation of the inhomogeneities values can indicate
possible sources of contamination in the magnetic material.

In other words, the inverse problem in electromagnetism
consists in the identification of the support (shape) and the
function values of 𝜓1, 𝜓2 of the coefficient function 𝑢(𝑥)
defined in (69). The voltage potential 𝑔 is chosen such that
it corresponds to the current measurement ℎ := (𝑤)

𝜈
|
𝜕Ω
,

available as a set of continuous measurement in 𝜕Ω. This
problem is known in the literature as the inverse problem for
the Dirichlet-to-Neumann map [20].

With this framework, the problem can be modeled by the
operator equation

𝐹
2
: 𝐷 (𝐹) ⊂ 𝐿

1

(Ω) → 𝐻
1/2

(𝜕Ω) ,

𝑢 → 𝐹
2
(𝑢) := 𝑤|

𝜕Ω
,

(71)

where the potential profile 𝑔 = 𝑤|
𝜕Ω
∈ 𝐻
1/2

(Ω) is given.
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The authors in [4] investigated a level-set approach for
solving an inverse problem of identification of inhomo-
geneities inside a nonlinear material, from local measure-
ments of the magnetic induction. The assumption in [4] is
that part of the inhomogeneities is given by a crack localized
inside the workpiece and that, outside the crack region,
magnetic conductivities are nonlinear and they depend on
the magnetic induction. In other words, that 𝜓

1
= 𝜇
1
and

𝜓
2
= 𝜇
2
(|∇𝑤|
2

), where 𝜇
1
is the (constant) air conductivity

and 𝜇
2
= 𝜇
2
(|∇𝑤|
2

) is a nonlinear conductivity of the
workpiece material, whose values are assumed to be known.
In [4], they also present a successful iterative algorithm and
numerical experiment. However, in [4], the measurements
and therefore the data are given in the wholeΩ. Such amount
of measurements is not reasonable in applications. Moreover,
the proposed level-set algorithm is based on an optimality
condition of a least square functional with𝐻1(Ω)-seminorm
regularization. Therefore, there is no guarantee of existence
of minimum for the proposed functional.

Remark 21. Note that 𝐹
2
(𝑢) = 𝑇

𝐷
(𝑤), where 𝑇

𝐷
is the Dirich-

let trace operator. Moreover, since 𝑇
𝐷
: 𝐻
1

(Ω) → 𝐻
1/2

(𝜕Ω)

is linear and continuous [40], we have ‖𝑇
𝐷
(𝑤)‖
𝐻
1/2
(𝜕Ω)

≤

𝑐‖𝑤‖
𝐻
1
(Ω)

.

In the following lemma, we prove that the operator 𝐹
2

satisfies the Assumption (A2).

Lemma 22. Let the operator 𝐹
2
: 𝐷(𝐹) ⊂ 𝐿

1

(Ω) →

𝐻
1/2

(𝜕Ω) as defined in (71).Then,𝐹
2
is continuous with respect

to the 𝐿1(Ω) topology.

Proof. Let 𝑢
𝑛
, 𝑢
0
∈ 𝐷(𝐹) and 𝑤

𝑛
, 𝑤
0
denoting the respective

solution of (63). The linearity of (70) implies that 𝑤
𝑛
− 𝑤
0
∈

𝐻
1

0
(Ω), and it satisfies

∇ ⋅ (𝑢
𝑛
∇𝑤
𝑛
) − ∇ ⋅ (𝑢

0
∇𝑤
0
) = 0, (72)

with homogeneous boundary condition.Therefore, using the
weak formulation for (72), we have

∫
Ω

(∇ ⋅ (𝑢
𝑛
∇𝑤
𝑛
) − ∇ ⋅ (𝑢

0
∇𝑤
0
)) 𝜑𝑑𝑥 = 0, ∀𝜑 ∈ 𝐻

1

0
(Ω) .

(73)

In particular, theweak formulation holds true for𝜑 = 𝑤
𝑛
−𝑤
0
.

From the Green formula [40] and the assumption that𝑚 > 0
(that guarantee ellipticity of (70)), it follows that

𝑚
∇𝑤𝑛 − ∇𝑤0



2

𝐿
2
(Ω)
≤ ∫
Ω

𝑢
𝑛

∇𝑤𝑛 − ∇𝑤0


2

𝑑𝑥

≤ ∫
Ω

(𝑢𝑛 − 𝑢0)
∇𝑤0

 (∇𝑤𝑛−∇𝑤0)
 𝑑𝑥.

(74)

From [41, Theorem 1], there exists 𝜀 > 0 (small enough) such
that 𝑤

0
∈ 𝑊
1,𝑝

(Ω) for 𝑝 = 2 + 𝜀. Using the Hölder inequality

[40] with 1/𝑝 + 1/𝑞 = 1/2 (note that 𝑞 > 2 in (74)), it follows
that

𝑚
∇𝑤𝑛 − ∇𝑤0



2

𝐿
2
(Ω)
≤
𝑢𝑛 − 𝑢0

𝐿𝑞(Ω)

×
∇𝑤0

𝐿𝑝(Ω)

∇𝑤𝑛 − ∇𝑤0
𝐿2(Ω)

.

(75)

Therefore, using the Poincaré inequality [40] and (75), we
have

𝑤𝑛 − 𝑤0
𝐻1(Ω)

≤ 𝐶
𝑢𝑛 − 𝑢0

𝐿𝑞(Ω)
, (76)

where the constant 𝐶 depends only of 𝑚,Ω, ‖∇𝑤
0
‖ and the

Poincaré constant. Now, the assertion follows from Lemma 5
and Remark 21.

6.2.1. A Level-Set Algorithm for Inverse Problem in Nonlinear
Electromagnetism. Wepropose an explicit iterative algorithm
derived from the optimality conditions (57), (58), (59),
(60), (61), and (62), for the Tikhonov functional G

𝜀,𝛼
. Each

iteration of this algorithm consists in the following steps: in
the first step the residual vector 𝑟 ∈ 𝐿2(𝜕Ω) corresponding to
the iterate (𝜙

𝑛
, 𝜓
1

𝑛
, 𝜓
2

𝑛
) is evaluated. This requires the solution

of one elliptic BVP of Dirichlet type. In the second step,
the solutions 𝑣 ∈ 𝐻

1

(Ω) of the adjoint problems for the
residual components 𝑟 are evaluated. This corresponds to
solving one elliptic BVP of Neumann type and to computing
the inner product ∇𝑤 ⋅ ∇𝑣 in 𝐿2(Ω). Next, the computation
of 𝐿
𝜀,𝛼,𝛽
(𝜙
𝑛
, 𝜓
1

𝑛
, 𝜓
2

𝑛
) and 𝐿𝑗

𝜀,𝛼,𝛽
(𝜙
𝑛
, 𝜓
1

𝑛
, 𝜓
2

𝑛
) as in (60), (61), and

(62), follows. The fourth step is the updates of the level-set
function 𝛿𝜙

𝑛
∈ 𝐻
1

(Ω) and the level function values 𝛿𝜓𝑗
𝑛
∈

𝐵𝑉(Ω) by solving (57), (58), and (59).
The algorithm is summarized in Algorithm 23.

Algorithm 23 (an explicit algorithm based on the proposed
level-set iterative regularization method).

(1) Evaluate the residual 𝑟 := 𝐹
2
(𝑃
𝜀
(𝜙
𝑛
, 𝜓
1

𝑛
, 𝜓
2

𝑛
)) − 𝑦

𝛿

=

𝑤|
𝜕Ω
− 𝑔
𝛿, where 𝑤 ∈ 𝐻1(Ω) solves

∇ ⋅ (𝑃
𝜀
(𝜙
𝑛
, 𝜓
1

𝑛
, 𝜓
2

𝑛
) ∇𝑤) = 𝑓, in Ω;

𝑤 = 𝑔, at 𝜕Ω.
(77)

(2) Evaluate 𝐹
2
(𝑃
𝜀
(𝜙
𝑛
, 𝜓
1

𝑛
, 𝜓
2

𝑛
))
∗

𝑟 := ∇𝑤 ⋅ ∇𝑣 ∈ 𝐿
2

(Ω),
where 𝑤 is the function computed in step (1) and 𝑣 ∈
𝐻
1

(Ω) solves

∇ ⋅ (𝑃
𝜀
(𝜙
𝑛
, 𝜓
1

𝑛
, 𝜓
2

𝑛
) ∇𝑣) = 0 in Ω;

𝑣
𝜈
= 𝑟, at 𝜕Ω.

(78)

(3) Calculate 𝐿
𝜀,𝛼,𝛽
(𝜙
𝑛
, 𝜓
1

𝑛
, 𝜓
2

𝑛
) and 𝐿𝑗

𝜀,𝛼,𝛽
(𝜙
𝑛
, 𝜓
1

𝑛
, 𝜓
2

𝑛
) as

in (60), (61), and (62).
(4) Evaluate the updates 𝛿𝜙 ∈ 𝐻1(Ω), 𝛿𝜓𝑗 ∈ 𝐵𝑉(Ω) by

solving (57), (58), and (59).
(5) Update the level-set functions 𝜙

𝑛+1
= 𝜙
𝑛
+ (1/𝛼)𝛿𝜙

and the level function values 𝜓𝑗
𝑛+1
= 𝜓
𝑗

𝑛
+ (1/𝛼)𝛿𝜓

𝑗.
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7. Conclusions and Future Directions

In this paper, we generalize the results of convergence and
stability of the level-set regularization approach proposed
in [18, 19], where the level values of discontinuities are
not piecewise constant inside each region. We analyze the
particular case, where the set Ω is divided in two regions.
However, it is easy to extend the analysis for the case of
multiple regions adapting the multiple level-set approach in
[17, 19].

We apply the level-set framework for two problems:
the inverse potential problem and in an inverse problem
in nonlinear electromagnetism with piecewise nonconstant
solution. In both cases, we prove that the parameter-to-
solution map satisfies the assumption (A1). The inverse
potential problem application is a natural generalization of
the problem computed in [17–19]. We also investigate the
applicability of an inverse problem in nonlinear electro-
magnetism in the identification of inhomogeneities inside
a nonlinear magnetic workpiece. Moreover, we propose
iterative algorithm based on the optimality condition of the
smooth Tikhonov functionalG

𝜀,𝛼
.

A natural continuation of this paper is the numerical
implementation. Level-set numerical implementations for
the inverse potential problem were done before in [17–19],
where the level values are assumed to be constant. Implemen-
tations of level-set methods for resistivity/conductivity prob-
lem in elliptic equation have been intensively implemented
recently, for example, [2, 4, 6, 10, 11, 42, 43].
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