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We introduce hybrid and relaxed Mann iteration methods for a general system of variational inequalities with solutions being
also common solutions of a countable family of variational inequalities and common fixed points of a countable family of
nonexpansivemappings in real smooth and uniformly convex Banach spaces. Here, the hybrid and relaxedMann iterationmethods
are based on Korpelevich’s extragradient method, viscosity approximation method, and Mann iteration method. Under suitable
assumptions, we derive some strong convergence theorems for hybrid and relaxedMann iteration algorithms not only in the setting
of uniformly convex and 2-uniformly smooth Banach space but also in a uniformly convex Banach space having a uniformly
Gateaux differentiable norm. The results presented in this paper improve, extend, supplement, and develop the corresponding
results announced in the earlier and very recent literature.

1. Introduction

Let 𝑋 be a real Banach space whose dual space is denoted by
𝑋
∗.The normalized duality mapping 𝐽 : 𝑋 → 2

𝑋
∗

is defined
by

𝐽 (𝑥) = {𝑥
∗

∈ 𝑋
∗

: ⟨𝑥, 𝑥
∗

⟩ = ‖𝑥‖
2

=
𝑥
∗

2

} , ∀𝑥 ∈ 𝑋,

(1)
where ⟨⋅, ⋅⟩ denotes the generalized duality pairing. It is an
immediate consequence of the Hahn-Banach theorem that
𝐽(𝑥) is nonempty for each 𝑥 ∈ 𝑋. Let 𝐶 be a nonempty
closed convex subset of 𝑋. A mapping 𝑇 : 𝐶 → 𝐶 is called
nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ for every 𝑥, 𝑦 ∈ 𝐶.
The set of fixed points of 𝑇 is denoted by Fix(𝑇). We use the
notation⇀ to indicate the weak convergence and the one →

to indicate the strong convergence. A mapping 𝐴 : 𝐶 → 𝑋

is said to be
(i) accretive if for each 𝑥, 𝑦 ∈ 𝐶 there exists 𝑗(𝑥 − 𝑦) ∈

𝐽(𝑥 − 𝑦) such that
⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 0; (2)

(ii) 𝛼-strongly accretive if for each 𝑥, 𝑦 ∈ 𝐶 there exists
𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛼
𝑥 − 𝑦



2

, (3)

for some 𝛼 ∈ (0, 1);
(iii) 𝛽-inverse strongly accretive if, for each 𝑥, 𝑦 ∈ 𝐶, there

exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≥ 𝛽
𝐴𝑥 − 𝐴𝑦



2

, (4)

for some 𝛽 > 0;
(iv) 𝜆-strictly pseudocontractive [1] (see also [2]) if for

each 𝑥, 𝑦 ∈ 𝐶 there exists 𝑗(𝑥 − 𝑦) ∈ 𝐽(𝑥 − 𝑦) such
that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩ ≤
𝑥 − 𝑦



2

− 𝜆
𝑥 − 𝑦 − (𝐴𝑥 − 𝐴𝑦)



2

(5)

for some 𝜆 ∈ (0, 1).
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It is worth emphasizing that the definition of the inverse
strongly accretive mapping is based on that of the inverse
strongly monotone mapping, which was studied by so many
authors; see, for example, [3–5]. Let 𝑈 = {𝑥 ∈ 𝑋 : ‖𝑥‖ = 1}

denote the unite sphere of 𝑋. A Banach space 𝑋 is said to be
uniformly convex if, for each 𝜖 ∈ (0, 2], there exists 𝛿 > 0

such that, for all 𝑥, 𝑦 ∈ 𝑈,

𝑥 − 𝑦
 ≥ 𝜖 ⇒

𝑥 + 𝑦


2
≤ 1 − 𝛿. (6)

It is known that a uniformly convex Banach space is reflexive
and strict convex. A Banach space 𝑋 is said to be smooth if
the limit

lim
𝑡→0

𝑥 + 𝑡𝑦
 − ‖𝑥‖

𝑡

(7)

exists for all 𝑥, 𝑦 ∈ 𝑈; in this case, 𝑋 is also said to have a
Gateaux differentiable norm. 𝑋 is said to have a uniformly,
Gateaux differentiable norm if, for each 𝑦 ∈ 𝑈, the limit
is attained uniformly for 𝑥 ∈ 𝑈. Moreover, it is said to be
uniformly smooth if this limit is attained uniformly for 𝑥, 𝑦 ∈

𝑈. The norm of 𝑋 is said to be the Frechet differential if for
each 𝑥 ∈ 𝑈, this limit is attained uniformly for 𝑦 ∈ 𝑈. In the
meantime, we define a function 𝜌 : [0,∞) → [0,∞) called
the modulus of smoothness of𝑋 as follows:

𝜌 (𝜏) = sup {1
2
(
𝑥 + 𝑦

 +
𝑥 − 𝑦

) − 1 : 𝑥, 𝑦 ∈ 𝑋,

‖𝑥‖ = 1,
𝑦
 = 𝜏} .

(8)

It is known that 𝑋 is uniformly smooth if and only if
lim
𝜏→0

𝜌(𝜏)/𝜏 = 0. Let 𝑞 be a fixed real number with 1 < 𝑞 ≤

2.Then, a Banach space𝑋 is said to be 𝑞-uniformly smooth if
there exists a constant 𝑐 > 0 such that 𝜌(𝜏) ≤ 𝑐𝜏

𝑞 for all 𝜏 > 0.
As pointed out in [6], no Banach space is 𝑞-uniformly smooth
for 𝑞 > 2. In addition, it is also known that 𝐽 is single valued
if and only if𝑋 is smooth, whereas if𝑋 is uniformly smooth,
then the mapping 𝐽 is norm-to-norm uniformly continuous
on bounded subsets of 𝑋. If 𝑋 has a uniformly Gateaux
differentiable norm, then the duality mapping 𝐽 is norm-to-
weak∗ uniformly continuous on bounded subsets of𝑋.

Recently, Yao et al. [7] combined the viscosity approx-
imation method and Mann iteration method and gave the
following hybrid viscosity approximation method.

Let 𝐶 be a nonempty closed convex subset of a real
uniformly smooth Banach space 𝑋, 𝑇 : 𝐶 → 𝐶 a
nonexpansive mapping with Fix(𝑇) ̸= 0, and 𝑓 : 𝐶 → 𝐶

a contraction with coefficient 𝜌 ∈ (0, 1). For an arbitrary
𝑥
0
∈ 𝐶, define {𝑥

𝑛
} in the following way:

𝑦
𝑛
= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
,

𝑥
𝑛+1

= 𝛽
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛽

𝑛
) 𝑦
𝑛
, ∀𝑛 ≥ 0,

(YCY)

where {𝛼
𝑛
} and {𝛽

𝑛
} are two sequences in (0, 1).

They proved under certain control conditions on the
sequences {𝛼

𝑛
} and {𝛽

𝑛
} that {𝑥

𝑛
} converges strongly to

a fixed point of 𝑇. Subsequently, under the following control
conditions on {𝛼

𝑛
} and {𝛽

𝑛
}:

(i) 1 ≤ 𝛽
𝑛
≤ 1 − 𝜌, for all 𝑛 ≥ 𝑛

0
for some integer 𝑛

0
≥ 1,

(ii) ∑∞
𝑛=0

𝛽
𝑛
= ∞,

(iii) 0 < lim inf
𝑛→∞

𝛼
𝑛
≤ lim sup

𝑛→∞
𝛼
𝑛
< 1,

(iv) lim
𝑛→∞

(𝛽
𝑛+1

/(1 − (1 − 𝛽
𝑛+1

)𝛼
𝑛+1

) − 𝛽
𝑛
/(1 − (1 −

𝛽
𝑛
)𝛼
𝑛
)) = 0.

Ceng and Yao [8] proved that

𝑥
𝑛
→ 𝑞 ⇐⇒ 𝛽

𝑛
(𝑓 (𝑥
𝑛
) − 𝑥
𝑛
) → 0, (9)

where 𝑞 ∈ Fix(𝑇) solves the variational inequality problem
(VIP):

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ Fix (𝑇) . (10)

Such a result includes [7, Theorem 1] as a special case.
Let𝐶 be a nonempty closed convex subset of a real Banach

space 𝑋 and 𝑓 ∈ Ξ
𝐶
with a contractive coefficient 𝜌 ∈ (0, 1),

where Ξ
𝐶
is the set of all contractive self-mappings on 𝐶. Let

{𝑇
𝑛
}
∞

𝑛=0
be a sequence of nonexpansive self-mappings on 𝐶

and {𝜆
𝑛
}
∞

𝑛=0
a sequence of nonnegative numbers in [0, 1]. For

any 𝑛 ≥ 0, define a self-mapping𝑊
𝑛
on 𝐶 as follows:

𝑈
𝑛,𝑛+1

= 𝐼,

𝑈
𝑛,𝑛

= 𝜆
𝑛
𝑇
𝑛
𝑈
𝑛,𝑛+1

+ (1 − 𝜆
𝑛
) 𝐼,

𝑈
𝑛,𝑛−1

= 𝜆
𝑛−1

𝑇
𝑛−1

𝑈
𝑛,𝑛

+ (1 − 𝜆
𝑛−1

) 𝐼,

...

𝑈
𝑛,𝑘

= 𝜆
𝑘
𝑇
𝑘
𝑈
𝑛,𝑘+1

+ (1 − 𝜆
𝑘
) 𝐼,

𝑈
𝑛,𝑘−1

= 𝜆
𝑘−1

𝑇
𝑘−1

𝑈
𝑛,𝑘

+ (1 − 𝜆
𝑘−1

) 𝐼,

...

𝑈
𝑛,1

= 𝜆
1
𝑇
1
𝑈
𝑛,2

+ (1 − 𝜆
1
) 𝐼,

𝑊
𝑛
= 𝑈
𝑛,0

= 𝜆
0
𝑇
0
𝑈
𝑛,1

+ (1 − 𝜆
0
) 𝐼.

(CY)

Such a mapping 𝑊
𝑛
is called the 𝑊-mapping generated by

𝑇
𝑛
, 𝑇
𝑛−1

, . . . , 𝑇
0
, and 𝜆

𝑛
, 𝜆
𝑛−1

, . . . , 𝜆
0
; see [9].

In 2008, Ceng and Yao [10] introduced and analyzed the
following relaxed viscosity approximationmethod for finding
a common fixed point of an infinite family of nonexpansive
mappings in a strictly convex and reflexive Banach space with
a uniformly Gateaux differentiable norm.

Theorem 1 (see [10]). Let 𝑋 be a strictly convex and reflexive
Banach space with a uniformly Gateaux differentiable norm,
𝐶 a nonempty closed convex subset of𝑋, {𝑇

𝑛
}
∞

𝑛=0
a sequence of

nonexpansive self-mappings on 𝐶 such that the common fixed
point set 𝐹 := ⋂

∞

𝑛=0
Fix(𝑇
𝑛
) ̸= 0, and 𝑓 ∈ Ξ

𝐶
with a contractive
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coefficient 𝜌 ∈ (1/2, 1). For any given 𝑥
0
∈ 𝐶, let {𝑥

𝑛
}
∞

𝑛=0
be the

iterative sequence defined by

𝑦
𝑛
= (1 − 𝛾

𝑛
) 𝑥
𝑛
+ 𝛾
𝑛
𝑊
𝑛
𝑥
𝑛
,

𝑥
𝑛+1

= (1 − 𝛼
𝑛
− 𝛽
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑓 (𝑦
𝑛
) + 𝛽
𝑛
𝑊
𝑛
𝑦
𝑛
, ∀𝑛 ≥ 0,

(11)

where {𝛼
𝑛
}
∞

𝑛=0
and {𝛽

𝑛
}
∞

𝑛=0
are two sequences in (0, 1)with 𝛼

𝑛
+

𝛽
𝑛
≤ 1 (𝑛 ≥ 0), {𝛾

𝑛
}
∞

𝑛=0
is a sequence in [0, 1], and 𝑊

𝑛
is the

𝑊-mapping generated by (CY). Assume that

(i) lim
𝑛→∞

𝛼
𝑛

= 0, ∑
∞

𝑛=0
𝛼
𝑛

= ∞ and 0 <

lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1;

(ii) lim
𝑛→∞

|𝛾
𝑛
− 𝛾
𝑛−1

| = 0 and lim sup
𝑛→∞

𝛾
𝑛
< 1.

Then, there hold the following:

(i) lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0;

(ii) the sequence {𝑥
𝑛
}
∞

𝑛=0
converges strongly to some 𝑝 ∈

𝐹 which is the unique solution of the variational
inequality problem (VIP)

⟨(𝐼 − 𝑓) 𝑞, 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑓 ∈ Ξ
𝐶
, 𝑝 ∈ 𝐹, (12)

provided lim
𝑛→∞

𝛾
𝑛
= 0 and 𝛽

𝑛
≡ 𝛽 for some fixed

𝛽 ∈ (0, 1).

On the other hand, Cai and Bu [11] considered the
following general system of variational inequalities (GSVI)
in a real smooth Banach space 𝑋, which involves finding
(𝑥
∗

, 𝑦
∗

) ∈ 𝐶 × 𝐶 such that

⟨𝜇
1
𝐵
1
𝑦
∗

+ 𝑥
∗

− 𝑦
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜇
2
𝐵
2
𝑥
∗

+ 𝑦
∗

− 𝑥
∗

, 𝐽 (𝑥 − 𝑦
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(13)

where 𝐶 is a nonempty, closed, and convex subset of 𝑋,
𝐵
1
, 𝐵
2
: 𝐶 → 𝑋 are two nonlinear mappings, and 𝜇

1
and 𝜇

2

are two positive constants. Here, the set of solutions of GSVI
(13) is denoted by GSVI(𝐶, 𝐵

1
, 𝐵
2
). In particular, if 𝑋 = 𝐻,

a real Hilbert space, then GSVI (13) reduces to the following
GSVI of finding (𝑥∗, 𝑦∗) ∈ 𝐶 × 𝐶 such that

⟨𝜇
1
𝐵
1
𝑦
∗

+ 𝑥
∗

− 𝑦
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜇
2
𝐵
2
𝑥
∗

+ 𝑦
∗

− 𝑥
∗

, 𝑥 − 𝑦
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(14)

in which 𝜇
1
and 𝜇

2
are two positive constants. The set of

solutions of problem (14) is still denoted by GSVI(𝐶, 𝐵
1
, 𝐵
2
).

In particular, if 𝐵
1
= 𝐵
2
= 𝐴, then problem (14) reduces to

the new system of variational inequalities (NSVI), introduced
and studied by Verma [12]. Further, if 𝑥∗ = 𝑦

∗ additionally,
then the NSVI reduces to the classical variational inequality
problem (VIP) of finding 𝑥∗ ∈ 𝐶 such that

⟨𝐴𝑥
∗

, 𝑥 − 𝑥
∗

⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (15)

The solution set of the VIP (15) is denoted by VI(𝐶, 𝐴).
Variational inequality theory has been studied quite exten-
sively and has emerged as an important tool in the study of

a wide class of obstacle, unilateral, free, moving, equilibrium
problems. It is now well known that the variational inequal-
ities are equivalent to the fixed point problems, the origin
of which can be traced back to Lions and Stampacchia [13].
This alternative formulation has been used to suggest and
analyze projection iterative method for solving variational
inequalities under the conditions that the involved operator
must be strongly monotone and Lipschitz continuous.

Recently, Ceng et al. [14] transformed problem (14) into a
fixed point problem in the following way.

Lemma 2 (see [14]). For given 𝑥, 𝑦 ∈ 𝐶, (𝑥, 𝑦) is a solution
of problem (14) if and only if 𝑥 is a fixed point of the mapping
𝐺 : 𝐶 → 𝐶 defined by

𝐺 (𝑥) = 𝑃
𝐶
[𝑃
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥) − 𝜇

1
𝐵
1
𝑃
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)] ,

∀𝑥 ∈ 𝐶,

(16)

where 𝑦 = 𝑃
𝐶
(𝑥−𝜇

2
𝐵
2
𝑥) and 𝑃

𝐶
is the projection of𝐻 onto𝐶.

In particular, if the mapping 𝐵
𝑖
: 𝐶 → 𝐻 is 𝛽

𝑖
-inverse

strongly monotone for 𝑖 = 1, 2, then the mapping 𝐺 is
nonexpansive provided 𝜇

𝑖
∈ (0, 2𝛽

𝑖
) for 𝑖 = 1, 2.

In 1976, Korpelevič [15] proposed an iterative algorithm
for solving the VIP (15) in Euclidean space R𝑛:

𝑦
𝑛
= 𝑃
𝐶
(𝑥
𝑛
− 𝜏𝐴𝑥

𝑛
) ,

𝑥
𝑛+1

= 𝑃
𝐶
(𝑥
𝑛
− 𝜏𝐴𝑦

𝑛
) , 𝑛 ≥ 0

(17)

with 𝜏 > 0 a given number, which is known as the extragradi-
ent method (see also [16]). The literature on the VIP is vast
and Korpelevich’s extragradient method has received great
attention given by many authors, who improved it in various
ways; see, for example, [3, 11, 13, 17–33] and references therein,
to name but a few.

In particular, whenever 𝑋 is still a real smooth Banach
space, 𝐵

1
= 𝐵
2
= 𝐴 and 𝑥

∗

= 𝑦
∗, then GSVI (13) reduces to

the variational inequality problem (VIP) of finding 𝑥∗ ∈ 𝐶

such that

⟨𝐴𝑥
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶, (18)

which was considered by Aoyama et al. [34]. Note that VIP
(18) is connected with the fixed point problem for nonlinear
mapping (see, e.g., [35]), the problem of finding a zero point
of a nonlinear operator (see, e.g., [36]), and so on. It is clear
that VIP (18) extends VIP (15) fromHilbert spaces to Banach
spaces.

In order to find a solution of VIP (18), Aoyama et al. [34]
introduced the following Mann-type iterative scheme for an
accretive operator 𝐴:

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
)Π
𝐶
(𝑥
𝑛
− 𝜆
𝑛
𝐴𝑥
𝑛
) , ∀𝑛 ≥ 1, (19)

where Π
𝐶
is a sunny nonexpansive retraction from 𝑋 onto

𝐶. Then, they proved a weak convergence theorem. For the
related work, see [37] and the references therein.

Let𝐶 be a nonempty convex subset of a real Banach space
𝑋. Let {𝑇

𝑖
}
𝑁

𝑖=1
be a finite family of nonexpansive mappings of
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𝐶 into itself and let 𝜆
1
, . . . , 𝜆

𝑁
be real numbers such that 0 ≤

𝜆
𝑖
≤ 1 for every 𝑖 = 1, . . . , 𝑁. Define a mapping 𝐾 : 𝐶 → 𝐶

as follows:

𝑈
1
= 𝜆
1
𝑇
1
+ (1 − 𝜆

1
) 𝐼,

𝑈
2
= 𝜆
2
𝑇
2
𝑈
1
+ (1 − 𝜆

2
) 𝑈
1
,

𝑈
3
= 𝜆
3
𝑇
3
𝑈
2
+ (1 − 𝜆

3
) 𝑈
2
,

...

𝑈
𝑁−1

= 𝜆
𝑁−1

𝑇
𝑁−1

𝑈
𝑁−2

+ (1 − 𝜆
𝑁−1

) 𝑈
𝑁−2

,

𝐾 = 𝑈
𝑁
= 𝜆
𝑁
𝑇
𝑁
𝑈
𝑁−1

+ (1 − 𝜆
𝑁
) 𝑈
𝑁−1

.

(20)

Such a mapping 𝐾 is called the 𝐾-mapping generated by
𝑇
1
, . . . , 𝑇

𝑁
and 𝜆

1
, . . . , 𝜆

𝑁
.

Very recently, Kangtunyakarn [38] introduced and ana-
lyzed an iterative algorithm by the modification of Mann’s
iteration process for finding a common element of the set of
solutions of a finite family of variational inequalities and the
set of fixed points of an 𝜂-strictly pseudocontractivemapping
and a nonexpansive mapping in uniformly convex and 2-
uniformly smooth Banach spaces.

Theorem 3 (see [38]). Let 𝐶 be a nonempty closed convex
subset of a uniformly convex and 2-uniformly smooth Banach
space 𝑋. Let Π

𝐶
be a sunny nonexpansive retraction from 𝑋

onto 𝐶. Let 𝐴
𝑖
: 𝐶 → 𝑋 be an 𝛼

𝑖
-inverse-strongly accretive

mapping for each 𝑖 = 1, . . . , 𝑁. Define the mapping 𝐺
𝑖
:

𝐶 → 𝐶 by 𝐺
𝑖
= Π
𝐶
(𝐼 − 𝜆

𝑖
𝐴
𝑖
) for 𝑖 = 1, . . . , 𝑁, where

𝜆
𝑖
∈ (0, 𝛼

𝑖
/𝜅
2

) and 𝜅 is the 2-uniformly smooth constant of
𝑋. Let 𝐵 : 𝐶 → 𝐶 be the𝐾-mapping generated by 𝐺

1
, . . . , 𝐺

𝑁

and 𝜌
1
, . . . , 𝜌

𝑁
, where 𝜌

𝑖
∈ (0, 1), for all 𝑖 = 1, . . . , 𝑁 − 1, and

𝜌
𝑁

∈ (0, 1]. Let 𝑓 : 𝐶 → 𝐶 a contraction with coefficient
𝜌 ∈ (0, 1). Let 𝑉 : 𝐶 → 𝐶 be an 𝜂-strictly pseudocontractive
mapping and 𝑆 : 𝐶 → 𝐶 be a nonexpansive mapping such
that 𝐹 = Fix(𝑆)∩Fix(𝑉)∩(⋂𝑁

𝑖=1
VI(𝐶, 𝐴

𝑖
)) ̸= 0. For arbitrarily

given 𝑥
0
∈ 𝐶, let {𝑥

𝑛
} be the sequence generated by

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵𝑥
𝑛
+ 𝛿
𝑛
𝑆 ((1 − 𝛼) 𝐼 + 𝛼𝑉) 𝑥

𝑛
,

∀𝑛 ≥ 0,

(21)

where 𝛼 ∈ (0, 𝜂/𝜅
2

). Suppose that {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, and {𝛿

𝑛
} are

the sequences in [0, 1], 𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1 and satisfy the

following conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iii) ∑∞
𝑛=1

(|𝛽
𝑛
− 𝛽
𝑛−1

| + |𝛾
𝑛
− 𝛾
𝑛−1

| + |𝛿
𝑛
− 𝛿
𝑛−1

|) < ∞;
(iv) 0 < lim inf

𝑛→∞
𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Then, {𝑥
𝑛
} converges strongly to 𝑞 ∈ 𝐹, which solves the

following VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (22)

Beyond doubt, it is an interesting and valuable problem
of constructing some algorithms with strong convergence
for solving GSVI (13) which contains VIP (18) as a special
case. Very recently, Cai and Bu [11] constructed an iterative
algorithm for solving GSVI (13) and a common fixed point
problem of a countable family of nonexpansive mappings
in a uniformly convex and 2-uniformly smooth Banach
space. They proved the strong convergence of the proposed
algorithm by virtue of the following inequality in a 2-
uniformly smooth Banach space𝑋.

Lemma 4 (see [39]). Let 𝑋 be a 2-uniformly smooth Banach
space. Then,

𝑥 + 𝑦


2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝐽 (𝑥)⟩ + 2
𝜅𝑦



2

, ∀𝑥, 𝑦 ∈ 𝑋, (23)

where 𝜅 is the 2-uniformly smooth constant of 𝑋 and 𝐽 is the
normalized duality mapping from 𝑋 into𝑋∗.

Define the mapping 𝐺 : 𝐶 → 𝐶 as follows:

𝐺 (𝑥) := Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑥, ∀𝑥 ∈ 𝐶. (24)

The fixed point set of 𝐺 is denoted by Ω. Then, their strong
convergence theorem on the proposed method is stated as
follows.

Theorem 5 (see [11]). Let 𝐶 be a nonempty closed convex
subset of a uniformly convex and 2-uniformly smooth Banach
space 𝑋. Let Π

𝐶
be a sunny nonexpansive retraction from 𝑋

onto 𝐶. Let the mapping 𝐵
𝑖
: 𝐶 → 𝑋 be 𝛽

𝑖
-inverse-strongly

accretive with 0 < 𝜇
𝑖
< 𝛽
𝑖
/𝜅
2 for 𝑖 = 1, 2. Let𝑓 be a contraction

of 𝐶 into itself with coefficient 𝛿 ∈ (0, 1). Let {𝑇
𝑛
}
∞

𝑛=1
be a

countable family of nonexpansive mappings of𝐶 into itself such
that 𝐹 = ⋂

∞

𝑖=1
Fix(𝑇
𝑖
) ∩ Ω ̸= 0, whereΩ is the fixed point set of

the mapping 𝐺 defined by (24). For arbitrarily given 𝑥
1
∈ 𝐶,

let {𝑥
𝑛
} be the sequence generated by

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑆
𝑛
𝑦
𝑛
,

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑧
𝑛
,

𝑧
𝑛
= Π
𝐶
(𝑢
𝑛
− 𝜇
1
𝐵
1
𝑢
𝑛
) ,

𝑢
𝑛
= Π
𝐶
(𝑥
𝑛
− 𝜇
2
𝐵
2
𝑥
𝑛
) , ∀𝑛 ≥ 1.

(25)

Suppose that {𝛼
𝑛
} and {𝛽

𝑛
} are two sequences in (0, 1)

satisfying the following conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=1
𝛼
𝑛
= ∞;

(ii) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Assume that∑∞
𝑛=1

sup
𝑥∈𝐷

‖𝑇
𝑛+1

𝑥−𝑇
𝑛
𝑥‖ < ∞ for any bounded

subset 𝐷 of 𝐶 and let 𝑇 be a mapping of 𝐶 into 𝑋 defined by
𝑇𝑥 = lim

𝑛→∞
𝑇
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑇) =

⋂
∞

𝑛=1
Fix(𝑇
𝑛
). Then, {𝑥

𝑛
} converges strongly to 𝑞 ∈ 𝐹, which

solves the following VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (26)
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It is easy to see that the iterative scheme in Theorem 5
is essentially equivalent to the following two-step iterative
scheme:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝐺𝑥
𝑛
,

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑇
𝑛
𝑦
𝑛
, ∀𝑛 ≥ 1.

(27)

For the convenience of implementing the argument
techniques in [14], the authors of [11] have used the following
inequality in a real smooth and uniform convex Banach space
𝑋.

Proposition 6 (see [40]). Let𝑋 be a real smooth and uniform
convex Banach space and let 𝑟 > 0. Then, there exists a strictly
increasing, continuous, and convex function 𝑔 : [0, 2𝑟] → R,
𝑔(0) = 0 such that

𝑔 (
𝑥 − 𝑦

) ≤ ‖𝑥‖
2

− 2 ⟨𝑥, 𝐽 (𝑦)⟩ +
𝑦


2

, ∀𝑥, 𝑦 ∈ 𝐵
𝑟
,

(28)

where 𝐵
𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝑟}.

Let 𝐶 be a nonempty closed convex subset of a real
smooth Banach space 𝑋. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶 and 𝑓 : 𝐶 → 𝐶 a contraction
with coefficient 𝜌 ∈ (0, 1). Motivated and inspired by the
research going on this area, we consider and introduce hybrid
and relaxed Mann iteration methods for finding solutions
of the GSVI (13) which are also common solutions of a
countable family of variational inequalities and common
fixed points of a countable family of nonexpansive mappings
in 𝑋. Here, the hybrid and relaxed Mann iteration methods
are based on Korpelevich’s extragradient method, viscosity
approximation method, and Mann iteration method. Under
suitable assumptions, we derive some strong convergence
theorems for hybrid and relaxed Mann iteration algorithms
not only in the setting of uniformly convex and 2-uniformly
smooth Banach space but also in a uniformly convex Banach
space having a uniformly Gateaux differentiable norm. The
results presented in this paper improve, extend, supplement,
and develop the corresponding results announced in the
earlier and very recent literature; see, for example, [8, 10, 11,
14, 33, 38].

2. Preliminaries

We list some lemmas that will be used in the sequel.

Lemma 7 (see [41]). Let {𝑠
𝑛
} be a sequence of nonnegative real

numbers satisfying

𝑠
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑠
𝑛
+ 𝛼
𝑛
𝛽
𝑛
+ 𝛾
𝑛
, ∀𝑛 ≥ 0, (29)

where {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
} satisfy the following conditions:

(i) {𝛼
𝑛
} ⊂ [0, 1] and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) lim sup
𝑛→∞

𝛽
𝑛
≤ 0;

(iii) 𝛾
𝑛
≥ 0, for all 𝑛 ≥ 0, and ∑∞

𝑛=0
𝛾
𝑛
< ∞.

Then, lim sup
𝑛→∞

𝑠
𝑛
= 0.

The following lemma is an immediate consequence of the
subdifferential inequality of the function (1/2)‖ ⋅ ‖2.

Lemma 8 (see [42]). Let 𝑋 be a real Banach space 𝑋. Then,
for all 𝑥, 𝑦 ∈ 𝑋

(i) ‖𝑥 + 𝑦‖
2

≤ ‖𝑥‖
2

+ 2⟨𝑦, 𝑗(𝑥 + 𝑦)⟩ for all 𝑗(𝑥 + 𝑦) ∈

𝐽(𝑥 + 𝑦);
(ii) ‖𝑥 + 𝑦‖

2

≥ ‖𝑥‖
2

+ 2⟨𝑦, 𝑗(𝑥)⟩ for all 𝑗(𝑥) ∈ 𝐽(𝑥).

Let 𝐷 be a subset of 𝐶 and let Π be a mapping of 𝐶 into
𝐷. Then, Π is said to be sunny if

Π [Π (𝑥) + 𝑡 (𝑥 − Π (𝑥))] = Π (𝑥) , (30)

whenever Π(𝑥) + 𝑡(𝑥 − Π(𝑥)) ∈ 𝐶 for 𝑥 ∈ 𝐶 and 𝑡 ≥ 0. A
mapping Π of 𝐶 into itself is called a retraction if Π2 = Π. If
a mappingΠ of 𝐶 into itself is a retraction, thenΠ(𝑧) = 𝑧 for
every 𝑧 ∈ 𝑅(Π) where 𝑅(Π) is the range of Π. A subset 𝐷 of
𝐶 is called a sunny nonexpansive retract of 𝐶 if there exists a
sunny nonexpansive retraction from𝐶 onto𝐷.The following
lemma concerns the sunny nonexpansive retraction.

Lemma9 (see [43]). Let𝐶 be a nonempty closed convex subset
of a real smooth Banach space 𝑋. Let 𝐷 be a nonempty subset
of 𝐶. LetΠ be a retraction of 𝐶 onto𝐷. Then, the following are
equivalent:

(i) Π is sunny and nonexpansive;
(ii) ‖Π(𝑥) − Π(𝑦)‖

2

≤ ⟨𝑥 − 𝑦, 𝐽(Π(𝑥) − Π(𝑦))⟩, for all
𝑥, 𝑦 ∈ 𝐶;

(iii) ⟨𝑥 − Π(𝑥), 𝐽(𝑦 − Π(𝑥))⟩ ≤ 0, for all 𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷.

It is well known that if 𝑋 = 𝐻 a Hilbert space, then
a sunny nonexpansive retraction Π

𝐶
is coincident with the

metric projection from 𝑋 onto 𝐶; that is, Π
𝐶

= 𝑃
𝐶
. If 𝐶

is a nonempty closed convex subset of a strictly convex and
uniformly smooth Banach space 𝑋 and if 𝑇 : 𝐶 → 𝐶 is
a nonexpansive mapping with the fixed point set Fix(𝑇) ̸= 0,
then the set Fix(𝑇) is a sunny nonexpansive retract of 𝐶.

Lemma 10. Let 𝐶 be a nonempty closed convex subset of a
smooth Banach space 𝑋. Let Π

𝐶
be a sunny nonexpansive

retraction from𝑋 onto𝐶 and let 𝐵
1
, 𝐵
2
: 𝐶 → 𝑋 be nonlinear

mappings. For given 𝑥
∗

, 𝑦
∗

∈ 𝐶, (𝑥∗, 𝑦∗) is a solution of
GSVI (13) if and only if 𝑥∗ = Π

𝐶
(𝑦
∗

− 𝜇
1
𝐵
1
𝑦
∗

), where 𝑦∗ =
Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

).

Proof. We can rewrite GSVI (13) as

⟨𝑥
∗

− (𝑦
∗

− 𝜇
1
𝐵
1
𝑦
∗

) , 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝑦
∗

− (𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

) , 𝐽 (𝑥 − 𝑦
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(31)

which is obviously equivalent to

𝑥
∗

= Π
𝐶
(𝑦
∗

− 𝜇
1
𝐵
1
𝑦
∗

) ,

𝑦
∗

= Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

) ,

(32)

because of Lemma 9. This completes the proof.
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In terms of Lemma 10, we observe that

𝑥
∗

= Π
𝐶
[Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

) − 𝜇
1
𝐵
1
Π
𝐶
(𝑥
∗

− 𝜇
2
𝐵
2
𝑥
∗

)] ,

(33)

which implies that 𝑥∗ is a fixed point of the mapping 𝐺.
Throughout this paper, the set of fixed points of the mapping
𝐺 is denoted by Ω.

Lemma 11 (see [44]). Let 𝑋 be a uniformly convex Banach
space and 𝐵

𝑟
= {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 𝑟}, 𝑟 > 0. Then, there

exists a continuous, strictly increasing, and convex function
𝑔 : [0,∞] → [0,∞], 𝑔(0) = 0 such that

𝛼𝑥 + 𝛽𝑦 + 𝛾𝑧


2

≤ 𝛼‖𝑥‖
2

+ 𝛽
𝑦


2

+ 𝛾‖𝑧‖
2

− 𝛼𝛽𝑔 (
𝑥 − 𝑦

)

(34)

for all 𝑥, 𝑦, 𝑧 ∈ 𝐵
𝑟
, and all 𝛼, 𝛽, 𝛾 ∈ [0, 1] with 𝛼 + 𝛽 + 𝛾 = 1.

Lemma 12 (see [45]). Let 𝐶 be a nonempty closed convex
subset of a Banach space 𝑋. Let 𝑆

0
, 𝑆
1
, . . . be a sequence of

mappings of𝐶 into itself. Suppose that∑∞
𝑛=1

sup{‖𝑆
𝑛
𝑥−𝑆
𝑛−1

𝑥‖ :

𝑥 ∈ 𝐶} < ∞. Then for each 𝑦 ∈ 𝐶, {𝑆
𝑛
𝑦} converges strongly

to some point of 𝐶. Moreover, let 𝑆 be a mapping of 𝐶 into
itself defined by 𝑆𝑦 = lim

𝑛→∞
𝑆
𝑛
𝑦 for all 𝑦 ∈ 𝐶. Then

lim
𝑛→∞

sup{‖𝑆𝑥 − 𝑆
𝑛
𝑥‖ : 𝑥 ∈ 𝐶} = 0.

Let 𝐶 be a nonempty closed convex subset of a Banach
space 𝑋 and 𝑇 : 𝐶 → 𝐶 a nonexpansive mapping with
Fix(𝑇) ̸= 0. As previous, let Ξ

𝐶
be the set of all contractions

on𝐶. For 𝑡 ∈ (0, 1) and 𝑓 ∈ Ξ
𝐶
, let 𝑥
𝑡
∈ 𝐶 be the unique fixed

point of the contraction 𝑥 → 𝑡𝑓(𝑥) + (1 − 𝑡)𝑇𝑥 on 𝐶; that is,

𝑥
𝑡
= 𝑡𝑓 (𝑥

𝑡
) + (1 − 𝑡) 𝑇𝑥

𝑡
. (35)

Lemma 13 (see [35, 46]). Let𝑋 be a uniformly smooth Banach
space, or a reflexive and strictly convex Banach space with a
uniformly Gateaux differentiable norm. Let 𝐶 be a nonempty
closed convex subset of𝑋,𝑇 : 𝐶 → 𝐶 a nonexpansivemapping
with Fix(𝑇) ̸= 0, and𝑓 ∈ Ξ

𝐶
.Then, the net {𝑥

𝑡
} defined by 𝑥

𝑡
=

𝑡𝑓(𝑥
𝑡
)+ (1− 𝑡)𝑇𝑥

𝑡
converges strongly to a point in Fix(𝑇). If we

define a mapping 𝑄 : Ξ
𝐶
→ Fix(𝑇) by 𝑄(𝑓) := 𝑠 − lim

𝑡→0
𝑥
𝑡
,

for all 𝑓 ∈ Ξ
𝐶
, then 𝑄(𝑓) solves the VIP:

⟨(𝐼 − 𝑓)𝑄 (𝑓) , 𝐽 (𝑄 (𝑓) − 𝑝)⟩≤ 0, ∀𝑓 ∈ Ξ
𝐶
, 𝑝 ∈ Fix (𝑇) .

(36)

Lemma 14 (see [47]). Let 𝐶 be a nonempty closed convex
subset of a strictly convex Banach space 𝑋. Let {𝑇

𝑛
}
∞

𝑛=0
be

a sequence of nonexpansive mappings on 𝐶. Suppose that
⋂
∞

𝑛=0
Fix(𝑇
𝑛
) is nonempty. Let {𝜆

𝑛
} be a sequence of positive

numbers with∑∞
𝑛=0

𝜆
𝑛
= 1. Then, a mapping 𝑆 on 𝐶 defined by

𝑆𝑥 = ∑
∞

𝑛=0
𝜆
𝑛
𝑇
𝑛
𝑥 for 𝑥 ∈ 𝐶 is defined well; nonexpansive and

Fix(𝑆) = ⋂
∞

𝑛=0
Fix(𝑇
𝑛
) holds.

Lemma 15 (see [39]). Given a number 𝑟 > 0, A real
Banach space 𝑋 is uniformly convex if and only if there exists

a continuous strictly increasing function𝑔 : [0,∞) → [0,∞),
𝑔(0) = 0, such that

𝜆𝑥 + (1 − 𝜆) 𝑦


2

≤ 𝜆‖𝑥‖
2

+ (1 − 𝜆)
𝑦


2

− 𝜆 (1 − 𝜆) 𝑔 (
𝑥 − 𝑦

)

(37)

for all 𝜆 ∈ [0, 1] and 𝑥, 𝑦 ∈ 𝑋 such that ‖𝑥‖ ≤ 𝑟 and ‖𝑦‖ ≤ 𝑟.

Lemma 16 (see [48, Lemma 3.2]). Let𝐶 be a nonempty closed
convex subset of a strictly convex Banach space 𝑋. Let {𝑇

𝑛
}
∞

𝑛=0

be a sequence of nonexpansive self-mappings on 𝐶 such that
⋂
∞

𝑛=0
Fix(𝑇
𝑛
) ̸= 0 and let {𝜆

𝑛
}
∞

𝑛=0
be a sequence of positive

numbers in (0, 𝑏] for some 𝑏 ∈ (0, 1). Then, for every 𝑥 ∈ 𝐶

and 𝑘 ≥ 0, the limit lim
𝑛→∞

𝑈
𝑛,𝑘
𝑥 exists.

Using Lemma 16, one can define a mapping𝑊 : 𝐶 → 𝐶

as follows:

𝑊𝑥 = lim
𝑛→∞

𝑊
𝑛
𝑥 = lim
𝑛→∞

𝑈
𝑛,0
𝑥 (38)

for every 𝑥 ∈ 𝐶. Such a𝑊 is called the𝑊-mapping generated
by the sequences {𝑇

𝑛
}
∞

𝑛=0
and {𝜆

𝑛
}
∞

𝑛=0
. Throughout this paper,

we always assume that {𝜆
𝑛
}
∞

𝑛=0
is a sequence of positive

numbers in (0, 𝑏] for some 𝑏 ∈ (0, 1).

Lemma 17 (see [48]). Let 𝐶 be a nonempty closed convex
subset of a strictly convex Banach space 𝑋. Let {𝑇

𝑛
}
∞

𝑛=0
be

a sequence of nonexpansive self-mappings on 𝐶 such that
⋂
∞

𝑛=0
Fix(𝑇
𝑛
) ̸= 0 and let {𝜆

𝑛
}
∞

𝑛=0
be a sequence of positive

numbers in (0, 𝑏] for some 𝑏 ∈ (0, 1). Then, Fix(𝑊) =

⋂
∞

𝑛=0
Fix(𝑇
𝑛
).

Let 𝜇 be a continuous linear functional on 𝑙
∞ and 𝑠 =

(𝑎
0
, 𝑎
1
, . . .) ∈ 𝑙

∞. One writes 𝜇
𝑛
(𝑎
𝑛
) instead of 𝜇(𝑠). 𝜇 is called

a Banach limit if 𝜇 satisfies ‖𝜇‖ = 𝜇
𝑛
(1) = 1 and 𝜇

𝑛
(𝑎
𝑛+1

) =

𝜇
𝑛
(𝑎
𝑛
) for all (𝑎

0
, 𝑎
1
, . . .) ∈ 𝑙

∞. If𝜇 is a Banach limit, then, there
hold the following:

(i) for all 𝑛 ≥ 0, 𝑎
𝑛
≤ 𝑐
𝑛
implies 𝜇

𝑛
(𝑎
𝑛
) ≤ 𝜇
𝑛
(𝑐
𝑛
);

(ii) 𝜇
𝑛
(𝑎
𝑛+𝑟

) = 𝜇
𝑛
(𝑎
𝑛
) for any fixed positive integer 𝑟;

(iii) lim inf
𝑛→∞

𝑎
𝑛

≤ 𝜇
𝑛
(𝑎
𝑛
) ≤ lim sup

𝑛→∞
𝑎
𝑛
for all

(𝑎
0
, 𝑎
1
, . . .) ∈ 𝑙

∞.

Lemma 18 (see [49]). Let 𝑎 ∈ R be a real number and a
sequence {𝑎

𝑛
} ∈ 𝑙

∞ satisfy the condition 𝜇
𝑛
(𝑎
𝑛
) ≤ 𝑎 for

all Banach limit 𝜇. If lim sup
𝑛→∞

(𝑎
𝑛+𝑟

− 𝑎
𝑛
) ≤ 0, then

lim sup
𝑛→∞

𝑎
𝑛
≤ 𝑎.

In particular, if 𝑟 = 1 in Lemma 18, then we immediately
obtain the following corollary.

Corollary 19 (see [50]). Let 𝑎 ∈ R be a real number and
a sequence {𝑎

𝑛
} ∈ 𝑙

∞ satisfy the condition 𝜇
𝑛
(𝑎
𝑛
) ≤ 𝑎 for

all Banach limit 𝜇. If lim sup
𝑛→∞

(𝑎
𝑛+1

− 𝑎
𝑛
) ≤ 0, then,

lim sup
𝑛→∞

𝑎
𝑛
≤ 𝑎.

Lemma 20 (see [51]). Let {𝑥
𝑛
} and {𝑧

𝑛
} be bounded sequences

in a Banach space𝑋 and let {𝛽
𝑛
} be a sequence of nonnegative

numbers in [0, 1] with 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
<

1. Suppose that 𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
)𝑧
𝑛
for all integers
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𝑛 ≥ 0 and lim sup
𝑛→∞

(‖𝑧
𝑛+1

− 𝑧
𝑛
‖ − ‖𝑥

𝑛+1
− 𝑥
𝑛
‖) ≤ 0. Then,

lim
𝑛→∞

‖𝑥
𝑛
− 𝑧
𝑛
‖ = 0.

Lemma 21 (see [34]). Let 𝐶 be a nonempty closed convex
subset of a smooth Banach space 𝑋. Let Π

𝐶
be a sunny

nonexpansive retraction from 𝑋 onto 𝐶 and 𝐴 : 𝐶 → 𝑋 an
accretive mapping. Then for all 𝜆 > 0,

VI (𝐶, 𝐴) = Fix (Π
𝐶
(𝐼 − 𝜆𝐴)) . (39)

Lemma 22 (see [11]). Let 𝐶 be a nonempty closed convex
subset of a real 2-uniformly smooth Banach space 𝑋. Let the
mapping 𝐵

𝑖
: 𝐶 → 𝑋 be 𝛽

𝑖
-inverse-strongly accretive. Then,

one has

(𝐼 − 𝜇
𝑖
𝐵
𝑖
) 𝑥 − (𝐼 − 𝜇

𝑖
𝐵
𝑖
) 𝑦



2

≤
𝑥 − 𝑦



2

+ 2𝜇
𝑖
(𝜇
𝑖
𝜅
2

− 𝛽
𝑖
)
𝐵𝑖𝑥 − 𝐵

𝑖
𝑦


2

,

∀𝑥, 𝑦 ∈ 𝐶,

(40)

for 𝑖 = 1, 2 where 𝜇
𝑖
> 0. In particular, if 0 < 𝜇

𝑖
≤ 𝛽
𝑖
/𝜅
2, then

𝐼 − 𝜇
𝑖
𝐵
𝑖
is nonexpansive for 𝑖 = 1, 2.

Lemma 23 (see [11]). Let 𝐶 be a nonempty closed convex
subset of a real 2-uniformly smooth Banach space 𝑋. Let Π

𝐶

be a sunny nonexpansive retraction from 𝑋 onto 𝐶. Let the
mapping 𝐵

𝑖
: 𝐶 → 𝑋 be 𝛽

𝑖
-inverse-strongly accretive for

𝑖 = 1, 2. Let 𝐺 : 𝐶 → 𝐶 be the mapping defined by

𝐺𝑥 = Π
𝐶
[Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥) − 𝜇

1
𝐵
1
Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)] ,

∀𝑥 ∈ 𝐶.

(41)

If 0 < 𝜇
𝑖
≤ 𝛽
𝑖
/𝜅
2 for 𝑖 = 1, 2, then𝐺 : 𝐶 → 𝐶 is nonexpansive.

3. Hybrid Mann Iterations and
Their Convergence Criteria

In this section, we introduce our hybrid Mann iteration
algorithms in real smooth and uniformly convex Banach
spaces and present their convergence criteria.

Theorem 24. Let 𝐶 be a nonempty closed convex subset of a
uniformly convex and 2-uniformly smooth Banach space 𝑋.
Let Π

𝐶
be a sunny nonexpansive retraction from 𝑋 onto 𝐶.

Let {𝜌
𝑛
}
∞

𝑛=0
be a sequence of positive numbers in (0, 𝑏] for some

𝑏 ∈ (0, 1) and 𝐴
𝑖
: 𝐶 → 𝐸 an �̂�

𝑖
-inverse strongly accretive

mapping for each 𝑖 = 0, 1, . . .. Define a mapping 𝐺
𝑖
: 𝐶 → 𝐶

by Π
𝐶
(𝐼 − 𝜆

𝑖
𝐴
𝑖
)𝑥 = 𝐺

𝑖
𝑥 for all 𝑥 ∈ 𝐶 and 𝑖 = 0, 1, . . ., where

𝜆
𝑖
∈ (0, �̂�

𝑖
/𝜅
2

], 𝜅 is the 2-uniformly smooth constant of 𝑋. Let
𝐵
𝑛
: 𝐶 → 𝐶 be the𝑊-mapping generated by 𝐺

𝑛
, 𝐺
𝑛−1

, . . . , 𝐺
0

and 𝜌
𝑛
, 𝜌
𝑛−1

, . . . , 𝜌
0
. Let the mapping 𝐵

𝑖
: 𝐶 → 𝑋 be 𝛽

𝑖
-

inverse strongly accretive for 𝑖 = 1, 2. Let 𝑓 : 𝐶 → 𝐶 be a
contractionwith coefficient 𝜌 ∈ (0, 1). Let {𝑆

𝑖
}
∞

𝑖=0
be a countable

family of nonexpansive mappings of 𝐶 into itself such that 𝐹 =

(⋂
∞

𝑖=0
Fix(𝑆
𝑖
)) ∩ Ω ∩ (⋂

∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)) ̸= 0, whereΩ is the fixed

point set of the mapping 𝐺 = Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) with

0 < 𝜇
𝑖
< 𝛽
𝑖
/𝜅
2 for 𝑖 = 1, 2. For arbitrarily given 𝑥

0
∈ 𝐶, let

{𝑥
𝑛
} be the sequence generated by

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
, ∀𝑛 ≥ 0,

(42)

where {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, and {𝛿

𝑛
} are the sequences in [0, 1] such

that 𝛽
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1 for all 𝑛 ≥ 0. Suppose that the following

conditions hold:

(i) ∑∞
𝑛=0

𝛼
𝑛
= ∞ and 0 ≤ 𝛼

𝑛
≤ 1 − 𝜌, for all 𝑛 ≥ 𝑛

0
for

some integer 𝑛
0
≥ 0;

(ii) lim inf
𝑛→∞

𝛾
𝑛
> 0 and lim inf

𝑛→∞
𝛿
𝑛
> 0;

(iii) lim
𝑛→∞

(|𝛼
𝑛+1

/(1 − (1 − 𝛼
𝑛+1

)𝛽
𝑛+1

) − 𝛼
𝑛
/(1 − (1 −

𝛼
𝑛
)𝛽
𝑛
)| + |𝛿

𝑛+1
/(1 − 𝛽

𝑛+1
) − 𝛿
𝑛
/(1 − 𝛽

𝑛
)|) = 0;

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Assume that ∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1

𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any

bounded subset 𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself
defined by 𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that

Fix(𝑆) = ⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then, there hold the following:

(I) lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0;

(II) 𝑥
𝑛
→ 𝑞 ⇔ 𝛼

𝑛
(𝑓(𝑥
𝑛
) − 𝑥
𝑛
) → 0 provided 𝛽

𝑛
≡ 𝛽 for

some fixed 𝛽 ∈ (0, 1), where 𝑞 ∈ 𝐹 solves the following
VIP:

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (43)

Proof. First of all, since 0 < 𝜆
𝑖
< �̂�
𝑖
/𝜅
2 for 𝑖 = 0, 1, . . ., it is

easy to see that 𝐺
𝑖
is a nonexpansive mapping for each 𝑖 =

0, 1, . . .. Since 𝐵
𝑛
: 𝐶 → 𝐶 is the 𝑊-mapping generated by

𝐺
𝑛
, 𝐺
𝑛−1

, . . . , 𝐺
0
and 𝜌

𝑛
, 𝜌
𝑛−1

, . . . , 𝜌
0
, by Lemma 16 we know

that, for each 𝑥 ∈ 𝐶 and 𝑘 ≥ 0, the limit lim
𝑛→∞

𝑈
𝑛,𝑘
𝑥 exists.

Moreover, one can define a mapping 𝐵 : 𝐶 → 𝐶 as follows:

𝐵𝑥 = lim
𝑛→∞

𝐵
𝑛
𝑥 = lim
𝑛→∞

𝑈
𝑛,0
𝑥 (44)

for every 𝑥 ∈ 𝐶.That is, such a 𝐵 is the𝑊-mapping generated
by the sequences {𝐺

𝑛
}
∞

𝑛=0
and {𝜌

𝑛
}
∞

𝑛=0
. According to Lemma 17,

we know that Fix(𝐵) = ⋂
∞

𝑖=0
Fix(𝐺

𝑖
). From Lemma 15 and

the definition of 𝐺
𝑖
, we have Fix(𝐺

𝑖
) = VI(𝐶, 𝐴

𝑖
) for each

𝑖 = 0, 1, . . .. Hence, we have

Fix (𝐵) =
∞

⋂

𝑖=0

Fix (𝐺
𝑖
) =

∞

⋂

𝑖=0

VI (𝐶, 𝐴
𝑖
) . (45)

Next, let us show that the sequence {𝑥
𝑛
} is bounded.

Indeed, take a fixed 𝑝 ∈ 𝐹 arbitrarily. Then, we get 𝑝 = 𝐺𝑝,
𝑝 = 𝐵

𝑛
𝑝, and 𝑝 = 𝑆

𝑛
𝑝 for all 𝑛 ≥ 0. By Lemma 23 we know

that 𝐺 is nonexpansive. Then, from (42), we have
𝑦𝑛 − 𝑝

 ≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝
 + 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝛾
𝑛

𝑥𝑛 − 𝑝
 + 𝛿
𝑛

𝐺𝑥𝑛 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝛾
𝑛

𝑥𝑛 − 𝑝
 + 𝛿
𝑛

𝑥𝑛 − 𝑝


=
𝑥𝑛 − 𝑝

 ,

(46)
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and hence

𝑥𝑛+1 − 𝑝
 ≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝

 + (1 − 𝛼
𝑛
)
𝑦𝑛 − 𝑝



≤ 𝛼
𝑛
(
𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)

 +
𝑓 (𝑝) − 𝑝

)

+ (1 − 𝛼
𝑛
)
𝑦𝑛 − 𝑝



≤ 𝛼
𝑛
(𝜌

𝑥𝑛 − 𝑝
 +

𝑓 (𝑝) − 𝑝
)

+ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑝


+ 𝛼
𝑛
(1 − 𝜌)

𝑓 (𝑝) − 𝑝


1 − 𝜌

≤ max{𝑥𝑛 − 𝑝
 ,

𝑓 (𝑝) − 𝑝


1 − 𝜌
} .

(47)

By induction, we obtain

𝑥𝑛 − 𝑝
 ≤ max{𝑥0 − 𝑝

 ,

𝑓 (𝑝) − 𝑝


1 − 𝜌
} , ∀𝑛 ≥ 0. (48)

Thus, {𝑥
𝑛
} is bounded, and so are the sequences {𝑦

𝑛
},

{𝐺𝑥
𝑛
} and {𝑓(𝑥

𝑛
)}.

Let us show that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = 0. (49)

As amatter of fact, put 𝜎
𝑛
= (1−𝛼

𝑛
)𝛽
𝑛
, for all 𝑛 ≥ 0.Then,

it follows from (i) and (iv) that

𝛽
𝑛
≥ 𝜎
𝑛
= (1 − 𝛼

𝑛
) 𝛽
𝑛
≥ (1 − (1 − 𝜌)) 𝛽

𝑛
= 𝜌𝛽
𝑛
, ∀𝑛 ≥ 𝑛

0
,

(50)

and hence

0 < lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup
𝑛→∞

𝜎
𝑛
< 1. (51)

Define

𝑥
𝑛+1

= 𝜎
𝑛
𝑥
𝑛
+ (1 − 𝜎

𝑛
) 𝑧
𝑛
. (52)

Observe that

𝑧
𝑛+1

− 𝑧
𝑛

=
𝑥
𝑛+2

− 𝜎
𝑛+1

𝑥
𝑛+1

1 − 𝜎
𝑛+1

−
𝑥
𝑛+1

− 𝜎
𝑛
𝑥
𝑛

1 − 𝜎
𝑛

=
𝛼
𝑛+1

𝑓 (𝑥
𝑛+1

) + (1 − 𝛼
𝑛+1

) 𝑦
𝑛+1

− 𝜎
𝑛+1

𝑥
𝑛+1

1 − 𝜎
𝑛+1

−
𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
− 𝜎
𝑛
𝑥
𝑛

1 − 𝜎
𝑛

= (
𝛼
𝑛+1

𝑓 (𝑥
𝑛+1

)

1 − 𝜎
𝑛+1

−
𝛼
𝑛
𝑓 (𝑥
𝑛
)

1 − 𝜎
𝑛

)

−
(1 − 𝛼

𝑛
) [𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
] − 𝜎
𝑛
𝑥
𝑛

1 − 𝜎
𝑛

+ (1 − 𝛼
𝑛+1

) [𝛽
𝑛+1

𝑥
𝑛+1

+ 𝛾
𝑛+1

𝐵
𝑛+1

𝑥
𝑛+1

+ 𝛿
𝑛+1

𝑆
𝑛+1

𝐺𝑥
𝑛+1

]

− 𝜎
𝑛+1

𝑥
𝑛+1

× (1 − 𝜎
𝑛+1

)
−1

= (
𝛼
𝑛+1

𝑓 (𝑥
𝑛+1

)

1 − 𝜎
𝑛+1

−
𝛼
𝑛
𝑓 (𝑥
𝑛
)

1 − 𝜎
𝑛

) +
1 − 𝛼
𝑛+1

1 − 𝜎
𝑛+1

× (𝛾
𝑛+1

𝐵
𝑛+1

𝑥
𝑛+1

+ 𝛿
𝑛+1

𝑆
𝑛+1

𝐺𝑥
𝑛+1

)

−
1 − 𝛼
𝑛

1 − 𝜎
𝑛

(𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
)

= (
𝛼
𝑛+1

𝑓 (𝑥
𝑛+1

)

1 − 𝜎
𝑛+1

−
𝛼
𝑛
𝑓 (𝑥
𝑛
)

1 − 𝜎
𝑛

)

+
(1 − 𝛼

𝑛+1
) (1 − 𝛽

𝑛+1
)

1 − 𝜎
𝑛+1

× [
𝛾
𝑛+1

𝐵
𝑛+1

𝑥
𝑛+1

+ 𝛿
𝑛+1

𝑆
𝑛+1

𝐺𝑥
𝑛+1

1 − 𝛽
𝑛+1

−
𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

1 − 𝛽
𝑛

]

+ [
(1 − 𝛼

𝑛+1
) (1 − 𝛽

𝑛+1
)

1 − 𝜎
𝑛+1

−
(1 − 𝛼

𝑛
) (1 − 𝛽

𝑛
)

1 − 𝜎
𝑛

]

×
𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

1 − 𝛽
𝑛

=
𝛼
𝑛+1

1 − 𝜎
𝑛+1

(𝑓 (𝑥
𝑛+1

) − 𝑓 (𝑥
𝑛
))

+ (
𝛼
𝑛+1

1 − 𝜎
𝑛+1

−
𝛼
𝑛

1 − 𝜎
𝑛

)𝑓 (𝑥
𝑛
)

+
(1 − 𝛼

𝑛+1
) (1 − 𝛽

𝑛+1
)

1 − 𝜎
𝑛+1

× [
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(𝐵
𝑛+1

𝑥
𝑛+1

− 𝐵
𝑛
𝑥
𝑛
)

+ (
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

)𝐵
𝑛
𝑥
𝑛

+
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(𝑆
𝑛+1

𝐺𝑥
𝑛+1

− 𝑆
𝑛
𝐺𝑥
𝑛
)

+ (
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

) 𝑆
𝑛
𝐺𝑥
𝑛
]

− (
𝛼
𝑛+1

1 − 𝜎
𝑛+1

−
𝛼
𝑛

1 − 𝜎
𝑛

)
𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛
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=
𝛼
𝑛+1

1 − 𝜎
𝑛+1

(𝑓 (𝑥
𝑛+1

) − 𝑓 (𝑥
𝑛
))

+ (
𝛼
𝑛+1

1 − 𝜎
𝑛+1

−
𝛼
𝑛

1 − 𝜎
𝑛

)

× (𝑓 (𝑥
𝑛
) −

𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

)

+
1 − 𝜎
𝑛+1

− 𝛼
𝑛+1

1 − 𝜎
𝑛+1

× [
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(𝐵
𝑛+1

𝑥
𝑛+1

− 𝐵
𝑛
𝑥
𝑛
)

+ (
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

)𝐵
𝑛
𝑥
𝑛

+
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(𝑆
𝑛+1

𝐺𝑥
𝑛+1

− 𝑆
𝑛
𝐺𝑥
𝑛
)

+ (
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

) 𝑆
𝑛
𝐺𝑥
𝑛
] ,

(53)

and hence
𝑧𝑛+1 − 𝑧

𝑛



≤
𝛼
𝑛+1

1 − 𝜎
𝑛+1

𝑓 (𝑥
𝑛+1

) − 𝑓 (𝑥
𝑛
)


+



𝛼
𝑛+1

1 − 𝜎
𝑛+1

−
𝛼
𝑛

1 − 𝜎
𝑛





𝑓 (𝑥
𝑛
) −

𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛



+
1 − 𝜎
𝑛+1

− 𝛼
𝑛+1

1 − 𝜎
𝑛+1

×



𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(𝐵
𝑛+1

𝑥
𝑛+1

− 𝐵
𝑛
𝑥
𝑛
)

+ (
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

)𝐵
𝑛
𝑥
𝑛

+
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(𝑆
𝑛+1

𝐺𝑥
𝑛+1

− 𝑆
𝑛
𝐺𝑥
𝑛
)

+ (
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

) 𝑆
𝑛
𝐺𝑥
𝑛



≤
𝜌𝛼
𝑛+1

1 − 𝜎
𝑛+1

𝑥𝑛+1 − 𝑥
𝑛

 +



𝛼
𝑛+1

1 − 𝜎
𝑛+1

−
𝛼
𝑛

1 − 𝜎
𝑛



× (
𝑓 (𝑥
𝑛
)
 +

𝐵𝑛𝑥𝑛
 +

𝑆𝑛𝐺𝑥𝑛
)

+
1 − 𝜎
𝑛+1

− 𝛼
𝑛+1

1 − 𝜎
𝑛+1

× [
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

𝐵𝑛+1𝑥𝑛+1 − 𝐵
𝑛
𝑥
𝑛



+



𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛



𝐵𝑛𝑥𝑛


+
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

𝑆𝑛+1𝐺𝑥𝑛+1 − 𝑆
𝑛
𝐺𝑥
𝑛



+



𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛



𝑆𝑛𝐺𝑥𝑛
] .

(54)

On the other hand, we note that, for all 𝑛 ≥ 0,

𝑆𝑛+1𝐺𝑥𝑛+1 − 𝑆
𝑛
𝐺𝑥
𝑛



≤
𝑆𝑛+1𝐺𝑥𝑛+1 − 𝑆

𝑛+1
𝐺𝑥
𝑛

 +
𝑆𝑛+1𝐺𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛



≤
𝐺𝑥𝑛+1 − 𝐺𝑥

𝑛

 +
𝑆𝑛+1𝐺𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛



≤
𝑥𝑛+1 − 𝑥

𝑛

 +
𝑆𝑛+1𝐺𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

 .

(55)

Furthermore, by (CY), since𝐺
𝑖
and𝑈

𝑛,𝑖
are nonexpansive,

we deduce that for each 𝑛 ≥ 0

𝐵𝑛+1𝑥𝑛+1 − 𝐵
𝑛
𝑥
𝑛



≤
𝐵𝑛+1𝑥𝑛+1 − 𝐵

𝑛+1
𝑥
𝑛

 +
𝐵𝑛+1𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛



≤
𝑥𝑛+1 − 𝑥

𝑛

 +
𝐵𝑛+1𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛



=
𝑥𝑛+1 − 𝑥

𝑛

 +
𝜆0𝐺0𝑈𝑛+1,1𝑥𝑛 − 𝜆

0
𝐺
0
𝑈
𝑛,1
𝑥
𝑛



≤
𝑥𝑛+1 − 𝑥

𝑛

 + 𝜆
0

𝑈𝑛+1,1𝑥𝑛 − 𝑈
𝑛,1
𝑥
𝑛



=
𝑥𝑛+1 − 𝑥

𝑛

 + 𝜆
0

𝜆1𝐺1𝑈𝑛+1,2𝑥𝑛 − 𝜆
1
𝐺
1
𝑈
𝑛,2
𝑥
𝑛



≤
𝑥𝑛+1 − 𝑥

𝑛

 + 𝜆
0
𝜆
1

𝑈𝑛+1,2𝑥𝑛 − 𝑈
𝑛,2
𝑥
𝑛



...

≤
𝑥𝑛+1 − 𝑥

𝑛

 + (

𝑛

∏

𝑖=0

𝜆
𝑖
)
𝑈𝑛+1,𝑛+1𝑥𝑛 − 𝑈

𝑛,𝑛+1
𝑥
𝑛



≤
𝑥𝑛+1 − 𝑥

𝑛

 +𝑀
0

𝑛

∏

𝑖=0

𝜆
𝑖
,

(56)

for some constant𝑀
0
> 0. Utilizing (54)–(56), we have

𝑧𝑛+1 − 𝑧
𝑛



≤
𝜌𝛼
𝑛+1

1 − 𝜎
𝑛+1

𝑥𝑛+1 − 𝑥
𝑛

 +



𝛼
𝑛+1

1 − 𝜎
𝑛+1

−
𝛼
𝑛

1 − 𝜎
𝑛



× (
𝑓 (𝑥
𝑛
)
 +

𝐵𝑛𝑥𝑛
 +

𝑆𝑛𝐺𝑥𝑛
)

+
1 − 𝜎
𝑛+1

− 𝛼
𝑛+1

1 − 𝜎
𝑛+1



10 Abstract and Applied Analysis

× [
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(
𝑥𝑛+1 − 𝑥

𝑛

 + 𝑀
0

𝑛

∏

𝑖=0

𝜆
𝑖
)

+



𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛



𝐵𝑛𝑥𝑛


+
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(
𝑥𝑛+1 − 𝑥

𝑛

 +
𝑆𝑛+1𝐺𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

)

+



𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛



𝑆𝑛𝐺𝑥𝑛
 ]

=
1 − 𝜎
𝑛+1

− 𝛼
𝑛+1

(1 − 𝜌)

1 − 𝜎
𝑛+1

𝑥𝑛+1 − 𝑥
𝑛



+



𝛼
𝑛+1

1 − 𝜎
𝑛+1

−
𝛼
𝑛

1 − 𝜎
𝑛



(
𝑓 (𝑥
𝑛
)
 +

𝐵𝑛𝑥𝑛
 +

𝑆𝑛𝐺𝑥𝑛
)

+
1 − 𝜎
𝑛+1

− 𝛼
𝑛+1

1 − 𝜎
𝑛+1

× [
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

𝑀
0

𝑛

∏

𝑖=0

𝜆
𝑖

+
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

𝑆𝑛+1𝐺𝑥𝑛 − 𝑆
𝑛
𝐺𝑥
𝑛



+



𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛



(
𝐵𝑛𝑥𝑛

 +
𝑆𝑛𝐺𝑥𝑛

) ]

≤
𝑥𝑛+1 − 𝑥

𝑛

 +



𝛼
𝑛+1

1 − 𝜎
𝑛+1

−
𝛼
𝑛

1 − 𝜎
𝑛



𝑀

+𝑀

𝑛

∏

𝑖=0

𝜆
𝑖
+
𝑆𝑛+1𝐺𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛



+



𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛



𝑀

=
𝑥𝑛+1 − 𝑥

𝑛



+𝑀(



𝛼
𝑛+1

1 − 𝜎
𝑛+1

−
𝛼
𝑛

1 − 𝜎
𝑛



+



𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛



+

𝑛

∏

𝑖=0

𝜆
𝑖
)

+
𝑆𝑛+1𝐺𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

 ,

(57)

which hence yields
𝑧𝑛+1 − 𝑧

𝑛

 −
𝑥𝑛+1 − 𝑥

𝑛



≤ 𝑀(



𝛼
𝑛+1

1 − 𝜎
𝑛+1

−
𝛼
𝑛

1 − 𝜎
𝑛



+



𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛



+

𝑛

∏

𝑖=0

𝜆
𝑖
) +

𝑆𝑛+1𝐺𝑥𝑛 − 𝑆
𝑛
𝐺𝑥
𝑛

 ,

(58)

where sup
𝑛≥0

{‖𝑓(𝑥
𝑛
)‖+‖𝐵

𝑛
𝑥
𝑛
‖+‖𝑆
𝑛
𝐺𝑥
𝑛
‖+𝑀
0
} ≤ 𝑀 for some

𝑀 > 0. So, from (58), condition (iii), and the assumption on
{𝑆
𝑛
}, it follows that (noting that 0 < 𝜆

𝑖
≤ 𝑏 < 1, for all 𝑖 ≥ 0)

lim sup
𝑛→∞

(
𝑧𝑛+1 − 𝑧

𝑛

 −
𝑥𝑛+1 − 𝑥

𝑛

) ≤ 0. (59)

Consequently, by Lemma 20, we have

lim
𝑛→∞

𝑧𝑛 − 𝑥
𝑛

 = 0. (60)

It follows from (51) and (52) that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = lim
𝑛→∞

(1 − 𝜎
𝑛
)
𝑧𝑛 − 𝑥

𝑛

 = 0. (61)

From (42), we have

𝑥
𝑛+1

− 𝑥
𝑛
= 𝛼
𝑛
(𝑓 (𝑥
𝑛
) − 𝑥
𝑛
) + (1 − 𝛼

𝑛
) (𝑦
𝑛
− 𝑥
𝑛
) , (62)

which hence implies that

𝜌
𝑦𝑛 − 𝑥

𝑛

 = (1 − (1 − 𝜌))
𝑦𝑛 − 𝑥

𝑛



≤ (1 − 𝛼
𝑛
)
𝑦𝑛 − 𝑥

𝑛



=
𝑥𝑛+1 − 𝑥

𝑛
− 𝛼
𝑛
(𝑓 (𝑥
𝑛
) − 𝑥
𝑛
)


≤
𝑥𝑛+1 − 𝑥

𝑛

 +
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)
 .

(63)

Since 𝑥
𝑛+1

− 𝑥
𝑛
→ 0 and 𝛼

𝑛
(𝑓(𝑥
𝑛
) − 𝑥
𝑛
) → 0, we get

lim
𝑛→∞

𝑦𝑛 − 𝑥
𝑛

 = 0. (64)

Next, we show that ‖𝑥
𝑛
− 𝐺𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, for simplicity, put 𝑞 = Π
𝐶
(𝑝 − 𝜇

2
𝐵
2
𝑝), 𝑢
𝑛

=

Π
𝐶
(𝑥
𝑛
− 𝜇
2
𝐵
2
𝑥
𝑛
) and V

𝑛
= Π
𝐶
(𝑢
𝑛
− 𝜇
1
𝐵
1
𝑢
𝑛
). Then, V

𝑛
= 𝐺𝑥
𝑛

for all 𝑛 ≥ 0. From Lemma 22, we have

𝑢𝑛 − 𝑞


2

=
Π𝐶 (𝑥𝑛 − 𝜇

2
𝐵
2
𝑥
𝑛
) − Π
𝐶
(𝑝 − 𝜇

2
𝐵
2
𝑝)


2

≤
𝑥𝑛 − 𝑝 − 𝜇

2
(𝐵
2
𝑥
𝑛
− 𝐵
2
𝑝)


2

≤
𝑥𝑛 − 𝑝



2

− 2𝜇
2
(𝛽
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑛 − 𝐵

2
𝑝


2

,

(65)

V𝑛 − 𝑝


2

=
Π𝐶 (𝑢𝑛 − 𝜇

1
𝐵
1
𝑢
𝑛
) − Π
𝐶
(𝑞 − 𝜇

1
𝐵
1
𝑞)


2

≤
𝑢𝑛 − 𝑞 − 𝜇

1
(𝐵
1
𝑢
𝑛
− 𝐵
1
𝑞)


2

≤
𝑢𝑛 − 𝑞



2

− 2𝜇
1
(𝛽
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
𝑞


2

.

(66)

Substituting (65) for (66), we obtain

V𝑛 − 𝑝


2

≤
𝑥𝑛 − 𝑝



2

− 2𝜇
2
(𝛽
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑛 − 𝐵

2
𝑝


2

− 2𝜇
1
(𝛽
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
𝑞


2

.

(67)
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From (42) and (67), we have

𝑦𝑛 − 𝑝


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛

V𝑛 − 𝑝


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛
[
𝑥𝑛 − 𝑝



2

− 2𝜇
2
(𝛽
2
− 𝜅
2

𝜇
2
)

×
𝐵2𝑥𝑛 − 𝐵

2
𝑝


2

− 2𝜇
1
(𝛽
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
𝑞


2

]

=
𝑥𝑛 − 𝑝



2

− 2𝛿
𝑛
[𝜇
2
(𝛽
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑛 − 𝐵

2
𝑝


2

+2𝜇
1
(𝛽
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
𝑞


2

] ,

(68)

which hence implies that

2𝛿
𝑛
[𝜇
2
(𝛽
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑛 − 𝐵

2
𝑝


2

+𝜇
1
(𝛽
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
𝑞


2

]

≤
𝑥𝑛 − 𝑝



2

−
𝑦𝑛 − 𝑝



2

≤ (
𝑥𝑛 − 𝑝

 +
𝑦𝑛 − 𝑝

)
𝑥𝑛 − 𝑦

𝑛

 .

(69)

Since 0 < 𝜇
𝑖
< 𝛽
𝑖
/𝜅
2 for 𝑖 = 1, 2, and {𝑥

𝑛
}, {𝑦
𝑛
} are

bounded, we obtain from (64), (69), and condition (ii) that

lim
𝑛→∞

𝐵2𝑥𝑛 − 𝐵
2
𝑝
 = 0, lim

𝑛→∞

𝐵1𝑢𝑛 − 𝐵
1
𝑞
 = 0. (70)

Utilizing Proposition 6 and Lemma 9, we have

𝑢𝑛 − 𝑞


2

=
Π𝐶 (𝑥𝑛 − 𝜇

2
𝐵
2
𝑥
𝑛
) − Π
𝐶
(𝑝 − 𝜇

2
𝐵
2
𝑝)


2

≤ ⟨𝑥
𝑛
− 𝜇
2
𝐵
2
𝑥
𝑛
− (𝑝 − 𝜇

2
𝐵
2
𝑝) , 𝐽 (𝑢

𝑛
− 𝑞)⟩

= ⟨𝑥
𝑛
− 𝑝, 𝐽 (𝑢

𝑛
− 𝑞)⟩ + 𝜇

2
⟨𝐵
2
𝑝 − 𝐵
2
𝑥
𝑛
, 𝐽 (𝑢
𝑛
− 𝑞)⟩

≤
1

2
[
𝑥𝑛 − 𝑝



2

+
𝑢𝑛 − 𝑞



2

− 𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

)]

+ 𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − 𝑞
 ,

(71)

which implies that

𝑢𝑛 − 𝑞


2

≤
𝑥𝑛 − 𝑝



2

− 𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

)

+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − 𝑞
 .

(72)

In the same way, we derive

V𝑛 − 𝑝


2

=
Π𝐶 (𝑢𝑛 − 𝜇

1
𝐵
1
𝑢
𝑛
) − Π
𝐶
(𝑞 − 𝜇

1
𝐵
1
𝑞)


2

≤ ⟨𝑢
𝑛
− 𝜇
1
𝐵
1
𝑢
𝑛
− (𝑞 − 𝜇

1
𝐵
1
𝑞) , 𝐽 (V

𝑛
− 𝑝)⟩

= ⟨𝑢
𝑛
− 𝑞, 𝐽 (V

𝑛
− 𝑝)⟩ + 𝜇

1
⟨𝐵
1
𝑞 − 𝐵
1
𝑢
𝑛
, 𝐽 (V
𝑛
− 𝑝)⟩

≤
1

2
[
𝑢𝑛 − 𝑞



2

+
V𝑛 − 𝑝



2

− 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

) ]

+ 𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑝
 ,

(73)

which implies that

V𝑛 − 𝑝


2

≤
𝑢𝑛 − 𝑞



2

− 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

)

+ 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑝
 .

(74)

Substituting (72) for (74), we get

V𝑛 − 𝑝


2

≤
𝑥𝑛 − 𝑝



2

− 𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

)

− 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

)

+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − 𝑞


+ 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑝
 .

(75)

By Lemma 8(i), we have from (68) and (75)

𝑦𝑛 − 𝑝


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛

V𝑛 − 𝑝


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛
[
𝑥𝑛 − 𝑝



2

− 𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

)

− 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

) + 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



×
𝑢𝑛 − 𝑞

 + 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑝
 ]

≤
𝑥𝑛 − 𝑝



2

− 𝛿
𝑛
[𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

)

+𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

)]

+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − 𝑞


+ 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑝
 ,

(76)
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which hence leads to

𝛿
𝑛
[𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

) + 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

)]

≤
𝑥𝑛 − 𝑝



2

−
𝑦𝑛 − 𝑝



2

+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − 𝑞


+ 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑝


≤ (
𝑥𝑛 − 𝑝

 +
𝑦𝑛 − 𝑝

)
𝑥𝑛 − 𝑦

𝑛



+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − 𝑞


+ 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑝
 .

(77)

From (70), (77), condition (ii), and the boundedness of
{𝑥
𝑛
}, {𝑦
𝑛
}, {𝑢
𝑛
}, and {V

𝑛
}, we deduce that

lim
𝑛→∞

𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

) = 0,

lim
𝑛→∞

𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

) = 0.

(78)

Utilizing the properties of 𝑔
1
and 𝑔

2
, we deduce that

lim
𝑛→∞

𝑥𝑛 − 𝑢
𝑛
− (𝑝 − 𝑞)

 = 0,

lim
𝑛→∞

𝑢𝑛 − V
𝑛
+ (𝑝 − 𝑞)

 = 0.

(79)

From (79), we get

𝑥𝑛 − V
𝑛

 ≤
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)



+
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

 → 0 as 𝑛 → ∞.

(80)

That is,

lim
𝑛→∞

𝑥𝑛 − 𝐺𝑥
𝑛

 = 0. (81)

Next, let us show that

lim
𝑛→∞

𝐵𝑛𝑥𝑛 − 𝑥
𝑛

 = 0, lim
𝑛→∞

𝑆𝑥𝑛 − 𝑥
𝑛

 = 0. (82)

Indeed, utilizing Lemma 15 and (42), we have

𝑦𝑛 − 𝑝


2

=



𝛿
𝑛
(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑝) + (𝛽

𝑛
+ 𝛾
𝑛
) (

𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛

𝛽
𝑛
+ 𝛾
𝑛

− 𝑝)



2

≤ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


2

+ (𝛽
𝑛
+ 𝛾
𝑛
)

×



𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛

𝛽
𝑛
+ 𝛾
𝑛

− 𝑝



2

= 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


2

+ (𝛽
𝑛
+ 𝛾
𝑛
)

×



𝛽
𝑛

𝛽
𝑛
+ 𝛾
𝑛

(𝑥
𝑛
− 𝑝) +

𝛾
𝑛

𝛽
𝑛
+ 𝛾
𝑛

(𝐵
𝑛
𝑥
𝑛
− 𝑝)



2

≤ 𝛿
𝑛

𝐺𝑥𝑛 − 𝑝


2

+ (𝛽
𝑛
+ 𝛾
𝑛
)

× [
𝛽
𝑛

𝛽
𝑛
+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+
𝛾
𝑛

𝛽
𝑛
+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

−
𝛽
𝑛
𝛾
𝑛

(𝛽
𝑛
+ 𝛾
𝑛
)
2

𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)]

≤ 𝛿
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

−
𝛽
𝑛
𝛾
𝑛

𝛽
𝑛
+ 𝛾
𝑛

𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

=
𝑥𝑛 − 𝑝



2

−
𝛽
𝑛
𝛾
𝑛

𝛽
𝑛
+ 𝛾
𝑛

𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

) ,

(83)

which immediately implies that

𝛽
𝑛
𝛾
𝑛
𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤
𝛽
𝑛
𝛾
𝑛

𝛽
𝑛
+ 𝛾
𝑛

𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤
𝑥𝑛 − 𝑝



2

−
𝑦𝑛 − 𝑝



2

≤ (
𝑥𝑛 − 𝑝

 +
𝑦𝑛 − 𝑝

)
𝑥𝑛 − 𝑦

𝑛

 .

(84)

So, from (64), the boundedness of {𝑥
𝑛
}, {𝑦
𝑛
}, and conditions

(ii), (iv), it follows that

lim
𝑛→∞

𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

) = 0. (85)

From the properties of 𝑔
3
, we have

lim
𝑛→∞

𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

 = 0. (86)

Taking into account that

𝑦
𝑛
− 𝑥
𝑛
= 𝛾
𝑛
(𝐵
𝑛
𝑥
𝑛
− 𝑥
𝑛
) + 𝛿
𝑛
(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑥
𝑛
) , (87)

we have

𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑥
𝑛



=
𝑦𝑛 − 𝑥

𝑛
− 𝛾
𝑛
(𝐵
𝑛
𝑥
𝑛
− 𝑥
𝑛
)


≤
𝑦𝑛 − 𝑥

𝑛

 + 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑥
𝑛



≤
𝑦𝑛 − 𝑥

𝑛

 +
𝐵𝑛𝑥𝑛 − 𝑥

𝑛

 .

(88)

From (64), (86), and condition (ii), it follows that

lim
𝑛→∞

𝑆𝑛𝐺𝑥𝑛 − 𝑥
𝑛

 = 0, lim
𝑛→∞

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

 = 0.

(89)
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Note that

𝑥𝑛 − 𝑆𝑥
𝑛



≤
𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

 +
𝑆𝑛𝐺𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛



+
𝑆𝑛𝑥𝑛 − 𝑆𝑥

𝑛



≤
𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

 +
𝐺𝑥𝑛 − 𝑥

𝑛



+
𝑆𝑛𝑥𝑛 − 𝑆𝑥

𝑛

 .

(90)

So, in terms of (81), (89), and Lemma 12, we have

lim
𝑛→∞

𝑥𝑛 − 𝑆𝑥
𝑛

 = 0. (91)

Suppose that 𝛽
𝑛
≡ 𝛽 for some fixed 𝛽 ∈ (0, 1) such that 𝛽 +

𝛾
𝑛
+ 𝛿
𝑛
= 1 for all 𝑛 ≥ 0. Define a mapping 𝑉𝑥 = (1 − 𝜃

1
−

𝜃
2
)𝑆𝑥 + 𝜃

1
𝐵𝑥 + 𝜃

2
𝐺𝑥, where 𝜃

1
, 𝜃
2
∈ (0, 1) are two constants

with 𝜃
1
+ 𝜃
2
< 1. Then, by Lemmas 14 and 17, we have that

Fix(𝑉) = Fix(𝑆) ∩ Fix(𝐵) ∩ Fix(𝐺) = 𝐹. For each 𝑘 ≥ 1, let
{𝑝
𝑘
} be a unique element of 𝐶 such that

𝑝
𝑘
=
1

𝑘
𝑓 (𝑝
𝑘
) + (1 −

1

𝑘
)𝑉𝑝
𝑘
. (92)

From Lemma 13, we conclude that 𝑝
𝑘
→ 𝑞 ∈ Fix(𝑉) = 𝐹 as

𝑘 → ∞. Observe that for every 𝑛, 𝑘

𝑦𝑛 − 𝐵𝑝
𝑘



=
𝛽 (𝑥𝑛 − 𝐵𝑝

𝑘
) + 𝛾
𝑛
(𝐵
𝑛
𝑥
𝑛
− 𝐵𝑝
𝑘
) + 𝛿
𝑛
(𝑆
𝑛
𝐺𝑥
𝑛
− 𝐵𝑝
𝑘
)


≤ 𝛽
𝑥𝑛 − 𝐵𝑝

𝑘

 + 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝐵𝑝
𝑘



+ 𝛿
𝑛
(
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

 +
𝐵𝑛𝑥𝑛 − 𝐵𝑝

𝑘

)

= 𝛽
𝑥𝑛 − 𝐵𝑝

𝑘

 + (1 − 𝛽)
𝐵𝑛𝑥𝑛 − 𝐵𝑝

𝑘



+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

 ,

(93)

and hence

𝑥𝑛+1 − 𝐵𝑝
𝑘



≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝐵𝑝

𝑘

 + (1 − 𝛼
𝑛
)
𝑦𝑛 − 𝐵𝑝

𝑘



≤ 𝛼
𝑛
(
𝑓 (𝑥
𝑛
) − 𝑥
𝑛

 +
𝑥𝑛 − 𝐵𝑝

𝑘

)

+ (1 − 𝛼
𝑛
)
𝑦𝑛 − 𝐵𝑝

𝑘



≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑥
𝑛

 + 𝛼
𝑛

𝑥𝑛 − 𝐵𝑝
𝑘

 + (1 − 𝛼
𝑛
)

× [𝛽
𝑥𝑛 − 𝐵𝑝

𝑘



+ (1 − 𝛽)
𝐵𝑛𝑥𝑛 − 𝐵𝑝

𝑘

 + 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

]

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑥
𝑛

 + 𝛼
𝑛

𝑥𝑛 − 𝐵𝑝
𝑘

 + (1 − 𝛼
𝑛
)

× [𝛽
𝑥𝑛 − 𝐵𝑝

𝑘



+ (1 − 𝛽) (
𝐵𝑛𝑥𝑛 − 𝐵

𝑛
𝑝
𝑘

 +
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘

)

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

]

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑥
𝑛

 + 𝛼
𝑛

𝑥𝑛 − 𝐵𝑝
𝑘



+ (1 − 𝛼
𝑛
) [𝛽

𝑥𝑛 − 𝐵𝑝
𝑘



+ (1 − 𝛽) (
𝑥𝑛 − 𝑝

𝑘

 +
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘

)

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

]

= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑥
𝑛

 + (𝛽 + 𝛼
𝑛
(1 − 𝛽))

×
𝑥𝑛 − 𝐵𝑝

𝑘

 + (1 − 𝛼
𝑛
) (1 − 𝛽)

𝑥𝑛 − 𝑝
𝑘



+ (1 − 𝛼
𝑛
) [(1 − 𝛽)

𝐵𝑛𝑝𝑘 − 𝐵𝑝
𝑘



+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

]

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑥
𝑛

 + (𝛽 + 𝛼
𝑛
(1 − 𝛽))

× (
𝑥𝑛 − 𝑥

𝑛+1

 +
𝑥𝑛+1 − 𝐵𝑝

𝑘

)

+ (1 − 𝛼
𝑛
) (1 − 𝛽) (

𝑥𝑛 − 𝑥
𝑛+1

 +
𝑥𝑛+1 − 𝑝

𝑘

)

+ (1 − 𝛼
𝑛
) [(1 − 𝛽)

𝐵𝑛𝑝𝑘 − 𝐵𝑝
𝑘



+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

 ]

= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑥
𝑛

 + (𝛽 + 𝛼
𝑛
(1 − 𝛽))

×
𝑥𝑛+1 − 𝐵𝑝

𝑘

 + (1 − 𝛼
𝑛
) (1 − 𝛽)

𝑥𝑛+1 − 𝑝
𝑘



+ (1 − 𝛼
𝑛
) [(1 − 𝛽)

𝐵𝑛𝑝𝑘 − 𝐵𝑝
𝑘



+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

] +
𝑥𝑛 − 𝑥

𝑛+1

 .

(94)

So, it immediately follows from 0 ≤ 𝛼
𝑛
≤ 1 − 𝜌, for all 𝑛 ≥ 𝑛

0
,

that

𝑥𝑛+1 − 𝐵𝑝
𝑘



≤
𝑥𝑛+1 − 𝑝

𝑘

 +
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘

 +
1

(1 − 𝛼
𝑛
) (1 − 𝛽)

× (
𝛼𝑛 (𝑥𝑛 − 𝑓 (𝑥

𝑛
))
 +

𝑥𝑛 − 𝑥
𝑛+1

)

+
𝛿
𝑛

1 − 𝛽

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛



≤
𝑥𝑛+1 − 𝑝

𝑘

 +
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘



+
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

 +
1

𝜌 (1 − 𝛽)

× (
𝛼𝑛 (𝑥𝑛 − 𝑓 (𝑥

𝑛
))
 +

𝑥𝑛 − 𝑥
𝑛+1

)

=
𝑥𝑛+1 − 𝑝

𝑘

 + 𝜃
𝑛
, ∀𝑛 ≥ 𝑛

0
,

(95)
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where 𝜃
𝑛

= ‖𝐵
𝑛
𝑝
𝑘
− 𝐵𝑝
𝑘
‖ + ‖𝑆

𝑛
𝐺𝑥
𝑛
− 𝐵
𝑛
𝑥
𝑛
‖ + (1/𝜌(1 −

𝛽))(‖𝛼
𝑛
(𝑥
𝑛
− 𝑓(𝑥

𝑛
))‖ + ‖𝑥

𝑛
− 𝑥
𝑛+1

‖). Since lim
𝑛→∞

‖𝐵
𝑛
𝑝
𝑘
−

𝐵𝑝
𝑘
‖ = lim

𝑛→∞
‖𝑆
𝑛
𝐺𝑥
𝑛
−𝐵
𝑛
𝑥
𝑛
‖ = lim

𝑛→∞
‖𝛼
𝑛
(𝑥
𝑛
−𝑓(𝑥
𝑛
))‖ =

lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
𝑛+1

‖ = 0, we know that 𝜃
𝑛
→ 0 as 𝑛 → ∞.

From (95), we obtain
𝑥𝑛+1 − 𝐵𝑝

𝑘



2

≤
𝑥𝑛+1 − 𝑝

𝑘



2

+ 𝜃
𝑛
(2
𝑥𝑛+1 − 𝑝

𝑘

 + 𝜃
𝑛
) , ∀𝑛 ≥ 𝑛

0
.

(96)

For any Banach limit 𝜇, from (96), we derive

𝜇
𝑛

𝑥𝑛 − 𝐵𝑝
𝑘



2

= 𝜇
𝑛

𝑥𝑛+1 − 𝐵𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛+1 − 𝑝
𝑘



2

= 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

.

(97)

In addition, note that
𝑥𝑛 − 𝐺𝑝

𝑘



2

≤
𝑥𝑛 − 𝐺𝑥

𝑛
+ 𝐺𝑥
𝑛
− 𝐺𝑝
𝑘



2

≤ (
𝑥𝑛 − 𝐺𝑥

𝑛

 +
𝑥𝑛 − 𝑝

𝑘

)
2

=
𝑥𝑛 − 𝑝

𝑘



2

+
𝑥𝑛 − 𝐺𝑥

𝑛



× (2
𝑥𝑛 − 𝑝

𝑘

 +
𝑥𝑛 − 𝐺𝑥

𝑛

) ,

𝑥𝑛 − 𝑆𝑝
𝑘



2

≤
𝑥𝑛 − 𝑆𝑥

𝑛
+ 𝑆𝑥
𝑛
− 𝑆𝑝
𝑘



2

≤ (
𝑥𝑛 − 𝑆𝑥

𝑛

 +
𝑥𝑛 − 𝑝

𝑘

)
2

=
𝑥𝑛 − 𝑝

𝑘



2

+
𝑥𝑛 − 𝑆𝑥

𝑛



× (2
𝑥𝑛 − 𝑝

𝑘

 +
𝑥𝑛 − 𝑆𝑥

𝑛

) .

(98)

It is easy to see from (81) and (91) that

𝜇
𝑛

𝑥𝑛 − 𝐺𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

,

𝜇
𝑛

𝑥𝑛 − 𝑆𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

.

(99)

Utilizing (97) and (99), we deduce that

𝜇
𝑛

𝑥𝑛 − 𝑉𝑝
𝑘



2

= 𝜇
𝑛

(1 − 𝜃
1
− 𝜃
2
) (𝑥
𝑛
− 𝑆𝑝
𝑘
)

+𝜃
1
(𝑥
𝑛
− 𝐵𝑝
𝑘
) + 𝜃
2
(𝑥
𝑛
− 𝐺𝑝
𝑘
)


2

≤ (1 − 𝜃
1
− 𝜃
2
) 𝜇
𝑛

𝑥𝑛 − 𝑆𝑝
𝑘



2

+ 𝜃
1
𝜇
𝑛

𝑥𝑛 − 𝐵𝑝
𝑘



2

+ 𝜃
2
𝜇
𝑛

𝑥𝑛 − 𝐺𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

.

(100)

Also, observe that

𝑥
𝑛
− 𝑝
𝑘
=
1

𝑘
(𝑥
𝑛
− 𝑓 (𝑝

𝑘
)) + (1 −

1

𝑘
) (𝑥
𝑛
− 𝑉𝑝
𝑘
) ; (101)

that is,

(1 −
1

𝑘
) (𝑥
𝑛
− 𝑉𝑝
𝑘
) = 𝑥
𝑛
− 𝑝
𝑘
−
1

𝑘
(𝑥
𝑛
− 𝑓 (𝑝

𝑘
)) . (102)

It follows from Lemma 8 (ii) and (102) that

(1 −
1

𝑘
)

2

𝑥𝑛 − 𝑉𝑝
𝑘



2

≥
𝑥𝑛 − 𝑝

𝑘



2

−
2

𝑘
⟨𝑥
𝑛
− 𝑝
𝑘
+ 𝑝
𝑘
− 𝑓 (𝑝

𝑘
) , 𝐽 (𝑥

𝑛
− 𝑝
𝑘
)⟩

= (1 −
2

𝑘
)
𝑥𝑛 − 𝑝

𝑘



2

+
2

𝑘
⟨𝑓 (𝑝
𝑘
) − 𝑝
𝑘
, 𝐽 (𝑥
𝑛
− 𝑝
𝑘
)⟩ .

(103)

So by (100) and (103), we have

(1 −
1

𝑘
)

2

𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

≥ (1 −
2

𝑘
) 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

+
2

𝑘
𝜇
𝑛
⟨𝑓 (𝑝
𝑘
) − 𝑝
𝑘
, 𝐽 (𝑥
𝑛
− 𝑝
𝑘
)⟩ ,

(104)

and hence

1

𝑘2
𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

≥
2

𝑘
𝜇
𝑛
⟨𝑓 (𝑝
𝑘
) − 𝑝
𝑘
, 𝐽 (𝑥
𝑛
− 𝑝
𝑘
)⟩ . (105)

This implies that

1

2𝑘
𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

≥ 𝜇
𝑛
⟨𝑓 (𝑝
𝑘
) − 𝑝
𝑘
, 𝐽 (𝑥
𝑛
− 𝑝
𝑘
)⟩ . (106)

Since 𝑝
𝑘
→ 𝑞 ∈ Fix(𝑉) = 𝐹 as 𝑘 → ∞, by the uniform

Frechet differentiability of the norm of𝑋 we have

𝜇
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛
− 𝑞)⟩ ≤ 0. (107)

On the other hand, from (49) and the norm-to-normuniform
continuity of 𝐽 on bounded subsets of𝑋, it follows that

lim
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛+1

− 𝑞)⟩ − ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

 = 0.

(108)

So, utilizing Lemma 18 we deduce from (107) and (108) that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩ ≤ 0, (109)

which together with (49) and the norm-to-norm uniform
continuity of 𝐽 on bounded subsets of𝑋, implies that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛+1

− 𝑞)⟩ ≤ 0. (110)
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Finally, let us show that 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞. Utilizing

Lemma 8 (i), from (42) and the convexity of ‖ ⋅ ‖2, we get
𝑦𝑛 − 𝑞



2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑞


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑞


2

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑞


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑞


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑞


2

+ 𝛿
𝑛

𝑥𝑛 − 𝑞


2

=
𝑥𝑛 − 𝑞



2

,

(111)

𝑥𝑛+1 − 𝑞


2

=
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑞)) + (1 − 𝛼

𝑛
) (𝑦
𝑛
− 𝑞)

+ 𝛼
𝑛
(𝑓 (𝑞) − 𝑞)



2

≤
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑞)) + (1 − 𝛼

𝑛
) (𝑦
𝑛
− 𝑞)



2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛+1
− 𝑞)⟩

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑞)



2

+ (1 − 𝛼
𝑛
)
𝑦𝑛 − 𝑞



2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛+1
− 𝑞)⟩

≤ 𝛼
𝑛
𝜌
𝑥𝑛 − 𝑞



2

+ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑞



2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛+1
− 𝑞)⟩

= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑞


2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛+1
− 𝑞)⟩

= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑞


2

+ 𝛼
𝑛
(1 − 𝜌)

2 ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛+1

− 𝑞)⟩

1 − 𝜌
.

(112)

Applying Lemma 7 to (112), we obtain that 𝑥
𝑛
→ 𝑞 as 𝑛 →

∞.
Conversely, if 𝑥

𝑛
→ 𝑞 ∈ 𝐹 as 𝑛 → ∞, then from (42) it

follows that
𝑦𝑛 − 𝑞



≤ 𝛽
𝑛

𝑥𝑛 − 𝑞
 + 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑞


+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑞


≤ 𝛽
𝑛

𝑥𝑛 − 𝑞
 + 𝛾
𝑛

𝑥𝑛 − 𝑞
 + 𝛿
𝑛

𝑥𝑛 − 𝑞


=
𝑥𝑛 − 𝑞

 → 0 as 𝑛 → ∞,

(113)

that is, 𝑦
𝑛
→ 𝑞. Again from (42) we obtain that
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)


=
𝑥𝑛+1 − 𝑥

𝑛
− (1 − 𝛼

𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)


≤
𝑥𝑛+1 − 𝑥

𝑛

 + (1 − 𝛼
𝑛
)
𝑦𝑛 − 𝑥

𝑛



≤
𝑥𝑛+1 − 𝑞

 +
𝑥𝑛 − 𝑞



+ (1 − 𝛼
𝑛
) (
𝑦𝑛 − 𝑞

 +
𝑥𝑛 − 𝑞

)

≤
𝑥𝑛+1 − 𝑞

 + 2
𝑥𝑛 − 𝑞

 +
𝑦𝑛 − 𝑞

 .

(114)

Since 𝑥
𝑛
→ 𝑞 and 𝑦

𝑛
→ 𝑞, we get 𝛼

𝑛
(𝑓(𝑥
𝑛
)−𝑥
𝑛
) → 0. This

completes the proof.

Corollary 25. Let 𝐶 be a nonempty closed convex subset of a
uniformly convex and 2-uniformly smooth Banach space𝑋. Let
Π
𝐶
be a sunny nonexpansive retraction from 𝑋 onto 𝐶. Let

{𝜌
𝑛
}
∞

𝑛=0
be a sequence of positive numbers in (0, 𝑏] for some

𝑏 ∈ (0, 1) and 𝐴
𝑖
: 𝐶 → 𝐸 an �̂�

𝑖
-inverse strongly accretive

mapping for each 𝑖 = 0, 1, . . .. Define a mapping 𝐺
𝑖
: 𝐶 → 𝐶

by Π
𝐶
(𝐼 − 𝜆

𝑖
𝐴
𝑖
)𝑥 = 𝐺

𝑖
𝑥 for all 𝑥 ∈ 𝐶 and 𝑖 = 0, 1, . . .,

where 𝜆
𝑖
∈ (0, �̂�

𝑖
/𝜅
2

] and 𝜅 is the 2-uniformly smooth constant
of 𝑋. Let 𝐵

𝑛
: 𝐶 → 𝐶 be the 𝑊-mapping generated by

𝐺
𝑛
, 𝐺
𝑛−1

, . . . , 𝐺
0
and 𝜌

𝑛
, 𝜌
𝑛−1

, . . . , 𝜌
0
. Let 𝑉 : 𝐶 → 𝐶 be

an 𝛼-strictly pseudocontractive mapping. Let 𝑓 : 𝐶 → 𝐶

be a contraction with coefficient 𝜌 ∈ (0, 1). Let {𝑆
𝑖
}
∞

𝑖=0
be a

countable family of nonexpansive mappings of𝐶 into itself such
that 𝐹 = (⋂

∞

𝑖=0
Fix(𝑆
𝑖
)) ∩ Fix(𝑉) ∩ (⋂

∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)) ̸= 0. For

arbitrarily given 𝑥
0
∈ 𝐶, let {𝑥

𝑛
} be the sequence generated by

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
((1 − 𝑙) 𝐼 + 𝑙𝑉) 𝑥

𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑦
𝑛
, ∀𝑛 ≥ 0,

(115)

where 0 < 𝑙 < 𝛼/𝜅
2, {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, and {𝛿

𝑛
} are the sequences

in [0, 1] such that 𝛽
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1 for all 𝑛 ≥ 0. Suppose that

the following conditions hold:

(i) ∑∞
𝑛=0

𝛼
𝑛
= ∞ and 0 ≤ 𝛼

𝑛
≤ 1 − 𝜌, for all 𝑛 ≥ 𝑛

0
for

some integer 𝑛
0
≥ 0;

(ii) lim inf
𝑛→∞

𝛾
𝑛
> 0 and lim inf

𝑛→∞
𝛿
𝑛
> 0;

(iii) lim
𝑛→∞

(|𝛼
𝑛+1

/(1 − (1 − 𝛼
𝑛+1

)𝛽
𝑛+1

) − 𝛼
𝑛
/(1 − (1 −

𝛼
𝑛
)𝛽
𝑛
)| + |𝛿

𝑛+1
/(1 − 𝛽

𝑛+1
) − 𝛿
𝑛
/(1 − 𝛽

𝑛
)|) = 0;

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Assume that∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1

𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded

subset 𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined
by 𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then, there hold the following:

(I) lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0;

(II) 𝑥
𝑛
→ 𝑞 ⇔ 𝛼

𝑛
(𝑓(𝑥
𝑛
) − 𝑥
𝑛
) → 0 provided 𝛽

𝑛
≡ 𝛽 for

some fixed 𝛽 ∈ (0, 1), where 𝑞 ∈ 𝐹 solves the following
VIP

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (116)

Proof. In Theorem 24, we put 𝐵
1
= 𝐼 − 𝑉, 𝐵

2
= 0, and 𝜇

1
= 𝑙,

where 0 < 𝑙 < 𝛼/𝜅
2. Then, GSVI (13) is equivalent to the VIP

of finding 𝑥∗ ∈ 𝐶 such that

⟨𝐵
1
𝑥
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (117)
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In this case, 𝐵
1
: 𝐶 → 𝑋 is 𝛼-inverse strongly accretive.

It is not hard to see that Fix(𝑉) = VI(𝐶, 𝐵
1
). As a matter of

fact, we have, for 𝑙 > 0,

𝑢 ∈ VI (𝐶, 𝐵
1
)

⇐⇒ ⟨𝐵
1
𝑢, 𝐽 (𝑦 − 𝑢)⟩ ≥ 0 ∀𝑦 ∈ 𝐶

⇐⇒ ⟨𝑢 − 𝑙𝐵
1
𝑢 − 𝑢, 𝐽 (𝑢 − 𝑦)⟩ ≥ 0 ∀𝑦 ∈ 𝐶

⇐⇒ 𝑢 = Π
𝐶
(𝑢 − 𝑙𝐵

1
𝑢)

⇐⇒ 𝑢 = Π
𝐶
(𝑢 − 𝑙𝑢 + 𝑙𝑉𝑢)

⇐⇒ ⟨𝑢 − 𝑙𝑢 + 𝑙𝑉𝑢 − 𝑢, 𝐽 (𝑢 − 𝑦)⟩ ≥ 0 ∀𝑦 ∈ 𝐶

⇐⇒ ⟨𝑢 − 𝑉𝑢, 𝐽 (𝑢 − 𝑦)⟩ ≤ 0 ∀𝑦 ∈ 𝐶

⇐⇒ 𝑢 = 𝑉𝑢

⇐⇒ 𝑢 ∈ Fix (𝑉) .

(118)

Accordingly, we know that 𝐹 = (⋂
∞

𝑖=0
Fix(𝑆
𝑖
)) ∩ Ω ∩

(⋂
∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)) = (⋂

∞

𝑖=0
Fix(𝑆
𝑖
))∩Fix(𝑉)∩ (⋂∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)),

and

Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑥
𝑛

= Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
) 𝑥
𝑛

= Π
𝐶
((1 − 𝑙) 𝑥

𝑛
+ 𝑙𝑉𝑥
𝑛
)

= ((1 − 𝑙) 𝐼 + 𝑙𝑉) 𝑥
𝑛
.

(119)

So, the scheme (42) reduces to (115). Therefore, the desired
result follows fromTheorem 24.

Here, we prove the following important lemmas which
will be used in the sequel.

Lemma 26. Let 𝐶 be a nonempty closed convex subset of a
smooth Banach space 𝑋 and let the mapping 𝐵

𝑖
: 𝐶 → 𝑋

be 𝜆
𝑖
-strictly pseudocontractive and 𝛼

𝑖
-strongly accretive with

𝛼
𝑖
+ 𝜆
𝑖
≥ 1 for 𝑖 = 1, 2. Then, for 𝜇

𝑖
∈ (0, 1] one has

(𝐼 − 𝜇
𝑖
𝐵
𝑖
) 𝑥 − (𝐼 − 𝜇

𝑖
𝐵
𝑖
) 𝑦



≤ {√
1 − 𝛼
𝑖

𝜆
𝑖

+ (1 − 𝜇
𝑖
) (1 +

1

𝜆
𝑖

)}
𝑥 − 𝑦

 ,

∀𝑥, 𝑦 ∈ 𝐶,

(120)

for 𝑖 = 1, 2. In particular, if 1−(𝜆
𝑖
/(1+𝜆

𝑖
))(1−√(1 − 𝛼

𝑖
)/𝜆
𝑖
) ≤

𝜇
𝑖
≤ 1, then 𝐼 − 𝜇

𝑖
𝐵
𝑖
is nonexpansive for 𝑖 = 1, 2.

Proof. Taking into account the 𝜆
𝑖
-strict pseudocontractivity

of 𝐵
𝑖
, we derive for every 𝑥, 𝑦 ∈ 𝐶

𝜆
𝑖

(𝐼 − 𝐵
𝑖
) 𝑥 − (𝐼 − 𝐵

𝑖
) 𝑦



2

≤ ⟨(𝐼 − 𝐵
𝑖
) 𝑥 − (𝐼 − 𝐵

𝑖
) 𝑦, 𝐽 (𝑥 − 𝑦)⟩

≤
(𝐼 − 𝐵

𝑖
) 𝑥 − (𝐼 − 𝐵

𝑖
) 𝑦



𝑥 − 𝑦
 ,

(121)

which implies that

(𝐼 − 𝐵
𝑖
) 𝑥 − (𝐼 − 𝐵

𝑖
) 𝑦

 ≤
1

𝜆
𝑖

𝑥 − 𝑦
 . (122)

Hence,
𝐵𝑖𝑥 − 𝐵

𝑖
𝑦
 ≤

(𝐼 − 𝐵
𝑖
) 𝑥 − (𝐼 − 𝐵

𝑖
) 𝑦

 +
𝑥 − 𝑦



≤ (1 +
1

𝜆
𝑖

)
𝑥 − 𝑦

 .

(123)

Utilizing the 𝛼
𝑖
-strong accretivity and 𝜆

𝑖
-strict pseudocon-

tractivity of 𝐵
𝑖
, we get

𝜆
𝑖

(𝐼 − 𝐵
𝑖
) 𝑥 − (𝐼 − 𝐵

𝑖
) 𝑦



2

≤
𝑥 − 𝑦



2

− ⟨𝐵
𝑖
𝑥 − 𝐵
𝑖
𝑦, 𝐽 (𝑥 − 𝑦)⟩

≤ (1 − 𝛼
𝑖
)
𝑥 − 𝑦



2

.

(124)

So, we have

(𝐼 − 𝐵
𝑖
) 𝑥 − (𝐼 − 𝐵

𝑖
) 𝑦

 ≤
√
1 − 𝛼
𝑖

𝜆
𝑖

𝑥 − 𝑦
 .

(125)

Therefore, for 𝜇
𝑖
∈ (0, 1] we have

(𝐼 − 𝜇
𝑖
𝐵
𝑖
) 𝑥 − (𝐼 − 𝜇

𝑖
𝐵
𝑖
) 𝑦



≤
(𝐼 − 𝐵

𝑖
) 𝑥 − (𝐼 − 𝐵

𝑖
) 𝑦

 + (1 − 𝜇
𝑖
)
𝐵𝑖𝑥 − 𝐵

𝑖
𝑦


≤ √
1 − 𝛼
𝑖

𝜆
𝑖

𝑥 − 𝑦
 + (1 − 𝜇

𝑖
) (1 +

1

𝜆
𝑖

)
𝑥 − 𝑦



= {√
1 − 𝛼
𝑖

𝜆
𝑖

+ (1 − 𝜇
𝑖
) (1 +

1

𝜆
𝑖

)}
𝑥 − 𝑦

 .

(126)

Since 1 − (𝜆
𝑖
/(1 + 𝜆

𝑖
))(1 − √(1 − 𝛼

𝑖
)/𝜆
𝑖
) ≤ 𝜇
𝑖
≤ 1, it follows

immediately that

√
1 − 𝛼
𝑖

𝜆
𝑖

+ (1 − 𝜇
𝑖
) (1 +

1

𝜆
𝑖

) ≤ 1. (127)

This implies that 𝐼 −𝜇
𝑖
𝐵
𝑖
is nonexpansive for 𝑖 = 1, 2.

Lemma 27. Let 𝐶 be a nonempty closed convex subset of a
smooth Banach space 𝑋. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶 and let the mapping 𝐵
𝑖
: 𝐶 → 𝑋

be 𝜆
𝑖
-strictly pseudocontractive and 𝛼

𝑖
-strongly accretive with

𝛼
𝑖
+𝜆
𝑖
≥ 1 for 𝑖 = 1, 2. Let𝐺 : 𝐶 → 𝐶 be the mapping defined

by

𝐺 (𝑥) = Π
𝐶
[Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥) − 𝜇

1
𝐵
1
Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)] ,

∀𝑥 ∈ 𝐶.

(128)

If 1−(𝜆
𝑖
/(1+𝜆

𝑖
))(1−√(1 − 𝛼

𝑖
)/𝜆
𝑖
) ≤ 𝜇
𝑖
≤ 1, then𝐺 : 𝐶 → 𝐶

is nonexpansive.
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Proof. According to Lemma 26, we know that 𝐼 − 𝜇
𝑖
𝐵
𝑖
is

nonexpansive for 𝑖 = 1, 2. Hence, for all 𝑥, 𝑦 ∈ 𝐶, we have

𝐺 (𝑥) − 𝐺 (𝑦)


=
Π𝐶 [Π𝐶 (𝑥 − 𝜇

2
𝐵
2
𝑥) − 𝜇

1
𝐵
1
Π
𝐶
(𝑥 − 𝜇

2
𝐵
2
𝑥)]

−Π
𝐶
[Π
𝐶
(𝑦 − 𝜇

2
𝐵
2
𝑦) − 𝜇

1
𝐵
1
Π
𝐶
(𝑦 − 𝜇

2
𝐵
2
𝑦)]



=
Π𝐶 (𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑥

−Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑦



≤
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑥

− (𝐼 − 𝜇
1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑦



≤
Π𝐶 (𝐼 − 𝜇

2
𝐵
2
) 𝑥 − Π

𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑦



≤
(𝐼 − 𝜇

2
𝐵
2
) 𝑥 − (𝐼 − 𝜇

2
𝐵
2
) 𝑦



≤
𝑥 − 𝑦

 .

(129)

This shows that 𝐺 : 𝐶 → 𝐶 is nonexpansive. This completes
the proof.

Theorem 28. Let 𝐶 be a nonempty closed convex subset of
a uniformly convex Banach space 𝑋 which has a uniformly
Gateaux differentiable norm. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let {𝜌
𝑛
}
∞

𝑛=0
be a sequence of positive

numbers in (0, 𝑏] for some 𝑏 ∈ (0, 1) and 𝐴
𝑖
: 𝐶 → 𝑋

be 𝜉
𝑖
-strictly pseudocontractive and �̂�

𝑖
-strongly accretive with

𝜉
𝑖
+ �̂�
𝑖
≥ 1 for each 𝑖 = 0, 1, . . .. Define a mapping 𝐺

𝑖
: 𝐶 → 𝐶

by Π
𝐶
(𝐼 − 𝜆

𝑖
𝐴
𝑖
)𝑥 = 𝐺

𝑖
𝑥 for all 𝑥 ∈ 𝐶 and 𝑖 = 0, 1, . . .,

where 1 − (𝜉
𝑖
/(1 + 𝜉

𝑖
))(1 − √(1 − �̂�

𝑖
)/𝜉
𝑖
) ≤ 𝜆

𝑖
≤ 1 for all

𝑖 = 0, 1, . . .. Let 𝐵
𝑛
: 𝐶 → 𝐶 be the 𝑊-mapping generated

by 𝐺
𝑛
, 𝐺
𝑛−1

, . . . , 𝐺
0
and 𝜌

𝑛
, 𝜌
𝑛−1

, . . . , 𝜌
0
. Let the mapping 𝐵

𝑖
:

𝐶 → 𝑋 𝜁
𝑖
-strictly pseudocontractive and 𝛽

𝑖
-strongly accretive

with 𝜁
𝑖
+ 𝛽
𝑖
≥ 1 for 𝑖 = 1, 2. Let 𝑓 : 𝐶 → 𝐶 be a

contractionwith coefficient 𝜌 ∈ (0, 1). Let {𝑆
𝑖
}
∞

𝑖=0
be a countable

family of nonexpansive mappings of 𝐶 into itself such that 𝐹 =

(⋂
∞

𝑖=0
Fix(𝑆
𝑖
)) ∩ Ω ∩ (⋂

∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)) ̸= 0, whereΩ is the fixed

point set of the mapping 𝐺 = Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) with

1 − (𝜁
𝑖
/(1 + 𝜁

𝑖
))(1 − √(1 − 𝛽

𝑖
)/𝜁
𝑖
) ≤ 𝜇

𝑖
≤ 1 for 𝑖 = 1, 2. For

arbitrarily given 𝑥
0
∈ 𝐶, let {𝑥

𝑛
} be the sequence generated by

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝜎
𝑛
𝐺𝑥
𝑛
+ (1 − 𝛼

𝑛
− 𝜎
𝑛
) 𝑦
𝑛
, ∀𝑛 ≥ 0,

(130)

where {𝜎
𝑛
}, {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, and {𝛿

𝑛
} are the sequences in [0, 1]

such that 𝛽
𝑛
+𝛾
𝑛
+𝛿
𝑛
= 1 and 𝛼

𝑛
+𝜎
𝑛
≤ 1 for all 𝑛 ≥ 0. Suppose

that the following conditions hold:

(i) ∑∞
𝑛=0

𝛼
𝑛
= ∞ and 0 ≤ 𝛼

𝑛
+ 𝜎
𝑛
≤ 1 − 𝜌, for all 𝑛 ≥ 𝑛

0

for some integer 𝑛
0
≥ 0;

(ii) lim inf
𝑛→∞

𝜎
𝑛

> 0, lim inf
𝑛→∞

𝛾
𝑛

> 0 and
lim inf

𝑛→∞
𝛿
𝑛
> 0;

(iii) lim
𝑛→∞

(|𝛼
𝑛+1

/(1−(1−𝛼
𝑛+1

−𝜎
𝑛+1

)𝛽
𝑛+1

)−(𝛼
𝑛
/(1−(1−

𝛼
𝑛
−𝜎
𝑛
)𝛽
𝑛
))|+|𝜎

𝑛+1
/(1−(1−𝛼

𝑛+1
−𝜎
𝑛+1

)𝛽
𝑛+1

)−(𝜎
𝑛
/(1−

(1−𝛼
𝑛
−𝜎
𝑛
)𝛽
𝑛
))|+ |𝛿

𝑛+1
/(1−𝛽

𝑛+1
)−𝛿
𝑛
/(1−𝛽

𝑛
)|) = 0;

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Assume that∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1

𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded

subset 𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined
by 𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then there hold the following:

(I) lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0;

(II) 𝑥
𝑛
→ 𝑞 ⇔ 𝛼

𝑛
(𝑓(𝑥
𝑛
) − 𝑥
𝑛
) → 0 provided 𝛽

𝑛
≡ 𝛽 for

some fixed 𝛽 ∈ (0, 1), where 𝑞 ∈ 𝐹 solves the following
VIP

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (131)

Proof. First of all, take a fixed 𝑝 ∈ 𝐹 arbitrarily. Then we
obtain 𝑝 = 𝐺𝑝, 𝑝 = 𝐵

𝑛
𝑝 and 𝑆

𝑛
𝑝 = 𝑝 for all 𝑛 ≥ 0. By

Lemma 27, we get from (130)
𝑦𝑛 − 𝑝



≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝
 + 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


≤ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝛾
𝑛

𝑥𝑛 − 𝑝
 + 𝛿
𝑛

𝑥𝑛 − 𝑝


=
𝑥𝑛 − 𝑝

 ,

(132)

and hence
𝑥𝑛+1 − 𝑝



≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝

 + 𝜎
𝑛

𝐺𝑥𝑛 − 𝑝


+ (1 − 𝛼
𝑛
− 𝜎
𝑛
)
𝑦𝑛 − 𝑝



≤ 𝛼
𝑛
(
𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)

 +
𝑓 (𝑝) − 𝑝

)

+ 𝜎
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛼

𝑛
− 𝜎
𝑛
)
𝑥𝑛 − 𝑝



≤ 𝛼
𝑛
(𝜌

𝑥𝑛 − 𝑝
 +

𝑓 (𝑝) − 𝑝
)

+ 𝜎
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛼

𝑛
− 𝜎
𝑛
)
𝑥𝑛 − 𝑝



= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑝
 + 𝛼
𝑛

𝑓 (𝑝) − 𝑝


= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑝
 + 𝛼
𝑛
(1 − 𝜌)

𝑓 (𝑝) − 𝑝


1 − 𝜌

≤ max{𝑥𝑛 − 𝑝
 ,

𝑓 (𝑝) − 𝑝


1 − 𝜌
} .

(133)

By induction, we have

𝑥𝑛 − 𝑝
 ≤ max{𝑥0 − 𝑝

 ,

𝑓 (𝑝) − 𝑝


1 − 𝜌
} , ∀𝑛 ≥ 0,

(134)

which implies that {𝑥
𝑛
} is bounded and so are the sequences

{𝑦
𝑛
}, {𝐺𝑥

𝑛
}, and {𝑓(𝑥

𝑛
)}.
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Let us show that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = 0. (135)

As a matter of fact, put 𝜃
𝑛
= (1 − 𝛼

𝑛
− 𝜎
𝑛
)𝛽
𝑛
, for all 𝑛 ≥ 0.

Then, it follows from (i) and (iv) that

𝛽
𝑛
≥ 𝜃
𝑛
= (1 − 𝛼

𝑛
− 𝜎
𝑛
) 𝛽
𝑛
≥ (1 − (1 − 𝜌)) 𝛽

𝑛
= 𝜌𝛽
𝑛
,

∀𝑛 ≥ 𝑛
0
,

(136)

and hence

0 < lim inf
𝑛→∞

𝜃
𝑛
≤ lim sup
𝑛→∞

𝜃
𝑛
< 1. (137)

Define

𝑥
𝑛+1

= 𝜃
𝑛
𝑥
𝑛
+ (1 − 𝜃

𝑛
) 𝑧
𝑛
. (138)

Observe that

𝑧
𝑛+1

− 𝑧
𝑛

=
𝑥
𝑛+2

− 𝜃
𝑛+1

𝑥
𝑛+1

1 − 𝜃
𝑛+1

−
𝑥
𝑛+1

− 𝜃
𝑛
𝑥
𝑛

1 − 𝜃
𝑛

= (𝛼
𝑛+1

𝑓 (𝑥
𝑛+1

) + 𝜎
𝑛+1

𝐺𝑥
𝑛+1

+ (1 − 𝛼
𝑛+1

− 𝜎
𝑛+1

) 𝑦
𝑛+1

− 𝜃
𝑛+1

𝑥
𝑛+1

)

× (1 − 𝜃
𝑛+1

)
−1

−
𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝜎
𝑛
𝐺𝑥
𝑛
+ (1 − 𝛼

𝑛
− 𝜎
𝑛
) 𝑦
𝑛
− 𝜃
𝑛
𝑥
𝑛

1 − 𝜃
𝑛

= (
𝛼
𝑛+1

𝑓 (𝑥
𝑛+1

+ 𝜎
𝑛+1

𝐺𝑥
𝑛+1

)

1 − 𝜃
𝑛+1

−
𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝜎
𝑛
𝐺𝑥
𝑛

1 − 𝜃
𝑛

)

−
(1 − 𝛼

𝑛
− 𝜎
𝑛
) [𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
] − 𝜃
𝑛
𝑥
𝑛

1 − 𝜃
𝑛

+ (1 − 𝛼
𝑛+1

− 𝜎
𝑛+1

)

× [𝛽
𝑛+1

𝑥
𝑛+1

+ 𝛾
𝑛+1

𝐵
𝑛+1

𝑥
𝑛+1

+ 𝛿
𝑛+1

𝑆
𝑛+1

𝐺𝑥
𝑛+1

]

− 𝜃
𝑛+1

𝑥
𝑛+1

× (1 − 𝜃
𝑛+1

)
−1

= (
𝛼
𝑛+1

𝑓 (𝑥
𝑛+1

) + 𝜎
𝑛+1

𝐺𝑥
𝑛+1

1 − 𝜃
𝑛+1

−
𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝜎
𝑛
𝐺𝑥
𝑛

1 − 𝜃
𝑛

)

+
1 − 𝛼
𝑛+1

− 𝜎
𝑛+1

1 − 𝜃
𝑛+1

(𝛾
𝑛+1

𝐵
𝑛+1

𝑥
𝑛+1

+ 𝛿
𝑛+1

𝑆
𝑛+1

𝐺𝑥
𝑛+1

)

−
1 − 𝛼
𝑛
− 𝜎
𝑛

1 − 𝜃
𝑛

(𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
)

= (
𝛼
𝑛+1

𝑓 (𝑥
𝑛+1

) + 𝜎
𝑛+1

𝐺𝑥
𝑛+1

1 − 𝜃
𝑛+1

−
𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝜎
𝑛
𝐺𝑥
𝑛

1 − 𝜃
𝑛

)

+
(1 − 𝛼

𝑛+1
− 𝜎
𝑛+1

) (1 − 𝛽
𝑛+1

)

1 − 𝜃
𝑛+1

× [
𝛾
𝑛+1

𝐵
𝑛+1

𝑥
𝑛+1

+ 𝛿
𝑛+1

𝑆
𝑛+1

𝐺𝑥
𝑛+1

1 − 𝛽
𝑛+1

−
𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

1 − 𝛽
𝑛

]

+ [
(1 − 𝛼

𝑛+1
− 𝜎
𝑛+1

) (1 − 𝛽
𝑛+1

)

1 − 𝜃
𝑛+1

−
(1 − 𝛼

𝑛
− 𝜎
𝑛
) (1 − 𝛽

𝑛
)

1 − 𝜃
𝑛

]

×
𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

1 − 𝛽
𝑛

=
𝛼
𝑛+1

1 − 𝜃
𝑛+1

(𝑓 (𝑥
𝑛+1

) − 𝑓 (𝑥
𝑛
))

+
𝜎
𝑛+1

1 − 𝜃
𝑛+1

(𝐺𝑥
𝑛+1

− 𝐺𝑥
𝑛
)

+ (
𝛼
𝑛+1

1 − 𝜃
𝑛+1

−
𝛼
𝑛

1 − 𝜃
𝑛

)𝑓 (𝑥
𝑛
)

+ (
𝜎
𝑛+1

1 − 𝜃
𝑛+1

−
𝜎
𝑛

1 − 𝜃
𝑛

)𝐺𝑥
𝑛

+
(1 − 𝛼

𝑛+1
− 𝜎
𝑛+1

) (1 − 𝛽
𝑛+1

)

1 − 𝜃
𝑛+1

× [
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(𝐵
𝑛+1

𝑥
𝑛+1

− 𝐵
𝑛
𝑥
𝑛
)

+ (
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

)𝐵
𝑛
𝑥
𝑛

+
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(𝑆
𝑛+1

𝐺𝑥
𝑛+1

− 𝑆
𝑛
𝐺𝑥
𝑛
)

+ (
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

) 𝑆
𝑛
𝐺𝑥
𝑛
]

− (
𝛼
𝑛+1

+ 𝜎
𝑛+1

1 − 𝜃
𝑛+1

−
𝛼
𝑛
+ 𝜎
𝑛

1 − 𝜃
𝑛

)
𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

=
𝛼
𝑛+1

1 − 𝜃
𝑛+1

(𝑓 (𝑥
𝑛+1

) − 𝑓 (𝑥
𝑛
))

+
𝜎
𝑛+1

1 − 𝜃
𝑛+1

(𝐺𝑥
𝑛+1

− 𝐺𝑥
𝑛
)

+ (
𝛼
𝑛+1

1 − 𝜃
𝑛+1

−
𝛼
𝑛

1 − 𝜃
𝑛

)(𝑓 (𝑥
𝑛
) −

𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

)

+ (
𝜎
𝑛+1

1 − 𝜃
𝑛+1

−
𝜎
𝑛

1 − 𝜃
𝑛

)(𝐺𝑥
𝑛
−
𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

)

+
1 − 𝛼
𝑛+1

− 𝜎
𝑛+1

− 𝜃
𝑛+1

1 − 𝜃
𝑛+1
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× [
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(𝐵
𝑛+1

𝑥
𝑛+1

− 𝐵
𝑛
𝑥
𝑛
)

+ (
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

)𝐵
𝑛
𝑥
𝑛

+
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(𝑆
𝑛+1

𝐺𝑥
𝑛+1

− 𝑆
𝑛
𝐺𝑥
𝑛
)

+ (
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

) 𝑆
𝑛
𝐺𝑥
𝑛
] ,

(139)

and hence
𝑧𝑛+1 − 𝑧

𝑛



≤
𝛼
𝑛+1

1 − 𝜃
𝑛+1

𝑓 (𝑥
𝑛+1

) − 𝑓 (𝑥
𝑛
)


+
𝜎
𝑛+1

1 − 𝜃
𝑛+1

𝐺𝑥𝑛+1 − 𝐺𝑥
𝑛



+



𝛼
𝑛+1

1 − 𝜃
𝑛+1

−
𝛼
𝑛

1 − 𝜃
𝑛





𝑓 (𝑥
𝑛
) −

𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛



+



𝜎
𝑛+1

1 − 𝜃
𝑛+1

−
𝜎
𝑛

1 − 𝜃
𝑛





𝐺𝑥
𝑛
−
𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛



+
1 − 𝛼
𝑛+1

− 𝜎
𝑛+1

− 𝜃
𝑛+1

1 − 𝜃
𝑛+1

× [
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

𝐵𝑛+1𝑥𝑛+1 − 𝐵
𝑛
𝑥
𝑛



+



𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛



𝐵𝑛𝑥𝑛


+
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

𝑆𝑛+1𝐺𝑥𝑛+1 − 𝑆
𝑛
𝐺𝑥
𝑛



+



𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛



𝑆𝑛𝐺𝑥𝑛
] .

(140)

On the other hand, repeating the same arguments as those of
(55) and (56) in the proof of Theorem 24, we can get
𝑆𝑛+1𝐺𝑥𝑛+1 − 𝑆

𝑛
𝐺𝑥
𝑛

 ≤
𝑥𝑛+1 − 𝑥

𝑛

 +
𝑆𝑛+1𝐺𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

 ,

𝐵𝑛+1𝑥𝑛+1 − 𝐵
𝑛
𝑥
𝑛

 ≤
𝑥𝑛+1 − 𝑥

𝑛

 +𝑀
0

𝑛

∏

𝑖=0

𝜆
𝑖
,

(141)

for some constant𝑀
0
> 0. Utilizing (140)-(141), we have

𝑧𝑛+1 − 𝑧
𝑛



≤
𝛼
𝑛+1

1 − 𝜃
𝑛+1

𝜌
𝑥𝑛+1 − 𝑥

𝑛



+
𝜎
𝑛+1

1 − 𝜃
𝑛+1

𝑥𝑛+1 − 𝑥
𝑛



+



𝛼
𝑛+1

1 − 𝜃
𝑛+1

−
𝛼
𝑛

1 − 𝜃
𝑛



× (
𝑓 (𝑥
𝑛
)
 +

𝐵𝑛𝑥𝑛
 +

𝑆𝑛𝐺𝑥𝑛
)

+



𝜎
𝑛+1

1 − 𝜃
𝑛+1

−
𝜎
𝑛

1 − 𝜃
𝑛



× (
𝐺𝑥𝑛

 +
𝐵𝑛𝑥𝑛

 +
𝑆𝑛𝐺𝑥𝑛

)

+
1 − 𝛼
𝑛+1

− 𝜎
𝑛+1

− 𝜃
𝑛+1

1 − 𝜃
𝑛+1

× [
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(
𝑥𝑛+1 − 𝑥

𝑛

 + 𝑀
0

𝑛

∏

𝑖=0

𝜆
𝑖
)

+



𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛



𝐵𝑛𝑥𝑛


+
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

(
𝑥𝑛+1 − 𝑥

𝑛

 +
𝑆𝑛+1𝐺𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

)

+



𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛



𝑆𝑛𝐺𝑥𝑛
 ]

=
1 − 𝛼
𝑛+1

(1 − 𝜌) − 𝜃
𝑛+1

1 − 𝜃
𝑛+1

𝑥𝑛+1 − 𝑥
𝑛



+
1 − 𝛼
𝑛+1

− 𝜎
𝑛+1

− 𝜃
𝑛+1

1 − 𝜃
𝑛+1

× [
𝛾
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

𝑀
0

𝑛

∏

𝑖=0

𝜆
𝑖
+



𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

−
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛



× (
𝐵𝑛𝑥𝑛

 +
𝑆𝑛𝐺𝑥𝑛

)

+
𝛿
𝑛+1

𝛾
𝑛+1

+ 𝛿
𝑛+1

𝑆𝑛+1𝐺𝑥𝑛 − 𝑆
𝑛
𝐺𝑥
𝑛

 ]

+



𝛼
𝑛+1

1 − 𝜃
𝑛+1

−
𝛼
𝑛

1 − 𝜃
𝑛



× (
𝑓 (𝑥
𝑛
)
 +

𝐵𝑛𝑥𝑛
 +

𝑆𝑛𝐺𝑥𝑛
)

+



𝜎
𝑛+1

1 − 𝜃
𝑛+1

−
𝜎
𝑛

1 − 𝜃
𝑛



× (
𝐺𝑥𝑛

 +
𝐵𝑛𝑥𝑛

 +
𝑆𝑛𝐺𝑥𝑛

)

≤
𝑥𝑛+1 − 𝑥

𝑛



+ 𝑀(

𝑛

∏

𝑖=0

𝜆
𝑖
+



𝛿
𝑛+1

1 − 𝛽
𝑛+1

−
𝛿
𝑛

1 − 𝛽
𝑛



+



𝛼
𝑛+1

1 − 𝜃
𝑛+1

−
𝛼
𝑛

1 − 𝜃
𝑛



+



𝜎
𝑛+1

1 − 𝜃
𝑛+1

−
𝜎
𝑛

1 − 𝜃
𝑛



)

+
𝑆𝑛+1𝐺𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

 ,

(142)
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where sup
𝑛≥0

{‖𝑓(𝑥
𝑛
)‖ + ‖𝐺𝑥

𝑛
‖ + ‖𝐵

𝑛
𝑥
𝑛
‖ + ‖𝑆

𝑛
𝐺𝑥
𝑛
‖ + 𝑀

0
} ≤

𝑀 for some 𝑀 > 0. So, from (142), condition (iii), and the
assumption on {𝑆

𝑛
} it follows that (noting that 0 < 𝜆

𝑖
≤ 𝑏 < 1,

for all 𝑖 ≥ 0)

lim sup
𝑛→∞

(
𝑧𝑛+1 − 𝑧

𝑛

 −
𝑥𝑛+1 − 𝑥

𝑛

) ≤ 0. (143)

Consequently, by Lemma 20, we have

lim
𝑛→∞

𝑧𝑛 − 𝑥
𝑛

 = 0. (144)

It follows from (137) and (138) that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = lim
𝑛→∞

(1 − 𝜃
𝑛
)
𝑧𝑛 − 𝑥

𝑛

 = 0. (145)

Next, we show that ‖𝑥
𝑛
− 𝐺𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, in terms of Lemma 11, from (130), we have

𝑦𝑛 − 𝑝


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛

𝑥𝑛 − 𝑝


2

=
𝑥𝑛 − 𝑝



2

,

𝑥𝑛+1 − 𝑝


2

=
𝛼𝑛 (𝑥𝑛 − 𝑝) + 𝜎

𝑛
(𝐺𝑥
𝑛
− 𝑝)

+ (1 − 𝛼
𝑛
− 𝜎
𝑛
) (𝑦
𝑛
− 𝑝)

+ 𝛼
𝑛
(𝑓 (𝑥
𝑛
) − 𝑥
𝑛
)


2

≤ [
𝛼𝑛 (𝑥𝑛 − 𝑝) + 𝜎

𝑛
(𝐺𝑥
𝑛
− 𝑝) + (1 − 𝛼

𝑛
− 𝜎
𝑛
) (𝑦
𝑛
− 𝑝)



+
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)
]
2

=
𝛼𝑛 (𝑥𝑛 − 𝑝) + 𝜎

𝑛
(𝐺𝑥
𝑛
− 𝑝) + (1 − 𝛼

𝑛
− 𝜎
𝑛
) (𝑦
𝑛
− 𝑝)



2

+
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)


× [2
𝛼𝑛 (𝑥𝑛 − 𝑝) + 𝜎

𝑛
(𝐺𝑥
𝑛
− 𝑝)

+ (1 − 𝛼
𝑛
− 𝜎
𝑛
) (𝑦
𝑛
− 𝑝)

 +
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)
]

=



𝛼
𝑛
(𝑥
𝑛
− 𝑝) + (1 − 𝛼

𝑛
)

× [
𝜎
𝑛

1 − 𝛼
𝑛

(𝐺𝑥
𝑛
− 𝑝) +

1 − 𝛼
𝑛
− 𝜎
𝑛

1 − 𝛼
𝑛

(𝑦
𝑛
− 𝑝)]



2

+
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)


× [2
𝛼𝑛 (𝑥𝑛 − 𝑝) + 𝜎

𝑛
(𝐺𝑥
𝑛
− 𝑝)

+ (1 − 𝛼
𝑛
− 𝜎
𝑛
) (𝑦
𝑛
− 𝑝)



+
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)
]

≤ 𝛼
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛼
𝑛
)



𝜎
𝑛

1 − 𝛼
𝑛

(𝐺𝑥
𝑛
− 𝑝) +

1 − 𝛼
𝑛
− 𝜎
𝑛

1 − 𝛼
𝑛

(𝑦
𝑛
− 𝑝)



2

+
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)


× [2 (𝛼
𝑛

𝑥𝑛 − 𝑝
 + 𝜎
𝑛

𝐺𝑥𝑛 − 𝑝


+ (1 − 𝛼
𝑛
− 𝜎
𝑛
)
𝑦𝑛 − 𝑝

) +
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)
]

≤ 𝛼
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛼
𝑛
)

× [
𝜎
𝑛

1 − 𝛼
𝑛

𝐺𝑥𝑛 − 𝑝


2

+
1 − 𝛼
𝑛
− 𝜎
𝑛

1 − 𝛼
𝑛

𝑦𝑛 − 𝑝


2

−
𝜎
𝑛
(1 − 𝛼

𝑛
− 𝜎
𝑛
)

(1 − 𝛼
𝑛
)
2

𝑔 (
𝐺𝑥𝑛 − 𝑦

𝑛

)]

+
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)


× [2 (𝛼
𝑛

𝑥𝑛 − 𝑝
 + 𝜎
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝛼

𝑛
− 𝜎
𝑛
)
𝑥𝑛 − 𝑝

)

+
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)
]

≤ 𝛼
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝛼
𝑛
)

× [
𝜎
𝑛

1 − 𝛼
𝑛

𝑥𝑛 − 𝑝


2

+
1 − 𝛼
𝑛
− 𝜎
𝑛

1 − 𝛼
𝑛

𝑥𝑛 − 𝑝


2

−
𝜎
𝑛
(1 − 𝛼

𝑛
− 𝜎
𝑛
)

(1 − 𝛼
𝑛
)
2

𝑔 (
𝐺𝑥𝑛 − 𝑦

𝑛

)]

+
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)
 (2

𝑥𝑛 − 𝑝
 +

𝛼𝑛 (𝑓 (𝑥
𝑛
) − 𝑥
𝑛
)
)

=
𝑥𝑛 − 𝑝



2

−
𝜎
𝑛
(1 − 𝛼

𝑛
− 𝜎
𝑛
)

1 − 𝛼
𝑛

𝑔 (
𝐺𝑥𝑛 − 𝑦

𝑛

)

+
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)
 (2

𝑥𝑛 − 𝑝
 +

𝛼𝑛 (𝑓 (𝑥
𝑛
) − 𝑥
𝑛
)
) .

(146)

Then, it immediately follows from 0 ≤ 𝛼
𝑛
+𝜎
𝑛
≤ 1−𝜌, for

all 𝑛 ≥ 𝑛
0
that

𝜌𝜎
𝑛
𝑔 (

𝐺𝑥𝑛 − 𝑦
𝑛

)

≤
𝜎
𝑛
(1 − 𝛼

𝑛
− 𝜎
𝑛
)

1 − 𝛼
𝑛

𝑔 (
𝐺𝑥𝑛 − 𝑦

𝑛

)

≤
𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

+
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)
 (2

𝑥𝑛 − 𝑝
 +

𝛼𝑛 (𝑓 (𝑥
𝑛
) − 𝑥
𝑛
)
)
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≤ (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)
𝑥𝑛 − 𝑥

𝑛+1



+
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)


× (2
𝑥𝑛 − 𝑝

 +
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)
) ,

(147)

for all 𝑛 ≥ 𝑛
0
. Since ‖𝛼

𝑛
(𝑓(𝑥
𝑛
) − 𝑥
𝑛
)‖ → 0 and {𝑥

𝑛
} is

bounded, we deduce from (145) and condition (ii) that

lim
𝑛→∞

𝑔 (
𝐺𝑥𝑛 − 𝑦

𝑛

) = 0. (148)

Utilizing the properties of 𝑔, we have

lim
𝑛→∞

𝐺𝑥𝑛 − 𝑦
𝑛

 = 0. (149)

Also, from (130) we have

𝑥
𝑛+1

− 𝑥
𝑛

= 𝛼
𝑛
(𝑓 (𝑥
𝑛
) − 𝑥
𝑛
) + 𝜎
𝑛
(𝐺𝑥
𝑛
− 𝑥
𝑛
)

+ (1 − 𝛼
𝑛
− 𝜎
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

= 𝛼
𝑛
(𝑓 (𝑥
𝑛
) − 𝑥
𝑛
) + 𝜎
𝑛
(𝐺𝑥
𝑛
− 𝑦
𝑛
+ 𝑦
𝑛
− 𝑥
𝑛
)

+ (1 − 𝛼
𝑛
− 𝜎
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)

= 𝛼
𝑛
(𝑓 (𝑥
𝑛
) − 𝑥
𝑛
) + 𝜎
𝑛
(𝐺𝑥
𝑛
− 𝑦
𝑛
)

+ (1 − 𝛼
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
) ,

(150)

which hence leads to
𝜌
𝑦𝑛 − 𝑥

𝑛



≤ (1 − 𝛼
𝑛
− 𝜎
𝑛
)
𝑦𝑛 − 𝑥

𝑛



≤ (1 − 𝛼
𝑛
)
𝑦𝑛 − 𝑥

𝑛



=
𝑥𝑛+1 − 𝑥

𝑛
− 𝛼
𝑛
(𝑓 (𝑥
𝑛
) − 𝑥
𝑛
) − 𝜎
𝑛
(𝐺𝑥
𝑛
− 𝑦
𝑛
)


≤
𝑥𝑛+1 − 𝑥

𝑛

 +
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)
 + 𝜎
𝑛

𝐺𝑥𝑛 − 𝑦
𝑛



≤
𝑥𝑛+1 − 𝑥

𝑛

 +
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑥
𝑛
)
 +

𝐺𝑥𝑛 − 𝑦
𝑛

 .

(151)

So, it is easy to see from (145), (149), and ‖𝛼
𝑛
(𝑓(𝑥
𝑛
) − 𝑥
𝑛
)‖ →

0 that

lim
𝑛→∞

𝑦𝑛 − 𝑥
𝑛

 = 0. (152)

We note that
𝐺𝑥𝑛 − 𝑥

𝑛

 ≤
𝐺𝑥𝑛 − 𝑦

𝑛

 +
𝑦𝑛 − 𝑥

𝑛

 . (153)

Therefore, from (149) and (152) it follows that

lim
𝑛→∞

𝐺𝑥𝑛 − 𝑥
𝑛

 = 0. (154)

Repeating the same arguments as those of (86), (89), and
(91) in the proof of Theorem 24, we can obtain

lim
𝑛→∞

𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

 = lim
𝑛→∞

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛



= lim
𝑛→∞

𝑥𝑛 − 𝑆𝑥
𝑛

 = 0.

(155)

Suppose that 𝛽
𝑛
≡ 𝛽 for some fixed 𝛽 ∈ (0, 1) such that 𝛽 +

𝛾
𝑛
+ 𝛿
𝑛
= 1 for all 𝑛 ≥ 0. Define a mapping 𝑉𝑥 = (1 − 𝜃

1
−

𝜃
2
)𝑆𝑥 + 𝜃

1
𝐵𝑥 + 𝜃

2
𝐺𝑥, where 𝜃

1
, 𝜃
2
∈ (0, 1) are two constants

with 𝜃
1
+ 𝜃
2
< 1. Then, by Lemmas 14 and 17, we have that

Fix(𝑉) = Fix(𝑆) ∩ Fix(𝐵) ∩ Fix(𝐺) = 𝐹. For each 𝑘 ≥ 1, let
{𝑝
𝑘
} be a unique element of 𝐶 such that

𝑝
𝑘
=
1

𝑘
𝑓 (𝑝
𝑘
) + (1 −

1

𝑘
)𝑉𝑝
𝑘
. (156)

From Lemma 13, we conclude that 𝑝
𝑘
→ 𝑞 ∈ Fix(𝑉) = 𝐹 as

𝑘 → ∞. Observe that for every 𝑛, 𝑘

𝑦𝑛 − 𝐵𝑝
𝑘



≤ 𝛽
𝑥𝑛 − 𝐵𝑝

𝑘

 + 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝐵𝑝
𝑘



+ 𝛿
𝑛
(
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

 +
𝐵𝑛𝑥𝑛 − 𝐵𝑝

𝑘

)

= 𝛽
𝑥𝑛 − 𝐵𝑝

𝑘

 + (1 − 𝛽)
𝐵𝑛𝑥𝑛 − 𝐵𝑝

𝑘



+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

 ,

(157)

and hence

𝑥𝑛+1 − 𝐵𝑝
𝑘



≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝐵𝑝

𝑘

 + 𝜎
𝑛

𝐺𝑥𝑛 − 𝐵𝑝
𝑘



+ (1 − 𝛼
𝑛
− 𝜎
𝑛
)
𝑦𝑛 − 𝐵𝑝

𝑘



≤ 𝛼
𝑛
(
𝑓 (𝑥
𝑛
) − 𝑥
𝑛

 +
𝑥𝑛 − 𝐵𝑝

𝑘

)

+ 𝜎
𝑛
(
𝐺𝑥𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝐵𝑝

𝑘

) + (1 − 𝛼
𝑛
− 𝜎
𝑛
)

× [𝛽
𝑥𝑛 − 𝐵𝑝

𝑘

 + (1 − 𝛽)
𝐵𝑛𝑥𝑛 − 𝐵𝑝

𝑘



+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

]

≤ 𝛼
𝑛
(
𝑓 (𝑥
𝑛
) − 𝑥
𝑛

 +
𝑥𝑛 − 𝐵𝑝

𝑘

)

+ 𝜎
𝑛
(
𝐺𝑥𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝐵𝑝

𝑘

) + (1 − 𝛼
𝑛
− 𝜎
𝑛
)

× [𝛽
𝑥𝑛 − 𝐵𝑝

𝑘



+ (1 − 𝛽) (
𝐵𝑛𝑥𝑛 − 𝐵

𝑛
𝑝
𝑘

 +
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘

)

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

]

≤ 𝛼
𝑛
(
𝑓 (𝑥
𝑛
) − 𝑥
𝑛

 +
𝑥𝑛 − 𝐵𝑝

𝑘

)

+ 𝜎
𝑛
(
𝐺𝑥𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝐵𝑝

𝑘

) + (1 − 𝛼
𝑛
− 𝜎
𝑛
)

× [𝛽
𝑥𝑛 − 𝐵𝑝

𝑘

 + (1 − 𝛽) (
𝑥𝑛 − 𝑝

𝑘

 +
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘

)

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

]

= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑥
𝑛

 + 𝜎
𝑛

𝐺𝑥𝑛 − 𝑥
𝑛



+ [𝛽 + (𝛼
𝑛
+ 𝜎
𝑛
) (1 − 𝛽)]

𝑥𝑛 − 𝐵𝑝
𝑘



+ (1 − 𝛼
𝑛
− 𝜎
𝑛
) (1 − 𝛽)

𝑥𝑛 − 𝑝
𝑘

 + (1 − 𝛼
𝑛
− 𝜎
𝑛
)

× [(1 − 𝛽)
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘

 + 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

]
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≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑥
𝑛

 + 𝜎
𝑛

𝐺𝑥𝑛 − 𝑥
𝑛



+ [𝛽 + (𝛼
𝑛
+ 𝜎
𝑛
) (1 − 𝛽)]

× (
𝑥𝑛 − 𝑥

𝑛+1

 +
𝑥𝑛+1 − 𝐵𝑝

𝑘

) + (1 − 𝛼
𝑛
− 𝜎
𝑛
) (1 − 𝛽)

× (
𝑥𝑛 − 𝑥

𝑛+1

 +
𝑥𝑛+1 − 𝑝

𝑘

) + (1 − 𝛼
𝑛
− 𝜎
𝑛
)

× [(1 − 𝛽)
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘

 + 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

]

= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑥
𝑛

 + 𝜎
𝑛

𝐺𝑥𝑛 − 𝑥
𝑛



+ [𝛽 + (𝛼
𝑛
+ 𝜎
𝑛
) (1 − 𝛽)]

𝑥𝑛+1 − 𝐵𝑝
𝑘



+ (1 − 𝛼
𝑛
− 𝜎
𝑛
) (1 − 𝛽)

𝑥𝑛+1 − 𝑝
𝑘

 + (1 − 𝛼
𝑛
− 𝜎
𝑛
)

× [(1 − 𝛽)
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘

 + 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

]

+
𝑥𝑛 − 𝑥

𝑛+1

 .

(158)

So, it immediately follows from 0 ≤ 𝛼
𝑛
≤ 1 − 𝜌, for all 𝑛 ≥ 𝑛

0

that
𝑥𝑛+1 − 𝐵𝑝

𝑘



≤
𝑥𝑛+1 − 𝑝

𝑘

 +
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘



+
1

(1 − 𝛼
𝑛
− 𝜎
𝑛
) (1 − 𝛽)

× (
𝛼𝑛 (𝑥𝑛 − 𝑓 (𝑥

𝑛
))
 + 𝜎
𝑛

𝐺𝑥𝑛 − 𝑥
𝑛



+
𝑥𝑛 − 𝑥

𝑛+1

) +
𝛿
𝑛

1 − 𝛽

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛



≤
𝑥𝑛+1 − 𝑝

𝑘

 +
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘



+
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

 +
1

𝜌 (1 − 𝛽)

× (
𝛼𝑛 (𝑥𝑛 − 𝑓 (𝑥

𝑛
))


+
𝐺𝑥𝑛 − 𝑥

𝑛

 +
𝑥𝑛 − 𝑥

𝑛+1

 )

=
𝑥𝑛+1 − 𝑝

𝑘

 + 𝜏
𝑛
, ∀𝑛 ≥ 𝑛

0
,

(159)

where 𝜃
𝑛

= ‖𝐵
𝑛
𝑝
𝑘
− 𝐵𝑝
𝑘
‖ + ‖𝑆

𝑛
𝐺𝑥
𝑛
− 𝐵
𝑛
𝑥
𝑛
‖ + 1/(𝜌(1 −

𝛽))(‖𝛼
𝑛
(𝑥
𝑛
− 𝑓(𝑥

𝑛
))‖ + ‖𝐺𝑥

𝑛
− 𝑥
𝑛
‖ + ‖𝑥

𝑛
− 𝑥
𝑛+1

‖). Since
lim
𝑛→∞

‖𝐵
𝑛
𝑝
𝑘
− 𝐵𝑝
𝑘
‖ = lim

𝑛→∞
‖𝑆
𝑛
𝐺𝑥
𝑛
− 𝐵
𝑛
𝑥
𝑛
‖ =

lim
𝑛→∞

‖𝛼
𝑛
(𝑥
𝑛
− 𝑓(𝑥

𝑛
))‖ = lim

𝑛→∞
‖𝐺𝑥
𝑛
− 𝑥
𝑛
‖ =

lim
𝑛→∞

‖𝑥
𝑛
− 𝑥
𝑛+1

‖ = 0, we know that 𝜏
𝑛
→ 0 as 𝑛 → ∞.

From (159), we obtain
𝑥𝑛+1 − 𝐵𝑝

𝑘



2

≤
𝑥𝑛+1 − 𝑝

𝑘



2

+ 𝜏
𝑛
(2
𝑥𝑛+1 − 𝑝

𝑘

 + 𝜏
𝑛
) ,

∀𝑛 ≥ 𝑛
0
.

(160)

For any Banach limit 𝜇, from (160) we derive

𝜇
𝑛

𝑥𝑛 − 𝐵𝑝
𝑘



2

= 𝜇
𝑛

𝑥𝑛+1 − 𝐵𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛+1 − 𝑝
𝑘



2

= 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

.

(161)

Repeating the same arguments as those of (99), in the proof
of Theorem 24, we can get

𝜇
𝑛

𝑥𝑛 − 𝐺𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

,

𝜇
𝑛

𝑥𝑛 − 𝑆𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

.

(162)

Utilizing (161) and (162), we deduce that

𝜇
𝑛

𝑥𝑛 − 𝑉𝑝
𝑘



2

≤ (1 − 𝜃
1
− 𝜃
2
) 𝜇
𝑛

𝑥𝑛 − 𝑆𝑝
𝑘



2

+ 𝜃
1
𝜇
𝑛

𝑥𝑛 − 𝐵𝑝
𝑘



2

+ 𝜃
2
𝜇
𝑛

𝑥𝑛 − 𝐺𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

.

(163)

Also, observe that

(1 −
1

𝑘
) (𝑥
𝑛
− 𝑉𝑝
𝑘
) = 𝑥
𝑛
− 𝑝
𝑘
−
1

𝑘
(𝑥
𝑛
− 𝑓 (𝑝

𝑘
)) . (164)

Repeating the same arguments as those of (106) in the proof
of Theorem 24, we can get

1

2𝑘
𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

≥ 𝜇
𝑛
⟨𝑓 (𝑝
𝑘
) − 𝑝
𝑘
, 𝐽 (𝑥
𝑛
− 𝑝
𝑘
)⟩ . (165)

Since 𝑝
𝑘
→ 𝑞 ∈ Fix(𝑉) = 𝐹 as 𝑘 → ∞, by the uniform

Gateaux differentiability of the norm of𝑋, we have

𝜇
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛
− 𝑞)⟩ ≤ 0. (166)

On the other hand, from (135) and the norm-to-weak∗
uniform continuity of 𝐽 on bounded subsets of 𝑋, it follows
that

lim
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛+1

− 𝑞)⟩ − ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

 = 0.

(167)

So, utilizing Lemma 18, we deduce from (166) and (167) that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩ ≤ 0, (168)

which, together with (135) and the norm-to-norm uniform
continuity of 𝐽 on bounded subsets of𝑋, implies that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛+1

− 𝑞)⟩ ≤ 0. (169)
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Finally, let us show that 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞. Utilizing

Lemma 8 (i), from (130) and the convexity of ‖ ⋅ ‖2, we get

𝑦𝑛 − 𝑞


2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑞


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑞


2

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑞


2

≤
𝑥𝑛 − 𝑞



2

,

(170)

𝑥𝑛+1 − 𝑞


2

=
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑞)) + 𝜎

𝑛
(𝐺𝑥
𝑛
− 𝑞)

+ (1 − 𝛼
𝑛
− 𝜎
𝑛
) (𝑦
𝑛
− 𝑞) + 𝛼

𝑛
(𝑓 (𝑞) − 𝑞)



2

≤
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑞)) + 𝜎

𝑛
(𝐺𝑥
𝑛
− 𝑞)

+ (1 − 𝛼
𝑛
− 𝜎
𝑛
) (𝑦
𝑛
− 𝑞)



2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛+1
− 𝑞)⟩

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑞)



2

+ 𝜎
𝑛

𝐺𝑥𝑛 − 𝑞


2

+ (1 − 𝛼
𝑛
− 𝜎
𝑛
)
𝑦𝑛 − 𝑞



2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛+1
− 𝑞)⟩

≤ 𝛼
𝑛
𝜌
𝑥𝑛 − 𝑞



2

+ 𝜎
𝑛

𝑥𝑛 − 𝑞


2

+ (1 − 𝛼
𝑛
− 𝜎
𝑛
)
𝑥𝑛 − 𝑞



2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛+1
− 𝑞)⟩

= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑞


2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛+1
− 𝑞)⟩

= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑞


2

+ 𝛼
𝑛
(1 − 𝜌)

2 ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛+1

− 𝑞)⟩

1 − 𝜌
.

(171)

Applying Lemma 7 to (171), we obtain that 𝑥
𝑛
→ 𝑞 as 𝑛 →

∞.
Conversely, if 𝑥

𝑛
→ 𝑞 ∈ 𝐹 as 𝑛 → ∞, then from (130) it

follows that
𝑦𝑛 − 𝑞

 ≤ 𝛽
𝑛

𝑥𝑛 − 𝑞
 + 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑞


+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑞
 ≤

𝑥𝑛 − 𝑞
 → 0

(172)

as 𝑛 → ∞; that is, 𝑦
𝑛
→ 𝑞. Again from (130) we obtain that

𝛼𝑛 (𝑓 (𝑥
𝑛
) − 𝑥
𝑛
)


=
𝑥𝑛+1 − 𝑥

𝑛
− 𝜎
𝑛
(𝐺𝑥
𝑛
− 𝑥
𝑛
) − (1 − 𝛼

𝑛
− 𝜎
𝑛
) (𝑦
𝑛
− 𝑥
𝑛
)


≤
𝑥𝑛+1 − 𝑥

𝑛

 + 𝜎
𝑛

𝐺𝑥𝑛 − 𝑥
𝑛

 + (1 − 𝛼
𝑛
− 𝜎
𝑛
)
𝑦𝑛 − 𝑥

𝑛



≤
𝑥𝑛+1 − 𝑞

 +
𝑥𝑛 − 𝑞

 + 𝜎
𝑛
(
𝐺𝑥𝑛 − 𝑞

 +
𝑥𝑛 − 𝑞

)

+ (1 − 𝛼
𝑛
− 𝜎
𝑛
) (
𝑦𝑛 − 𝑞

 +
𝑥𝑛 − 𝑞

)

≤
𝑥𝑛+1 − 𝑞

 +
𝑥𝑛 − 𝑞

 + 𝜎
𝑛
(
𝑥𝑛 − 𝑞

 +
𝑥𝑛 − 𝑞

)

+ (1 − 𝛼
𝑛
− 𝜎
𝑛
) (
𝑦𝑛 − 𝑞

 +
𝑥𝑛 − 𝑞

)

≤
𝑥𝑛+1 − 𝑞

 + 3
𝑥𝑛 − 𝑞

 +
𝑦𝑛 − 𝑞

 .

(173)

Since 𝑥
𝑛
→ 𝑞 and 𝑦

𝑛
→ 𝑞, we get 𝛼

𝑛
(𝑓(𝑥
𝑛
)−𝑥
𝑛
) → 0. This

completes the proof.

Corollary 29. Let 𝐶 be a nonempty closed convex subset of
a uniformly convex Banach space 𝑋 which has a uniformly
Gateaux differentiable norm. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let {𝜌
𝑛
}
∞

𝑛=0
be a sequence of positive

numbers in (0, 𝑏] for some 𝑏 ∈ (0, 1) and 𝐴
𝑖
: 𝐶 → 𝑋𝜉

𝑖
-

strictly pseudocontractive and �̂�
𝑖
-strongly accretive with 𝜉

𝑖
+

�̂�
𝑖
≥ 1 for each 𝑖 = 0, 1, . . .. Define a mapping 𝐺

𝑖
: 𝐶 → 𝐶

by Π
𝐶
(𝐼 − 𝜆

𝑖
𝐴
𝑖
)𝑥 = 𝐺

𝑖
𝑥 for all 𝑥 ∈ 𝐶 and 𝑖 = 0, 1, . . ., where

1−(𝜉
𝑖
/(1+𝜉

𝑖
))(1−√(1 − �̂�

𝑖
)/𝜉
𝑖
) ≤ 𝜆
𝑖
≤ 1 for all 𝑖 = 0, 1, . . .. Let

𝐵
𝑛
: 𝐶 → 𝐶 be the𝑊-mapping generated by 𝐺

𝑛
, 𝐺
𝑛−1

, . . . , 𝐺
0

and 𝜌
𝑛
, 𝜌
𝑛−1

, . . . , 𝜌
0
. Let 𝑉 : 𝐶 → 𝐶 be a self-mapping such

that 𝐼 − 𝑉 : 𝐶 → 𝑋 is 𝜆-strictly pseudocontractive and 𝛼-
strongly accretive with 𝛼 + 𝜆 ≥ 1. Let 𝑓 : 𝐶 → 𝐶 be a
contractionwith coefficient 𝜌 ∈ (0, 1). Let {𝑆

𝑖
}
∞

𝑖=0
be a countable

family of nonexpansive mappings of 𝐶 into itself such that 𝐹 =

(⋂
∞

𝑖=0
Fix(𝑆
𝑖
)) ∩ Fix(𝑉) ∩ (⋂

∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)) ̸= 0. For arbitrarily

given 𝑥
0
∈ 𝐶, let {𝑥

𝑛
} be the sequence generated by

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
((1 − 𝑙) 𝐼 + 𝑙𝑉) 𝑥

𝑛
,

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝜎
𝑛
((1 − 𝑙) 𝐼 + 𝑙𝑉) 𝑥

𝑛
+ (1 − 𝛼

𝑛
− 𝜎
𝑛
) 𝑦
𝑛
,

∀𝑛 ≥ 0,

(174)

where 1 − (𝜆/(1 + 𝜆))(1 − √(1 − 𝛼)/𝜆) ≤ 𝑙 ≤ 1 and {𝜎
𝑛
},

{𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, and {𝛿

𝑛
} are the sequences in [0, 1] such that

𝛽
𝑛
+ 𝛾
𝑛
+𝛿
𝑛
= 1 and 𝛼

𝑛
+𝜎
𝑛
≤ 1 for all 𝑛 ≥ 0. Suppose that the

following conditions hold:

(i) ∑∞
𝑛=0

𝛼
𝑛
= ∞ and 0 ≤ 𝛼

𝑛
+ 𝜎
𝑛
≤ 1 − 𝜌, for all 𝑛 ≥ 𝑛

0

for some integer 𝑛
0
≥ 0;

(ii) lim inf
𝑛→∞

𝜎
𝑛

> 0, lim inf
𝑛→∞

𝛾
𝑛

> 0 and
lim inf

𝑛→∞
𝛿
𝑛
> 0;

(iii) lim
𝑛→∞

(|𝛼
𝑛+1

/(1−(1−𝛼
𝑛+1

−𝜎
𝑛+1

)𝛽
𝑛+1

)−𝛼
𝑛
/(1−(1−

𝛼
𝑛
−𝜎
𝑛
)𝛽
𝑛
)|+|𝜎
𝑛+1

/(1−(1−𝛼
𝑛+1

−𝜎
𝑛+1

)𝛽
𝑛+1

)−𝜎
𝑛
/(1−

(1−𝛼
𝑛
−𝜎
𝑛
)𝛽
𝑛
)| + |𝛿

𝑛+1
/(1−𝛽

𝑛+1
) − 𝛿
𝑛
/(1−𝛽

𝑛
)|) = 0;

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Assume that∑∞
𝑛=0

sup
𝑥∈𝐷

‖𝑆
𝑛+1

𝑥 − 𝑆
𝑛
𝑥‖ < ∞ for any bounded

subset 𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined
by 𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then there hold the following:

(I) lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0;

(II) 𝑥
𝑛
→ 𝑞 ⇔ 𝛼

𝑛
(𝑓(𝑥
𝑛
) − 𝑥
𝑛
) → 0 provided 𝛽

𝑛
≡ 𝛽 for

some fixed 𝛽 ∈ (0, 1), where 𝑞 ∈ 𝐹 solves the following
VIP

⟨𝑞 − 𝑓 (𝑞) , 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹. (175)
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Proof. In Theorem 28, we put 𝐵
1
= 𝐼 − 𝑉, 𝐵

2
= 0, and 𝜇

1
= 𝑙,

where 1 − (𝜆/(1 + 𝜆))(1 − √(1 − 𝛼)/𝜆) ≤ 𝑙 ≤ 1. Then, GSVI
(13) is equivalent to the VIP of finding 𝑥∗ ∈ 𝐶 such that

⟨𝐵
1
𝑥
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (176)

In this case, 𝐵
1
: 𝐶 → 𝑋 is 𝜆-strictly pseudocontractive

and 𝛼-strongly accretive. Repeating the same arguments
as those in the proof of Corollary 25, we can infer that
Fix(𝑉) = VI(𝐶, 𝐵

1
). Accordingly, 𝐹 = ⋂

∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Ω ∩

(⋂
∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)) = ⋂

∞

𝑖=0
Fix(𝑆
𝑖
) ∩ Fix(𝑉) ∩ (⋂

∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)),

and

𝐺𝑥
𝑛
= ((1 − 𝑙) 𝐼 + 𝑙𝑉) 𝑥

𝑛
, ∀𝑛 ≥ 0. (177)

So, scheme (130) reduces to (174).Therefore, the desired result
follows fromTheorem 31.

Remark 30. Our Theorems 24 and 28 improve, extend,
supplement and develop Ceng and Yao’s [10, Theorem 3.2],
Cai and Bu’s [11, Theorem 3.1], Kangtunyakarn’s [38, The-
orem 3.1], and Ceng and Yao’s [8, Theorem 3.1], in the
following aspects.

(i) The problem of finding a point 𝑞 ∈ (⋂
∞

𝑖=0
Fix(𝑆
𝑖
)) ∩

Ω ∩ (⋂
∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)) in our Theorems 24 and 28 is

more general and more subtle than every one of the
problem of finding a point 𝑞 ∈ ⋂

∞

𝑖=0
Fix(𝑇
𝑖
) in [10,

Theorem 3.2], the problem of finding a point 𝑞 ∈

⋂
∞

𝑖=1
Fix(𝑇
𝑖
) ∩ Ω in [11, Theorem 3.1], the problem of

finding a point 𝑞 ∈ Fix(𝑆) ∩ Fix(𝑉) ∩ (⋂𝑁
𝑖=1

VI(𝐶, 𝐴
𝑖
))

in [38, Theorem 3.1], and the problem of finding a
point 𝑞 ∈ Fix(𝑇) in [8, Theorem 3.1].

(ii) The iterative scheme in [8, Theorem 3.1] is extended
to develop the iterative schemes (42) and (130) in
our Theorems 24 and 28 by virtue of the iterative
schemes of [11, Theorem 3.1] and [10, Theorems 3.2].
The iterative schemes (42) and (130) in ourTheorems
24 and 28 are more advantageous and more flexible
than the iterative scheme of [8, Theorem 3.1] because
they can be applied to solving three problems (i.e.,
GSVI (13), fixed point problem and infinitely many
VIPs), and involve several parameter sequences {𝛼

𝑛
},

{𝛽
𝑛
}, {𝛾
𝑛
}, {𝛿
𝑛
}, (and {𝜎

𝑛
}).

(iii) OurTheorems 24 and 28 extend and generalize Ceng
and Yao [8, Theorem 3.1] from a nonexpansive map-
ping to a countable family of nonexpansivemappings,
and Ceng and Yao’s [10, Theorems 3.2], to the setting
of the GSVI (13) and infinitely many VIPs, Kangtun-
yakarn [38, Theorem 3.1], from finitely many VIPs to
infinitely many VIPs, from a nonexpansive mapping
to a countable family of nonexpansive mappings and
from a strict pseudocontraction to the GSVI (13).
In the meantime, our Theorems 24 and 28 extend
and generalize Cai and Bu’s [11, Theorem 3.1], to the
setting of infinitely many VIPs.

(iv) The iterative schemes (42) and (130) in ourTheorems
24 and 28 are very different from every one in [10,
Theorem 3.2], [11, Theorem 3.1], [38, Theorem 3.1],

and [8, Theorem 3.1] because the mappings 𝐺 and
𝑇
𝑛
in [11, Theorem 3.1] and the mapping 𝑇 in [8,

Theorem 3.1] are replaced with the same composite
mapping 𝑆

𝑛
𝐺 in the iterative schemes (42) and (130)

and the mapping𝑊
𝑛
in [10, Theorem 3.2] is replaced

with 𝐵
𝑛
.

(v) Cai and Bu’s proof in [11, Theorem 3.1] depends on
the argument techniques in [14], the inequality in 2-
uniformly smooth Banach spaces (see Lemma 4), and
the inequality in smooth and uniform convex Banach
spaces (see Proposition 6). Because the composite
mapping 𝑆

𝑛
𝐺 appears in the iterative scheme (42) of

ourTheorem24, the proof of ourTheorem24depends
on the argument techniques in [14], the inequality in
2-uniformly smooth Banach spaces (see Lemma 4),
the inequality in smooth and uniform convex Banach
spaces (see Proposition 6), the inequality in uniform
convex Banach spaces (see Lemma 15 in Section 2 of
this paper), and the properties of the𝑊-mapping and
the Banach limit (see Lemmas 16–18 in Section 2 of
this paper). However, the proof of our Theorem 28
does not depend on the argument techniques in [14],
the inequality in 2-uniformly smooth Banach spaces
(see Lemma 4), and the inequality in smooth and
uniform convex Banach spaces (see Proposition 6).
It depends on only the inequality in uniform convex
Banach spaces (see Lemma 15 in Section 2 of this
paper) and the properties of the𝑊-mapping and the
Banach limit (see Lemmas 16–18 in Section 2 of this
paper).

(vi) The assumption of the uniformly convex and 2-
uniformly smooth Banach space 𝑋 in [11, Theo-
rem 3.1] is weakened to the one of the uniformly
convex Banach space 𝑋 having a uniformly Gateaux
differentiable norm in ourTheorem 28.Moreover, the
assumption of the uniformly smooth Banach space
𝑋 in [8, Theorem 3.1] is replaced with the one of the
uniformly convex Banach space𝑋 having a uniformly
Gateaux differentiable norm in our Theorem 28. It is
worth emphasizing that there is no assumption on the
convergence of parameter sequences {𝛼

𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
},

and {𝛿
𝑛
} (and {𝜎

𝑛
}) to zero in our Theorems 24 and

28.

4. Relaxed Mann Iterations and
Their Convergence Criteria

In this section, we introduce our relaxed Mann iteration
algorithms in real smooth and uniformly convex Banach
spaces and present their convergence criteria.

Theorem 31. Let 𝐶 be a nonempty closed convex subset of a
uniformly convex and 2-uniformly smooth Banach space 𝑋.
Let Π

𝐶
be a sunny nonexpansive retraction from 𝑋 onto 𝐶.

Let {𝜌
𝑛
}
∞

𝑛=0
be a sequence of positive numbers in (0, 𝑏] for some

𝑏 ∈ (0, 1) and 𝐴
𝑖
: 𝐶 → 𝑋 an �̂�

𝑖
-inverse strongly accretive

mapping for each 𝑖 = 0, 1, . . .. Define a mapping 𝐺
𝑖
: 𝐶 → 𝐶

by Π
𝐶
(𝐼 − 𝜆

𝑖
𝐴
𝑖
)𝑥 = 𝐺

𝑖
𝑥 for all 𝑥 ∈ 𝐶 and 𝑖 = 0, 1, . . .,
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where 𝜆
𝑖
∈ (0, �̂�

𝑖
/𝜅
2

] and 𝜅 is the 2-uniformly smooth constant
of 𝑋. Let 𝐵

𝑛
: 𝐶 → 𝐶 be the 𝑊-mapping generated by

𝐺
𝑛
, 𝐺
𝑛−1

, . . . , 𝐺
0
and 𝜌

𝑛
, 𝜌
𝑛−1

, . . . , 𝜌
0
. Let the mapping 𝐵

𝑖
:

𝐶 → 𝑋 be 𝛽
𝑖
-inverse strongly accretive for 𝑖 = 1, 2. Let 𝑓 :

𝐶 → 𝐶 be a contraction with coefficient 𝜌 ∈ (0, 1). Let {𝑆
𝑖
}
∞

𝑖=0

be a countable family of nonexpansive mappings of𝐶 into itself
such that 𝐹 = (⋂

∞

𝑖=0
Fix(𝑆
𝑖
)) ∩Ω∩ (⋂

∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)) ̸= 0, where

Ω is the fixed point set of the mapping𝐺 = Π
𝐶
(𝐼−𝜇
1
𝐵
1
)Π
𝐶
(𝐼−

𝜇
2
𝐵
2
) with 0 < 𝜇

𝑖
< 𝛽
𝑖
/𝜅
2 for 𝑖 = 1, 2. For arbitrarily given

𝑥
0
∈ 𝐶, let {𝑥

𝑛
} be the sequence generated by

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
, ∀𝑛 ≥ 0,

(178)

where {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, and {𝛿

𝑛
} are the sequences in (0, 1) such

that𝛼
𝑛
+𝛽
𝑛
+𝛾
𝑛
+𝛿
𝑛
= 1 for all 𝑛 ≥ 0. Suppose that the following

conditions hold:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iii) lim
𝑛→∞

(|𝛽
𝑛
− 𝛽
𝑛−1

| + |𝛾
𝑛
− 𝛾
𝑛−1

| + |𝛿
𝑛
− 𝛿
𝑛−1

|) = 0;
(iv) 0 < lim inf

𝑛→∞
𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Assume that∑∞
𝑛=1

sup
𝑥∈𝐷

‖𝑆
𝑛
𝑥 − 𝑆
𝑛−1

𝑥‖ < ∞ for any bounded
subset 𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined
by 𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then, there hold the following:

(I) lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0;

(II) the sequence {𝑥
𝑛
}
∞

𝑛=0
converges strongly to some 𝑞 ∈

𝐹 which is the unique solution of the variational
inequality problem (VIP)

⟨(𝐼 − 𝑓) 𝑞, 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹, (179)

provided 𝛽
𝑛
≡ 𝛽 for some fixed 𝛽 ∈ (0, 1).

Proof. First of all, since 0 < 𝜆
𝑖
< [�̂�
𝑖
/𝜅
2

] for 𝑖 = 0, 1, . . ., it
is easy to see that 𝐺

𝑖
is a nonexpansive mapping for each 𝑖 =

0, 1, . . .. Since 𝐵
𝑛
: 𝐶 → 𝐶 is the 𝑊-mapping generated by

𝐺
𝑛
, 𝐺
𝑛−1

, . . . , 𝐺
0
, and 𝜌

𝑛
, 𝜌
𝑛−1

, . . . , 𝜌
0
, by Lemma 16 we know

that, for each 𝑥 ∈ 𝐶 and 𝑘 ≥ 0, the limit lim
𝑛→∞

𝑈
𝑛,𝑘
𝑥 exists.

Moreover, one can define a mapping 𝐵 : 𝐶 → 𝐶 as follows:

𝐵𝑥 = lim
𝑛→∞

𝐵
𝑛
𝑥 = lim
𝑛→∞

𝑈
𝑛,0
𝑥 (180)

for every 𝑥 ∈ 𝐶.That is, such a 𝐵 is the𝑊-mapping generated
by the sequences {𝐺

𝑛
}
∞

𝑛=0
and {𝜌

𝑛
}
∞

𝑛=0
. According to Lemma 17,

we know that Fix(𝐵) = ⋂
∞

𝑖=0
Fix(𝐺

𝑖
). From Lemma 21 and

the definition of 𝐺
𝑖
, we have Fix(𝐺

𝑖
) = VI(𝐶, 𝐴

𝑖
) for each

𝑖 = 0, 1, . . .. Hence, we have

Fix (𝐵) =
∞

⋂

𝑖=0

Fix (𝐺
𝑖
) =

∞

⋂

𝑖=0

VI (𝐶, 𝐴
𝑖
) . (181)

Next, let us show that the sequence {𝑥
𝑛
} is bounded.

Indeed, take a fixed 𝑝 ∈ 𝐹 arbitrarily. Then, we get 𝑝 = 𝐺𝑝,

𝑝 = 𝐵
𝑛
𝑝, and 𝑝 = 𝑆

𝑛
𝑝 for all 𝑛 ≥ 0. By Lemma 23, we know

that 𝐺 is nonexpansive. Then, from (178), we have

𝑥𝑛+1 − 𝑝


≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝

 + 𝛽
𝑛

𝑥𝑛 − 𝑝


+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝
 + 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


≤ 𝛼
𝑛
(
𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)

 +
𝑓 (𝑝) − 𝑝

)

+ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝛾
𝑛

𝑥𝑛 − 𝑝
 + 𝛿
𝑛

𝐺𝑥𝑛 − 𝑝


≤ 𝛼
𝑛
(𝜌

𝑥𝑛 − 𝑝
 +

𝑓 (𝑝) − 𝑝
)

+ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝛾
𝑛

𝑥𝑛 − 𝑝
 + 𝛿
𝑛

𝑥𝑛 − 𝑝


= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑝
 + 𝛼
𝑛
(1 − 𝜌)

𝑓 (𝑝) − 𝑝


1 − 𝜌

≤ max{𝑥𝑛 − 𝑝
 ,

𝑓 (𝑝) − 𝑝


1 − 𝜌
} .

(182)

By induction, we obtain

𝑥𝑛 − 𝑝
 ≤ max{𝑥0 − 𝑝

 ,

𝑓 (𝑝) − 𝑝


1 − 𝜌
} , ∀𝑛 ≥ 0.

(183)

Hence, {𝑥
𝑛
} is bounded, and so are the sequences {𝐺𝑥

𝑛
} and

{𝑓(𝑥
𝑛
)}.

Let us show that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = 0. (184)

As a matter of fact, observe that 𝑥
𝑛+1

can be rewritten as
follows:

𝑥
𝑛+1

= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑧
𝑛
, (185)

where 𝑧
𝑛
= (𝛼
𝑛
𝑓(𝑥
𝑛
) + 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
)/(1 − 𝛽

𝑛
). Observe

that

𝑧𝑛 − 𝑧
𝑛−1



=



𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

1 − 𝛽
𝑛

−
𝛼
𝑛−1

𝑓 (𝑥
𝑛−1

) + 𝛾
𝑛−1

𝐵
𝑛−1

𝑥
𝑛−1

+ 𝛿
𝑛−1

𝑆
𝑛−1

𝐺𝑥
𝑛−1

1 − 𝛽
𝑛−1



=



𝑥
𝑛+1

− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

−
𝑥
𝑛
− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛−1



=



𝑥
𝑛+1

− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

−
𝑥
𝑛
− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛

+
𝑥
𝑛
− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛

−
𝑥
𝑛
− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛−1
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≤



𝑥
𝑛+1

− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

−
𝑥
𝑛
− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛



+



𝑥
𝑛
− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛

−
𝑥
𝑛
− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛−1



=
1

1 − 𝛽
𝑛

𝑥𝑛+1 − 𝛽
𝑛
𝑥
𝑛
− (𝑥
𝑛
− 𝛽
𝑛−1

𝑥
𝑛−1

)


+



1

1 − 𝛽
𝑛

−
1

1 − 𝛽
𝑛−1



𝑥𝑛 − 𝛽
𝑛−1

𝑥
𝑛−1



=
1

1 − 𝛽
𝑛

𝑥𝑛+1 − 𝛽
𝑛
𝑥
𝑛
− (𝑥
𝑛
− 𝛽
𝑛−1

𝑥
𝑛−1

)


+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

𝑥𝑛 − 𝛽
𝑛−1

𝑥
𝑛−1



=
1

1 − 𝛽
𝑛

𝛼𝑛𝑓 (𝑥
𝑛
) + 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
− 𝛼
𝑛−1

𝑓 (𝑥
𝑛−1

)

− 𝛾
𝑛−1

𝐵
𝑛−1

𝑥
𝑛−1

− 𝛿
𝑛−1

𝑆
𝑛−1

𝐺𝑥
𝑛−1



+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

𝑥𝑛 − 𝛽
𝑛−1

𝑥
𝑛−1



≤
1

1 − 𝛽
𝑛

[𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑥

𝑛−1
)


+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝐵
𝑛−1

𝑥
𝑛−1



+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑆
𝑛−1

𝐺𝑥
𝑛−1



+
𝛼𝑛 − 𝛼

𝑛−1



𝑓 (𝑥
𝑛−1

)


+
𝛾𝑛 − 𝛾

𝑛−1



𝐵𝑛−1𝑥𝑛−1


+
𝛿𝑛 − 𝛿

𝑛−1



𝑆𝑛−1𝐺𝑥𝑛−1
]

+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

𝑥𝑛 − 𝛽
𝑛−1

𝑥
𝑛−1

 .

(186)

On the other hand, we note that, for all 𝑛 ≥ 1,
𝑆𝑛𝐺𝑥𝑛 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1



≤
𝑆𝑛𝐺𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛−1

 +
𝑆𝑛𝐺𝑥𝑛−1 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1



≤
𝐺𝑥𝑛 − 𝐺𝑥

𝑛−1

 +
𝑆𝑛𝐺𝑥𝑛−1 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1



≤
𝑥𝑛 − 𝑥

𝑛−1

 +
𝑆𝑛𝐺𝑥𝑛−1 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1

 .

(187)

Furthermore, by (CY), since𝐺
𝑖
and𝑈

𝑛,𝑖
are nonexpansive, we

deduce that for each 𝑛 ≥ 1

𝐵𝑛𝑥𝑛 − 𝐵
𝑛−1

𝑥
𝑛−1



≤
𝐵𝑛𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛−1

 +
𝐵𝑛𝑥𝑛−1 − 𝐵

𝑛−1
𝑥
𝑛−1



≤
𝑥𝑛 − 𝑥

𝑛−1

 +
𝐵𝑛𝑥𝑛−1 − 𝐵

𝑛−1
𝑥
𝑛−1



=
𝑥𝑛 − 𝑥

𝑛−1

 +
𝜆0𝐺0𝑈𝑛,1𝑥𝑛−1 − 𝜆

0
𝐺
0
𝑈
𝑛−1,1

𝑥
𝑛−1



≤
𝑥𝑛 − 𝑥

𝑛−1

 + 𝜆
0

𝑈𝑛,1𝑥𝑛−1 − 𝑈
𝑛−1,1

𝑥
𝑛−1



=
𝑥𝑛 − 𝑥

𝑛−1

 + 𝜆
0

𝜆1𝐺1𝑈𝑛,2𝑥𝑛−1 − 𝜆
1
𝐺
1
𝑈
𝑛−1,2

𝑥
𝑛−1



≤
𝑥𝑛 − 𝑥

𝑛−1

 + 𝜆
0
𝜆
1

𝑈𝑛,2𝑥𝑛−1 − 𝑈
𝑛−1,2

𝑥
𝑛−1



...

≤
𝑥𝑛 − 𝑥

𝑛−1

 + (

𝑛−1

∏

𝑖=0

𝜆
𝑖
)
𝑈𝑛,𝑛𝑥𝑛−1 − 𝑈

𝑛−1,𝑛
𝑥
𝑛−1



≤
𝑥𝑛 − 𝑥

𝑛−1

 +𝑀

𝑛−1

∏

𝑖=0

𝜆
𝑖
,

(188)

for some constant 𝑀 > 0. Taking into account 0 <

lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1, we may assume,
without loss of generality, that {𝛽

𝑛
} ⊂ [𝑐, 𝑑]. Utilizing (186)–

(188), we have

𝑧𝑛 − 𝑧
𝑛−1



≤
1

1 − 𝛽
𝑛

[𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑥

𝑛−1
)


+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝐵
𝑛−1

𝑥
𝑛−1



+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑆
𝑛−1

𝐺𝑥
𝑛−1



+
𝛼𝑛 − 𝛼

𝑛−1



𝑓 (𝑥
𝑛−1

)


+
𝛾𝑛 − 𝛾

𝑛−1



𝐵𝑛−1𝑥𝑛−1


+
𝛿𝑛 − 𝛿

𝑛−1



𝑆𝑛−1𝐺𝑥𝑛−1
]

+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

𝑥𝑛 − 𝛽
𝑛−1

𝑥
𝑛−1



≤
1

1 − 𝛽
𝑛

{𝛼
𝑛
𝜌
𝑥𝑛 − 𝑥

𝑛−1

 + 𝛾
𝑛
[
𝑥𝑛 − 𝑥

𝑛−1

 +𝑀

𝑛−1

∏

𝑖=0

𝜆
𝑖
]

+ 𝛿
𝑛
[
𝑥𝑛 − 𝑥

𝑛−1

 +
𝑆𝑛𝐺𝑥𝑛−1 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1

]

+
𝛼𝑛 − 𝛼

𝑛−1



𝑓 (𝑥
𝑛−1

)
 +

𝛾𝑛 − 𝛾
𝑛−1



𝐵𝑛−1𝑥𝑛−1


+
𝛿𝑛 − 𝛿

𝑛−1



𝑆𝑛−1𝐺𝑥𝑛−1
}

+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

𝑥𝑛 − 𝛽
𝑛−1

𝑥
𝑛−1



=
1

1 − 𝛽
𝑛

{ (1 − 𝛽
𝑛
− 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑥
𝑛−1



+ 𝛾
𝑛
𝑀

𝑛−1

∏

𝑖=0

𝜆
𝑖
+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛−1 − 𝑆
𝑛−1

𝐺𝑥
𝑛−1



+
𝛼𝑛 − 𝛼

𝑛−1



𝑓 (𝑥
𝑛−1

)
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+
𝛾𝑛 − 𝛾

𝑛−1



𝐵𝑛−1𝑥𝑛−1


+
𝛿𝑛 − 𝛿

𝑛−1



𝑆𝑛−1𝐺𝑥𝑛−1
}

+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

𝑥𝑛 − 𝛽
𝑛−1

𝑥
𝑛−1



= (1 −
𝛼
𝑛
(1 − 𝜌)

1 − 𝛽
𝑛

)
𝑥𝑛 − 𝑥

𝑛−1

 +
𝛾
𝑛
𝑀

1 − 𝛽
𝑛

𝑛−1

∏

𝑖=0

𝜆
𝑖

+
𝛿
𝑛

1 − 𝛽
𝑛

𝑆𝑛𝐺𝑥𝑛−1 − 𝑆
𝑛−1

𝐺𝑥
𝑛−1

 +
1

1 − 𝛽
𝑛

× [
𝛼𝑛 − 𝛼

𝑛−1



𝑓 (𝑥
𝑛−1

)
 +

𝛾𝑛 − 𝛾
𝑛−1



𝐵𝑛−1𝑥𝑛−1


+
𝛿𝑛 − 𝛿

𝑛−1



𝑆𝑛−1𝐺𝑥𝑛−1
]

+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

𝑥𝑛 − 𝛽
𝑛−1

𝑥
𝑛−1



≤
𝑥𝑛 − 𝑥

𝑛−1

 +𝑀

𝑛−1

∏

𝑖=0

𝜆
𝑖
+
𝑆𝑛𝐺𝑥𝑛−1 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1



+
1

1 − 𝛽
𝑛

[
𝛼𝑛 − 𝛼

𝑛−1



𝑓 (𝑥
𝑛−1

)
 +

𝛾𝑛 − 𝛾
𝑛−1



×
𝐵𝑛−1𝑥𝑛−1

 +
𝛿𝑛 − 𝛿

𝑛−1



𝑆𝑛−1𝐺𝑥𝑛−1
]

+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

×
𝛼𝑛−1𝑓 (𝑥

𝑛−1
) + 𝛾
𝑛−1

𝐵
𝑛−1

𝑥
𝑛−1

+ 𝛿
𝑛−1

𝑆
𝑛−1

𝐺𝑥
𝑛−1



≤
𝑥𝑛 − 𝑥

𝑛−1



+𝑀
1
[

𝑛−1

∏

𝑖=0

𝜆
𝑖
+
𝛼𝑛 − 𝛼

𝑛−1



+
𝛾𝑛 − 𝛾

𝑛−1

 +
𝛿𝑛 − 𝛿

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

 ]

+
𝑆𝑛𝐺𝑥𝑛−1 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1

 ,

(189)

where sup
𝑛≥0

{(1/(1−𝑑)
2

)(‖𝑓(𝑥
𝑛
)‖+‖𝐵

𝑛
𝑥
𝑛
‖+‖𝑆
𝑛
𝐺𝑥
𝑛
‖+𝑀)} ≤

𝑀
1
for some𝑀

1
> 0.Thus, from (189), conditions (i), (iii) and

the assumption on {𝑆
𝑛
}, it follows that (noting that 0 < 𝜆

𝑖
≤

𝑏 < 1, for all 𝑖 ≥ 0)

lim
𝑛→∞

(
𝑧𝑛 − 𝑧

𝑛−1

 −
𝑥𝑛 − 𝑥

𝑛−1

) ≤ 0. (190)

Since 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1, by Lemma 20

we get

lim
𝑛→∞

𝑥𝑛 − 𝑧
𝑛

 = 0. (191)

Consequently,

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = lim
𝑛→∞

(1 − 𝛽
𝑛
)
𝑧𝑛 − 𝑥

𝑛

 = 0. (192)

Next we show that ‖𝑥
𝑛
− 𝐺𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, for simplicity, put 𝑞 = Π
𝐶
(𝑝 − 𝜇

2
𝐵
2
𝑝), 𝑢
𝑛

=

Π
𝐶
(𝑥
𝑛
− 𝜇
2
𝐵
2
𝑥
𝑛
) and V

𝑛
= Π
𝐶
(𝑢
𝑛
− 𝜇
1
𝐵
1
𝑢
𝑛
). Then, V

𝑛
= 𝐺𝑥
𝑛

for all 𝑛 ≥ 0. From Lemma 26 we have

𝑢𝑛 − 𝑞


2

=
Π𝐶 (𝑥𝑛 − 𝜇

2
𝐵
2
𝑥
𝑛
) − Π
𝐶
(𝑝 − 𝜇

2
𝐵
2
𝑝)


2

≤
𝑥𝑛 − 𝑝 − 𝜇

2
(𝐵
2
𝑥
𝑛
− 𝐵
2
𝑝)


2

≤
𝑥𝑛 − 𝑝



2

− 2𝜇
2
(𝛽
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑛 − 𝐵

2
𝑝


2

,

(193)

V𝑛 − 𝑝


2

=
Π𝐶 (𝑢𝑛 − 𝜇

1
𝐵
1
𝑢
𝑛
) − Π
𝐶
(𝑞 − 𝜇

1
𝐵
1
𝑞)


2

≤
𝑢𝑛 − 𝑞 − 𝜇

1
(𝐵
1
𝑢
𝑛
− 𝐵
1
𝑞)


2

≤
𝑢𝑛 − 𝑞



2

− 2𝜇
1
(𝛽
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
𝑞


2

.

(194)

Substituting (193) for (194), we obtain

V𝑛 − 𝑝


2

≤
𝑥𝑛 − 𝑝



2

− 2𝜇
2
(𝛽
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑛 − 𝐵

2
𝑝


2

− 2𝜇
1
(𝛽
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
𝑞


2

.

(195)

By Lemma 8, we have from (178) and (195)

𝑥𝑛+1 − 𝑝


2

=
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑝)) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝)

+ 𝛾
𝑛
(𝐵
𝑛
𝑥
𝑛
− 𝑝) + 𝛿

𝑛
(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑝)

+ 𝛼
𝑛
(𝑓 (𝑝) − 𝑝)



2

≤
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑝)) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝)

+ 𝛾
𝑛
(𝐵
𝑛
𝑥
𝑛
− 𝑝) + 𝛿

𝑛
(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑝)



2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤ 𝛼
𝑛
𝜌
2𝑥𝑛 − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛

V𝑛 − 𝑝


2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩
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≤ 𝛼
𝑛
𝜌
𝑥𝑛 − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛
[
𝑥𝑛 − 𝑝



2

− 2𝜇
2
(𝛽
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑛 − 𝐵

2
𝑝


2

−2𝜇
1
(𝛽
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
𝑞


2

]

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑝


2

− 2𝛿
𝑛
[𝜇
2
(𝛽
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑛 − 𝐵

2
𝑝


2

+𝜇
1
(𝛽
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
𝑞


2

]

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤
𝑥𝑛 − 𝑝



2

− 2𝛿
𝑛
[𝜇
2
(𝛽
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑛 − 𝐵

2
𝑝


2

+𝜇
1
(𝛽
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
𝑞


2

]

+ 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝
 ,

(196)

which hence implies that

2𝛿
𝑛
[𝜇
2
(𝛽
2
− 𝜅
2

𝜇
2
)
𝐵2𝑥𝑛 − 𝐵

2
𝑝


2

+𝜇
1
(𝛽
1
− 𝜅
2

𝜇
1
)
𝐵1𝑢𝑛 − 𝐵

1
𝑞


2

]

≤
𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

+ 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝


≤ (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)
𝑥𝑛 − 𝑥

𝑛+1



+ 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝
 .

(197)

Since ‖𝑥
𝑛
− 𝑥
𝑛+1

‖ → 0, 0 < 𝜇
𝑖
< 𝛽
𝑖
/𝜅
2 for 𝑖 = 1, 2, and {𝑥

𝑛
}

is bounded, we obtain from conditions (i), (ii) that

lim
𝑛→∞

𝐵2𝑥𝑛 − 𝐵
2
𝑝
 = 0, lim

𝑛→∞

𝐵1𝑢𝑛 − 𝐵
1
𝑞
 = 0. (198)

Utilizing Proposition 6 and Lemma 9, we have

𝑢𝑛 − 𝑞


2

=
Π𝐶 (𝑥𝑛 − 𝜇

2
𝐵
2
𝑥
𝑛
) − Π
𝐶
(𝑝 − 𝜇

2
𝐵
2
𝑝)


2

≤ ⟨𝑥
𝑛
− 𝜇
2
𝐵
2
𝑥
𝑛
− (𝑝 − 𝜇

2
𝐵
2
𝑝) , 𝐽 (𝑢

𝑛
− 𝑞)⟩

= ⟨𝑥
𝑛
− 𝑝, 𝐽 (𝑢

𝑛
− 𝑞)⟩ + 𝜇

2
⟨𝐵
2
𝑝 − 𝐵
2
𝑥
𝑛
, 𝐽 (𝑢
𝑛
− 𝑞)⟩

≤
1

2
[
𝑥𝑛 − 𝑝



2

+
𝑢𝑛 − 𝑞



2

−𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

) ]

+ 𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − 𝑞
 ,

(199)

which implies that

𝑢𝑛 − 𝑞


2

≤
𝑥𝑛 − 𝑝



2

− 𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

)

+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − 𝑞
 .

(200)

In the same way, we derive

V𝑛 − 𝑝


2

=
Π𝐶 (𝑢𝑛 − 𝜇

1
𝐵
1
𝑢
𝑛
) − Π
𝐶
(𝑞 − 𝜇

1
𝐵
1
𝑞)


2

≤ ⟨𝑢
𝑛
− 𝜇
1
𝐵
1
𝑢
𝑛
− (𝑞 − 𝜇

1
𝐵
1
𝑞) , 𝐽 (V

𝑛
− 𝑝)⟩

= ⟨𝑢
𝑛
− 𝑞, 𝐽 (V

𝑛
− 𝑝)⟩ + 𝜇

1
⟨𝐵
1
𝑞 − 𝐵
1
𝑢
𝑛
, 𝐽 (V
𝑛
− 𝑝)⟩

≤
1

2
[
𝑢𝑛 − 𝑞



2

+
V𝑛 − 𝑝



2

−𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

) ]

+ 𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑝
 ,

(201)

which implies that

V𝑛 − 𝑝


2

≤
𝑢𝑛 − 𝑞



2

− 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

)

+ 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑝
 .

(202)

Substituting (200) for (202), we get

V𝑛 − 𝑝


2

≤
𝑥𝑛 − 𝑝



2

− 𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

)

− 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

)

+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − 𝑞


+ 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑝
 .

(203)

By Lemma 8, we have from (196) and (203)

𝑥𝑛+1 − 𝑝


2

≤ 𝛼
𝑛
𝜌
2𝑥𝑛 − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛

V𝑛 − 𝑝


2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩
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≤ 𝛼
𝑛
𝜌
𝑥𝑛 − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛
[
𝑥𝑛 − 𝑝



2

− 𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

)

− 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

) + 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



×
𝑢𝑛 − 𝑞

 + 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑝
 ]

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤ (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑝


2

− 𝛿
𝑛
[𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

)

+ 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

)]

+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − 𝑞
 + 2𝜇

1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



×
V𝑛 − 𝑝

 + 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑝



2

− 𝛿
𝑛
[𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

)

+ 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

)]

+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − 𝑞
 + 2𝜇

1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



×
V𝑛 − 𝑝

 + 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝
 ,

(204)

which hence leads to

𝛿
𝑛
[𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

) + 𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

)]

≤
𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − 𝑞


+ 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑝


+ 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝


≤ (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)
𝑥𝑛 − 𝑥

𝑛+1



+ 2𝜇
2

𝐵2𝑝 − 𝐵
2
𝑥
𝑛



𝑢𝑛 − 𝑞


+ 2𝜇
1

𝐵1𝑞 − 𝐵
1
𝑢
𝑛



V𝑛 − 𝑝


+ 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝
 .

(205)

From (198), (205), conditions (i), (ii) and the boundedness of
{𝑥
𝑛
}, {𝑢
𝑛
}, and {V

𝑛
}, we deduce that

lim
𝑛→∞

𝑔
1
(
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)

) = 0,

lim
𝑛→∞

𝑔
2
(
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

) = 0.

(206)

Utilizing the properties of 𝑔
1
and 𝑔

2
, we deduce that

lim
𝑛→∞

𝑥𝑛 − 𝑢
𝑛
− (𝑝 − 𝑞)

 = 0,

lim
𝑛→∞

𝑢𝑛 − V
𝑛
+ (𝑝 − 𝑞)

 = 0.

(207)

From (207), we get

𝑥𝑛 − V
𝑛

 ≤
𝑥𝑛 − 𝑢

𝑛
− (𝑝 − 𝑞)



+
𝑢𝑛 − V

𝑛
+ (𝑝 − 𝑞)

 → 0 as 𝑛 → ∞.

(208)

That is,

lim
𝑛→∞

𝑥𝑛 − 𝐺𝑥
𝑛

 = 0. (209)

Next, let us show that

lim
𝑛→∞

𝑆𝑛𝐺𝑥𝑛 − 𝑥
𝑛

 = 0, lim
𝑛→∞

𝐵𝑛𝑥𝑛 − 𝑥
𝑛

 = 0. (210)

Indeed, observe that 𝑥
𝑛+1

can be rewritten as follows:

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ (𝛾
𝑛
+ 𝛿
𝑛
)

×
𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝑒
𝑛
�̂�
𝑛
,

(211)

where 𝑒
𝑛
= 𝛾
𝑛
+ 𝛿
𝑛
and �̂�
𝑛
= (𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
)/(𝛾
𝑛
+ 𝛿
𝑛
).

Utilizing Lemma 11 and (211), we have

𝑥𝑛+1 − 𝑝


2

=
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑝) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝) + 𝑒

𝑛
(�̂�
𝑛
− 𝑝)



2

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝑒
𝑛

�̂�𝑛 − 𝑝


2

− 𝛽
𝑛
𝑒
𝑛
𝑔
3
(
�̂�𝑛 − 𝑥

𝑛

)

= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

− 𝛽
𝑛
𝑒
𝑛
𝑔
3
(
�̂�𝑛 − 𝑥

𝑛

) + 𝑒
𝑛



𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

− 𝑝



2

= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

− 𝛽
𝑛
𝑒
𝑛
𝑔
3
(
�̂�𝑛 − 𝑥

𝑛

)

+ 𝑒
𝑛



𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝐵
𝑛
𝑥
𝑛
− 𝑝) +

𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑝)



2
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≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

− 𝛽
𝑛
𝑒
𝑛
𝑔
3
(
�̂�𝑛 − 𝑥

𝑛

)

+ 𝑒
𝑛
[

𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


2

]

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

− 𝛽
𝑛
𝑒
𝑛
𝑔
3
(
�̂�𝑛 − 𝑥

𝑛

)

+ 𝑒
𝑛
[

𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑥𝑛 − 𝑝
 +

𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝐺𝑥𝑛 − 𝑝


2

]

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

− 𝛽
𝑛
𝑒
𝑛
𝑔
3
(
�̂�𝑛 − 𝑥

𝑛

)

+ 𝑒
𝑛
[

𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑥𝑛 − 𝑝
 +

𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑥𝑛 − 𝑝


2

]

= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

− 𝛽
𝑛
𝑒
𝑛
𝑔
3
(
�̂�𝑛 − 𝑥

𝑛

)

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+
𝑥𝑛 − 𝑝



2

− 𝛽
𝑛
𝑒
𝑛
𝑔
3
(
�̂�𝑛 − 𝑥

𝑛

) ,

(212)

which hence implies that

𝛽
𝑛
𝑒
𝑛
𝑔
3
(
�̂�𝑛 − 𝑥

𝑛

)

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+
𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)

×
𝑥𝑛 − 𝑥

𝑛+1

 .

(213)

Utilizing (184), conditions (i), (ii), (iv), and the boundedness
of {𝑥
𝑛
} and {𝑓(𝑥

𝑛
)}, we get

lim
𝑛→∞

𝑔
3
(
�̂�𝑛 − 𝑥

𝑛

) = 0. (214)

From the properties of 𝑔
3
, we have

lim
𝑛→∞

�̂�𝑛 − 𝑥
𝑛

 = 0. (215)

Utilizing Lemma 15 and the definition of �̂�
𝑛
, we have

�̂�𝑛 − 𝑝


2

=



𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

− 𝑝



2

=



𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝐵
𝑛
𝑥
𝑛
− 𝑝) +

𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑝)



2

≤
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


2

−
𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2

𝑔
4
(
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑥𝑛 − 𝑝


2

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝐺𝑥𝑛 − 𝑝


2

−
𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2
𝑔
4
(
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑥𝑛 − 𝑝


2

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑥𝑛 − 𝑝


2

−
𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2
𝑔
4
(
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

=
𝑥𝑛 − 𝑝



2

−
𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2

𝑔
4
(
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

) ,

(216)

which hence yields

𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2
𝑔
4
(
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤
𝑥𝑛 − 𝑝



2

−
�̂�𝑛 − 𝑝



2

≤ (
𝑥𝑛 − 𝑝

 +
�̂�𝑛 − 𝑝

)
𝑥𝑛 − �̂�

𝑛

 .

(217)

Since {𝑥
𝑛
} and {�̂�

𝑛
} are bounded and ‖�̂�

𝑛
− 𝑥
𝑛
‖ → 0 as 𝑛 →

∞, we deduce from condition (ii) that

lim
𝑛→∞

𝑔
4
(‖ 𝑆
𝑛
𝐺𝑥
𝑛
− 𝐵
𝑛
𝑥
𝑛
‖) = 0. (218)

From the properties of 𝑔
4
, we have

lim
𝑛→∞

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

 = 0. (219)

On the other hand, 𝑥
𝑛+1

can also be rewritten as follows:

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ (𝛼
𝑛
+ 𝛿
𝑛
)
𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛼
𝑛
+ 𝛿
𝑛

= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝑑
𝑛
�̃�
𝑛
,

(220)

where 𝑑
𝑛
= 𝛼
𝑛
+ 𝛿
𝑛
and �̃�
𝑛
= (𝛼
𝑛
𝑓(𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
)/(𝛼
𝑛
+ 𝛿
𝑛
).

Utilizing Lemma 11 and the convexity of ‖ ⋅ ‖2, we have

𝑥𝑛+1 − 𝑝


2

=
𝛽𝑛 (𝑥𝑛 − 𝑝) + 𝛾

𝑛
(𝐵
𝑛
𝑥
𝑛
− 𝑝) + 𝑑

𝑛
(�̃�
𝑛
− 𝑝)



2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+ 𝑑
𝑛

�̃�𝑛 − 𝑝


2

− 𝛽
𝑛
𝛾
𝑛
𝑔
5
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)
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= 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+ 𝑑
𝑛



𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛼
𝑛
+ 𝛿
𝑛

− 𝑝



2

− 𝛽
𝑛
𝛾
𝑛
𝑔
5
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

= 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+ 𝑑
𝑛



𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

(𝑓 (𝑥
𝑛
) − 𝑝) +

𝛿
𝑛

𝛼
𝑛
+ 𝛿
𝑛

(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑝)



2

− 𝛽
𝑛
𝛾
𝑛
𝑔
5
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝑑
𝑛
[

𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+
𝛿
𝑛

𝛼
𝑛
+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


2

]

− 𝛽
𝑛
𝛾
𝑛
𝑔
5
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝑑
𝑛
[

𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+
𝛿
𝑛

𝛼
𝑛
+ 𝛿
𝑛

𝐺𝑥𝑛 − 𝑝


2

]

− 𝛽
𝑛
𝛾
𝑛
𝑔
5
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝑑
𝑛
[

𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+
𝛿
𝑛

𝛼
𝑛
+ 𝛿
𝑛

𝑥𝑛 − 𝑝


2

]

− 𝛽
𝑛
𝛾
𝑛
𝑔
5
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

− 𝛽
𝑛
𝛾
𝑛
𝑔
5
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+
𝑥𝑛 − 𝑝



2

− 𝛽
𝑛
𝛾
𝑛
𝑔
5
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

) ,

(221)

which hence implies that

𝛽
𝑛
𝛾
𝑛
𝑔
5
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+
𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)

×
𝑥𝑛 − 𝑥

𝑛+1

 .

(222)

From (184), conditions (i), (ii), (iv), and the boundedness of
{𝑥
𝑛
} and {𝑓(𝑥

𝑛
)}, we have

lim
𝑛→∞

𝑔
5
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

) = 0. (223)

Utilizing the properties of 𝑔
5
, we have

lim
𝑛→∞

𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

 = 0, (224)

which, together with (219), implies that

𝑆𝑛𝐺𝑥𝑛 − 𝑥
𝑛

 ≤
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

 +
𝐵𝑛𝑥𝑛 − 𝑥

𝑛

 → 0

as 𝑛 → ∞.

(225)

That is,

lim
𝑛→∞

𝑆𝑛𝐺𝑥𝑛 − 𝑥
𝑛

 = 0. (226)

We note that

𝑥𝑛 − 𝑆𝑥
𝑛



≤
𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

 +
𝑆𝑛𝐺𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛

 +
𝑆𝑛𝑥𝑛 − 𝑆𝑥

𝑛



≤
𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

 +
𝐺𝑥𝑛 − 𝑥

𝑛

 +
𝑆𝑛𝑥𝑛 − 𝑆𝑥

𝑛

 .

(227)

So, in terms of (209), (226), and Lemma 12, we have

lim
𝑛→∞

𝑥𝑛 − 𝑆𝑥
𝑛

 = 0. (228)

Suppose that 𝛽
𝑛
≡ 𝛽 for some fixed 𝛽 ∈ (0, 1) such that 𝛼

𝑛
+

𝛽 + 𝛾
𝑛
+ 𝛿
𝑛
= 1 for all 𝑛 ≥ 0. Define a mapping𝑉𝑥 = (1 − 𝜃

1
−

𝜃
2
)𝑆𝑥 + 𝜃

1
𝐵𝑥 + 𝜃

2
𝐺𝑥, where 𝜃

1
, 𝜃
2
∈ (0, 1) are two constants

with 𝜃
1
+ 𝜃
2
< 1. Then by Lemmas 14 and 17, we have that

Fix(𝑉) = Fix(𝑆) ∩ Fix(𝐵) ∩ Fix(𝐺) = 𝐹. For each 𝑘 ≥ 1, let
{𝑝
𝑘
} be a unique element of 𝐶 such that

𝑝
𝑘
=
1

𝑘
𝑓 (𝑝
𝑘
) + (1 −

1

𝑘
)𝑉𝑝
𝑘
. (229)

From Lemma 13, we conclude that 𝑝
𝑘
→ 𝑞 ∈ Fix(𝑉) = 𝐹 as

𝑘 → ∞. Observe that for every 𝑛, 𝑘

𝑥𝑛+1 − 𝐵𝑝
𝑘



=
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝐵𝑝

𝑘
) + 𝛽 (𝑥

𝑛
− 𝐵𝑝
𝑘
)

+ 𝛾
𝑛
(𝐵
𝑛
𝑥
𝑛
− 𝐵𝑝
𝑘
) + 𝛿
𝑛
(𝑆
𝑛
𝐺𝑥
𝑛
− 𝐵𝑝
𝑘
)


≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝐵𝑝

𝑘

 + 𝛽
𝑥𝑛 − 𝐵𝑝

𝑘

 + 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝐵𝑝
𝑘



+ 𝛿
𝑛
(
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

 +
𝐵𝑛𝑥𝑛 − 𝐵𝑝

𝑘

)

= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝐵𝑝

𝑘

 + 𝛽
𝑥𝑛 − 𝐵𝑝

𝑘



+ (𝛾
𝑛
+ 𝛿
𝑛
)
𝐵𝑛𝑥𝑛 − 𝐵𝑝

𝑘

 + 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛



= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝐵𝑝

𝑘

 + 𝛽
𝑥𝑛 − 𝐵𝑝

𝑘



+ (1 − 𝛼
𝑛
− 𝛽)

𝐵𝑛𝑥𝑛 − 𝐵𝑝
𝑘

 + 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛
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≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝐵𝑝

𝑘

 + 𝛽
𝑥𝑛 − 𝐵𝑝

𝑘

 + (1 − 𝛼
𝑛
− 𝛽)

× [
𝐵𝑛𝑥𝑛 − 𝐵

𝑛
𝑝
𝑘

 +
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘

]

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛



≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝐵𝑝

𝑘

 + 𝛽
𝑥𝑛 − 𝐵𝑝

𝑘



+ (1 − 𝛼
𝑛
− 𝛽) [

𝑥𝑛 − 𝑝
𝑘

 +
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘

]

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛



≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝐵𝑝

𝑘

 + 𝛽
𝑥𝑛 − 𝐵𝑝

𝑘



+ (1 − 𝛽) [
𝑥𝑛 − 𝑝

𝑘

 +
𝐵𝑛𝑝𝑘 − 𝐵𝑝

𝑘

]

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛



= 𝜃
𝑛
+ 𝛽

𝑥𝑛 − 𝐵𝑝
𝑘

 + (1 − 𝛽)
𝑥𝑛 − 𝑝

𝑘

 ,

(230)

where 𝜃
𝑛

= 𝛼
𝑛
‖𝑓(𝑥
𝑛
) − 𝐵𝑝

𝑘
‖ + (1 − 𝛽)‖𝐵

𝑛
𝑝
𝑘
− 𝐵𝑝
𝑘
‖ +

𝛿
𝑛
‖𝑆
𝑛
𝐺𝑥
𝑛
−𝐵
𝑛
𝑥
𝑛
‖. Since lim

𝑛→∞
𝛼
𝑛
= lim
𝑛→∞

‖𝐵
𝑛
𝑝
𝑘
−𝐵𝑝
𝑘
‖ =

lim
𝑛→∞

‖𝑆
𝑛
𝐺𝑥
𝑛
− 𝐵
𝑛
𝑥
𝑛
‖ = 0, we know that 𝜃

𝑛
→ 0 as

𝑛 → ∞.
From (230), we obtain

𝑥𝑛+1 − 𝐵𝑝
𝑘



2

≤ (𝛽
𝑥𝑛 − 𝐵𝑝

𝑘

 + (1 − 𝛽)
𝑥𝑛 − 𝑝

𝑘

)
2

+ 𝜃
𝑛
[2 (𝛽

𝑥𝑛 − 𝐵𝑝
𝑘

 + (1 − 𝛽)
𝑥𝑛 − 𝑝

𝑘

) + 𝜃
𝑛
]

= 𝛽
2𝑥𝑛 − 𝐵𝑝

𝑘



2

+ (1 − 𝛽)
2𝑥𝑛 − 𝑝

𝑘



2

+ 2𝛽 (1 − 𝛽)
𝑥𝑛 − 𝐵𝑝

𝑘



𝑥𝑛 − 𝑝
𝑘

 + 𝜏
𝑛

≤ 𝛽
2𝑥𝑛 − 𝐵𝑝

𝑘



2

+ (1 − 𝛽)
2𝑥𝑛 − 𝑝

𝑘



2

+ 𝛽 (1 − 𝛽) (
𝑥𝑛 − 𝐵𝑝

𝑘



2

+
𝑥𝑛 − 𝑝

𝑘



2

) + 𝜏
𝑛

= 𝛽
𝑥𝑛 − 𝐵𝑝

𝑘



2

+ (1 − 𝛽)
𝑥𝑛 − 𝑝

𝑘



2

+ 𝜏
𝑛
,

(231)

where 𝜏
𝑛
= 𝜃
𝑛
[2(𝛽‖𝑥

𝑛
− 𝐵𝑝
𝑘
‖ + (1 − 𝛽)‖𝑥

𝑛
− 𝑝
𝑘
‖) + 𝜃

𝑛
] → 0

as 𝑛 → ∞.
For any Banach limit 𝜇, from (231) we derive

𝜇
𝑛

𝑥𝑛 − 𝐵𝑝
𝑘



2

= 𝜇
𝑛

𝑥𝑛+1 − 𝐵𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

. (232)

In addition, note that

𝑥𝑛 − 𝐺𝑝
𝑘



2

≤
𝑥𝑛 − 𝐺𝑥

𝑛
+ 𝐺𝑥
𝑛
− 𝐺𝑝
𝑘



2

≤ (
𝑥𝑛 − 𝐺𝑥

𝑛

 +
𝑥𝑛 − 𝑝

𝑘

)
2

=
𝑥𝑛 − 𝑝

𝑘



2

+
𝑥𝑛 − 𝐺𝑥

𝑛



× (2
𝑥𝑛 − 𝑝

𝑘

 +
𝑥𝑛 − 𝐺𝑥

𝑛

) ,

𝑥𝑛 − 𝑆𝑝
𝑘



2

≤
𝑥𝑛 − 𝑆𝑥

𝑛
+ 𝑆𝑥
𝑛
− 𝑆𝑝
𝑘



2

≤ (
𝑥𝑛 − 𝑆𝑥

𝑛

 +
𝑥𝑛 − 𝑝

𝑘

)
2

=
𝑥𝑛 − 𝑝

𝑘



2

+
𝑥𝑛 − 𝑆𝑥

𝑛



× (2
𝑥𝑛 − 𝑝

𝑘

 +
𝑥𝑛 − 𝑆𝑥

𝑛

) .

(233)

It is easy to see from (209) and (228) that

𝜇
𝑛

𝑥𝑛 − 𝐺𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

,

𝜇
𝑛

𝑥𝑛 − 𝑆𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

.

(234)

Utilizing (232) and (234), we deduce that

𝜇
𝑛

𝑥𝑛 − 𝑉𝑝
𝑘



2

= 𝜇
𝑛

(1 − 𝜃
1
− 𝜃
2
) (𝑥
𝑛
− 𝑆𝑝
𝑘
)

+ 𝜃
1
(𝑥
𝑛
− 𝐵𝑝
𝑘
) + 𝜃
2
(𝑥
𝑛
− 𝐺𝑝
𝑘
)


2

≤ (1 − 𝜃
1
− 𝜃
2
) 𝜇
𝑛

𝑥𝑛 − 𝑆𝑝
𝑘



2

+ 𝜃
1
𝜇
𝑛

𝑥𝑛 − 𝐵𝑝
𝑘



2

+ 𝜃
2
𝜇
𝑛

𝑥𝑛 − 𝐺𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

.

(235)

Also, observe that

𝑥
𝑛
− 𝑝
𝑘
=
1

𝑘
(𝑥
𝑛
− 𝑓 (𝑝

𝑘
)) + (1 −

1

𝑘
) (𝑥
𝑛
− 𝑉𝑝
𝑘
) ; (236)

that is,

(1 −
1

𝑘
) (𝑥
𝑛
− 𝑉𝑝
𝑘
) = 𝑥
𝑛
− 𝑝
𝑘
−
1

𝑘
(𝑥
𝑛
− 𝑓 (𝑝

𝑘
)) . (237)

It follows from Lemma 8(ii) and (237) that

(1 −
1

𝑘
)

2

𝑥𝑛 − 𝑉𝑝
𝑘



2

≥
𝑥𝑛 − 𝑝

𝑘



2

−
2

𝑘
⟨𝑥
𝑛
− 𝑝
𝑘
+ 𝑝
𝑘
− 𝑓 (𝑝

𝑘
) , 𝐽 (𝑥

𝑛
− 𝑝
𝑘
)⟩

= (1 −
2

𝑘
)
𝑥𝑛 − 𝑝

𝑘



2

+
2

𝑘
⟨𝑓 (𝑝
𝑘
) − 𝑝
𝑘
, 𝐽 (𝑥
𝑛
− 𝑝
𝑘
)⟩ .

(238)

So by (235) and (238), we have

(1 −
1

𝑘
)

2

𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

≥ (1 −
2

𝑘
) 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

+
2

𝑘
𝜇
𝑛
⟨𝑓 (𝑝
𝑘
) − 𝑝
𝑘
, 𝐽 (𝑥
𝑛
− 𝑝
𝑘
)⟩ ,

(239)
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and hence

1

𝑘2
𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

≥
2

𝑘
𝜇
𝑛
⟨𝑓 (𝑝
𝑘
) − 𝑝
𝑘
, 𝐽 (𝑥
𝑛
− 𝑝
𝑘
)⟩ . (240)

This implies that

1

2𝑘
𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

≥ 𝜇
𝑛
⟨𝑓 (𝑝
𝑘
) − 𝑝
𝑘
, 𝐽 (𝑥
𝑛
− 𝑝
𝑘
)⟩ . (241)

Since 𝑝
𝑘
→ 𝑞 ∈ Fix(𝑉) = 𝐹 as 𝑘 → ∞, by the uniform

Frechet differentiability of the norm of𝑋, we have

𝜇
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛
− 𝑞)⟩ ≤ 0. (242)

On the other hand, from (184) and the norm-to-norm
uniform continuity of 𝐽 on bounded subsets of 𝑋, it follows
that

lim
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛+1

− 𝑞)⟩ − ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

 = 0.

(243)

So, utilizing Lemma 18 we deduce from (242) and (243) that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩ ≤ 0, (244)

which, together with (184) and the norm-to-norm uniform
continuity of 𝐽 on bounded subsets of𝑋, implies that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛+1

− 𝑞)⟩ ≤ 0. (245)

Finally, let us show that 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞. Utilizing

Lemma 8 (i), from (178) and the convexity of ‖ ⋅ ‖2, we get

𝑥𝑛+1 − 𝑞


2

=
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑞)) + 𝛽

𝑛
(𝑥
𝑛
− 𝑞) + 𝛾

𝑛
(𝐵
𝑛
𝑥
𝑛
− 𝑞)

+ 𝛿
𝑛
(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑞) + 𝛼

𝑛
(𝑓 (𝑞) − 𝑞)



2

≤
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑞)) + 𝛽

𝑛
(𝑥
𝑛
− 𝑞)

+ 𝛾
𝑛
(𝐵
𝑛
𝑥
𝑛
− 𝑞) + 𝛿

𝑛
(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑞)



2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛+1
− 𝑞)⟩

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑞)



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑞


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑞


2

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑞


2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛+1
− 𝑞)⟩

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑞)



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑞


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑞


2

+ 𝛿
𝑛

𝐺𝑥𝑛 − 𝑞


2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛+1
− 𝑞)⟩

≤ 𝛼
𝑛
𝜌
𝑥𝑛 − 𝑞



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑞


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑞


2

+ 𝛿
𝑛

𝑥𝑛 − 𝑞


2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛+1
− 𝑞)⟩

= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑞


2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛+1
− 𝑞)⟩

= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑞


2

+ 𝛼
𝑛
(1 − 𝜌)

2 ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛+1

− 𝑞)⟩

1 − 𝜌
.

(246)

Applying Lemma 7 to (246), we obtain that 𝑥
𝑛
→ 𝑞 as 𝑛 →

∞. This completes the proof.

Corollary 32. Let 𝐶 be a nonempty closed convex subset of a
uniformly convex and 2-uniformly smooth Banach space𝑋. Let
Π
𝐶
be a sunny nonexpansive retraction from 𝑋 onto 𝐶. Let

{𝜌
𝑛
}
∞

𝑛=0
be a sequence of positive numbers in (0, 𝑏] for some

𝑏 ∈ (0, 1) and 𝐴
𝑖
: 𝐶 → 𝑋 an �̂�

𝑖
-inverse strongly accretive

mapping for each 𝑖 = 0, 1, . . .. Define a mapping 𝐺
𝑖
: 𝐶 → 𝐶

by Π
𝐶
(𝐼 − 𝜆

𝑖
𝐴
𝑖
)𝑥 = 𝐺

𝑖
𝑥 for all 𝑥 ∈ 𝐶 and 𝑖 = 0, 1, . . .,

where 𝜆
𝑖
∈ (0, �̂�

𝑖
/𝜅
2

] and 𝜅 is the 2-uniformly smooth constant
of 𝑋. Let 𝐵

𝑛
: 𝐶 → 𝐶 be the 𝑊-mapping generated by

𝐺
𝑛
, 𝐺
𝑛−1

, . . . , 𝐺
0
, and 𝜌

𝑛
, 𝜌
𝑛−1

, . . . , 𝜌
0
. Let 𝑉 : 𝐶 → 𝐶 be

an 𝛼-strictly pseudocontractive mapping. Let 𝑓 : 𝐶 → 𝐶

be a contraction with coefficient 𝜌 ∈ (0, 1). Let {𝑆
𝑖
}
∞

𝑖=0
be a

countable family of nonexpansive mappings of𝐶 into itself such
that 𝐹 = (⋂

∞

𝑖=0
Fix(𝑆
𝑖
)) ∩ Fix(𝑉) ∩ (⋂

∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)) ̸= 0. For

arbitrarily given 𝑥
0
∈ 𝐶, let {𝑥

𝑛
} be the sequence generated by

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛

+ 𝛿
𝑛
𝑆
𝑛
((1 − 𝑙) 𝐼 + 𝑙𝑉) 𝑥

𝑛
, ∀𝑛 ≥ 0,

(247)

where 0 < 𝑙 < 𝛼/𝜅
2 and {𝛼

𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, and {𝛿

𝑛
} are the

sequences in (0, 1) such that 𝛼
𝑛
+𝛽
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1 for all 𝑛 ≥ 0.

Suppose that the following conditions hold:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iii) lim
𝑛→∞

(|𝛽
𝑛
− 𝛽
𝑛−1

| + |𝛾
𝑛
− 𝛾
𝑛−1

| + |𝛿
𝑛
− 𝛿
𝑛−1

|) = 0;

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1.

Assume that∑∞
𝑛=1

sup
𝑥∈𝐷

‖𝑆
𝑛
𝑥 − 𝑆
𝑛−1

𝑥‖ < ∞ for any bounded
subset 𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined
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by 𝑆𝑥 = lim
𝑛→∞

𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then, there hold the following:

(I) lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0;

(II) the sequence {𝑥
𝑛
}
∞

𝑛=0
converges strongly to some 𝑞 ∈

𝐹 which is the unique solution of the variational
inequality problem (VIP)

⟨(𝐼 − 𝑓) 𝑞, 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹, (248)

provided 𝛽
𝑛
≡ 𝛽 for some fixed 𝛽 ∈ (0, 1).

Proof. In Theorem 31, we put 𝐵
1
= 𝐼 − 𝑉, 𝐵

2
= 0 and 𝜇

1
= 𝑙

where 0 < 𝑙 < 𝛼/𝜅
2. Then GSVI (13) is equivalent to the VIP

of finding 𝑥∗ ∈ 𝐶 such that

⟨𝐵
1
𝑥
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (249)

In this case, 𝐵
1

: 𝐶 → 𝑋 is 𝛼-inverse strongly
accretive. Repeating the same arguments as those in the
proof of Corollary 25, we can infer that Fix(𝑉) = VI(𝐶, 𝐵

1
).

Accordingly, we know that 𝐹 = ⋂
∞

𝑖=0
Fix(𝑇
𝑖
) ∩ Ω ∩ 𝐴

−1

0 =

⋂
∞

𝑖=0
Fix(𝑇
𝑖
) ∩ Fix(𝑉) ∩ 𝐴

−1

0, and

Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) 𝑥
𝑛

= Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
) 𝑥
𝑛

= Π
𝐶
((1 − 𝑙) 𝑥

𝑛
+ 𝑙𝑉𝑥
𝑛
)

= ((1 − 𝑙) 𝐼 + 𝑙𝑉) 𝑥
𝑛
.

(250)

So, scheme (178) reduces to (247). Therefore, the desired
result follows fromTheorem 31.

Theorem 33. Let 𝐶 be a nonempty closed convex subset of
a uniformly convex Banach space 𝑋 which has a uniformly
Gateaux differentiable norm. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let {𝜌
𝑛
}
∞

𝑛=0
be a sequence of positive

numbers in (0, 𝑏] for some 𝑏 ∈ (0, 1) and 𝐴
𝑖
: 𝐶 → 𝑋𝜉

𝑖
-

strictly pseudocontractive and �̂�
𝑖
-strongly accretive with 𝜉

𝑖
+

�̂�
𝑖
≥ 1 for each 𝑖 = 0, 1, . . .. Define a mapping 𝐺

𝑖
: 𝐶 → 𝐶

by Π
𝐶
(𝐼 − 𝜆

𝑖
𝐴
𝑖
)𝑥 = 𝐺

𝑖
𝑥 for all 𝑥 ∈ 𝐶 and 𝑖 = 0, 1, . . ., where

1−(𝜉
𝑖
/(1+𝜉

𝑖
))(1−√(1 − �̂�

𝑖
)/𝜉
𝑖
) ≤ 𝜆
𝑖
≤ 1 for all 𝑖 = 0, 1, . . .. Let

𝐵
𝑛
: 𝐶 → 𝐶 be the𝑊-mapping generated by 𝐺

𝑛
, 𝐺
𝑛−1

, . . . , 𝐺
0

and 𝜌
𝑛
, 𝜌
𝑛−1

, . . . , 𝜌
0
. Let the mapping 𝐵

𝑖
: 𝐶 → 𝑋 be 𝜁

𝑖
-strictly

pseudocontractive and 𝛽
𝑖
-strongly accretive with 𝜁

𝑖
+ 𝛽
𝑖
≥ 1

for 𝑖 = 1, 2. Let 𝑓 : 𝐶 → 𝐶 be a contraction with coefficient
𝜌 ∈ (0, 1). Let {𝑆

𝑖
}
∞

𝑖=0
be a countable family of nonexpansive

mappings of 𝐶 into itself such that 𝐹 = (⋂
∞

𝑖=0
Fix(𝑆
𝑖
)) ∩

Ω ∩ (⋂
∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)) ̸= 0, where Ω is the fixed point set of the

mapping 𝐺 = Π
𝐶
(𝐼 − 𝜇

1
𝐵
1
)Π
𝐶
(𝐼 − 𝜇

2
𝐵
2
) with 1 − (𝜁

𝑖
/(1 +

𝜁
𝑖
))(1 − √(1 − 𝛽

𝑖
)/𝜁
𝑖
) ≤ 𝜇

𝑖
≤ 1 for 𝑖 = 1, 2. For arbitrarily

given 𝑥
0
∈ 𝐶, let {𝑥

𝑛
} be the sequence generated by

𝑥
𝑛+1

= 𝜎
𝑛
𝐺𝑥
𝑛
+ (1 − 𝜎

𝑛
)

× [𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
] , ∀𝑛 ≥ 0,

(251)

where {𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
}, {𝛿
𝑛
}, and {𝜎

𝑛
} are the sequences in (0, 1)

such that 𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
+ 𝛿
𝑛
= 1 for all 𝑛 ≥ 0. Suppose that the

following conditions hold:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iii) ∑∞
𝑛=1

(|𝜎
𝑛
−𝜎
𝑛−1

|+ |𝛼
𝑛
−𝛼
𝑛−1

|+ |𝛽
𝑛
−𝛽
𝑛−1

|+ |𝛾
𝑛
−𝛾
𝑛−1

|+

|𝛿
𝑛
− 𝛿
𝑛−1

|) < ∞;

(iv) 0 < lim inf
𝑛→∞

𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 and 0 <

lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
< 1.

Assume that∑∞
𝑛=1

sup
𝑥∈𝐷

‖𝑆
𝑛
𝑥 − 𝑆
𝑛−1

𝑥‖ < ∞ for any bounded
subset 𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined
by 𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then, there hold the following:

(I) lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0;

(II) the sequence {𝑥
𝑛
}
∞

𝑛=0
converges strongly to some 𝑞 ∈

𝐹 which is the unique solution of the variational
inequality problem (VIP)

⟨(𝐼 − 𝑓) 𝑞, 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹, (252)

provided 𝛽
𝑛
≡ 𝛽 for some fixed 𝛽 ∈ (0, 1).

Proof. First of all, it is easy to see that (251) can be rewritten
as follows:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
,

𝑥
𝑥+1

= 𝜎
𝑛
𝐺𝑥
𝑛
+ (1 − 𝜎

𝑛
) 𝑦
𝑛
, ∀𝑛 ≥ 0.

(253)

Take a fixed 𝑝 ∈ 𝐹 arbitrarily. Then, we obtain 𝑝 = 𝐺𝑝, 𝑝 =

𝐵
𝑛
𝑝 and 𝑆

𝑛
𝑝 = 𝑝 for all 𝑛 ≥ 0. Thus, we get from (253)

𝑦𝑛 − 𝑝


≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝

 + 𝛽
𝑛

𝑥𝑛 − 𝑝


+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝
 + 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


≤ 𝛼
𝑛
(𝜌

𝑥𝑛 − 𝑝
 +

𝑓 (𝑝) − 𝑝
)

+ 𝛽
𝑛

𝑥𝑛 − 𝑝
 + 𝛾
𝑛

𝑥𝑛 − 𝑝
 + 𝛿
𝑛

𝑥𝑛 − 𝑝


= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑝
 + 𝛼
𝑛

𝑓 (𝑝) − 𝑝
 ,

(254)
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and hence

𝑥𝑛+1 − 𝑝


≤ 𝜎
𝑛

𝐺𝑥𝑛 − 𝑝
 + (1 − 𝜎

𝑛
)
𝑦𝑛 − 𝑝



≤ 𝜎
𝑛

𝑥𝑛 − 𝑝
 + (1 − 𝜎

𝑛
)

× [(1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑝
 + 𝛼
𝑛

𝑓 (𝑝) − 𝑝
]

= (1 − (1 − 𝜎
𝑛
) 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑝


+ (1 − 𝜎
𝑛
) 𝛼
𝑛

𝑓 (𝑝) − 𝑝


= (1 − (1 − 𝜎
𝑛
) 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑝


+ (1 − 𝜎
𝑛
) 𝛼
𝑛
(1 − 𝜌)

𝑓 (𝑝) − 𝑝


1 − 𝜌

≤ max{𝑥𝑛 − 𝑝
 ,

𝑓 (𝑝) − 𝑝


1 − 𝜌
} .

(255)

By induction, we have

𝑥𝑛 − 𝑝
 ≤ max{𝑥0 − 𝑝

 ,

𝑓 (𝑝) − 𝑝


1 − 𝜌
} , ∀𝑛 ≥ 0.

(256)

which implies that {𝑥
𝑛
} is bounded and so are the sequences

{𝑦
𝑛
}, {𝐺𝑥

𝑛
} and {𝑓(𝑥

𝑛
)}.

Let us show that

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = 0. (257)

As amatter of fact, observe that𝑦
𝑛
can be rewritten as follows:

𝑦
𝑛
= 𝛽
𝑛
𝑥
𝑛
+ (1 − 𝛽

𝑛
) 𝑧
𝑛
, (258)

where 𝑧
𝑛
= (𝛼
𝑛
𝑓(𝑥
𝑛
) + 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
)/(1 − 𝛽

𝑛
). Observe

that

𝑧𝑛 − 𝑧
𝑛−1



=



𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

1 − 𝛽
𝑛

−
𝛼
𝑛−1

𝑓 (𝑥
𝑛−1

) + 𝛾
𝑛−1

𝐵
𝑛−1

𝑥
𝑛−1

+ 𝛿
𝑛−1

𝑆
𝑛−1

𝐺𝑥
𝑛−1

1 − 𝛽
𝑛−1



=



𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛−1



=



𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛

+
𝑦
𝑛−1

− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛−1



≤



𝑦
𝑛
− 𝛽
𝑛
𝑥
𝑛

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛



+



𝑦
𝑛−1

− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛

−
𝑦
𝑛−1

− 𝛽
𝑛−1

𝑥
𝑛−1

1 − 𝛽
𝑛−1



=
1

1 − 𝛽
𝑛

𝑦𝑛 − 𝛽
𝑛
𝑥
𝑛
− (𝑦
𝑛−1

− 𝛽
𝑛−1

𝑥
𝑛−1

)


+



1

1 − 𝛽
𝑛

−
1

1 − 𝛽
𝑛−1



𝑦𝑛−1 − 𝛽
𝑛−1

𝑥
𝑛−1



=
1

1 − 𝛽
𝑛

𝑦𝑛 − 𝛽
𝑛
𝑥
𝑛
− (𝑦
𝑛−1

− 𝛽
𝑛−1

𝑥
𝑛−1

)


+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

𝑦𝑛−1 − 𝛽
𝑛−1

𝑥
𝑛−1



=
1

1 − 𝛽
𝑛

𝛼𝑛𝑓 (𝑥
𝑛
) + 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

− 𝛼
𝑛−1

𝑓 (𝑥
𝑛−1

) − 𝛾
𝑛−1

𝐵
𝑛−1

𝑥
𝑛−1

−𝛿
𝑛−1

𝑆
𝑛−1

𝐺𝑥
𝑛−1



+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

𝑦𝑛−1 − 𝛽
𝑛−1

𝑥
𝑛−1



≤
1

1 − 𝛽
𝑛

[𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑥

𝑛−1
)


+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝐵
𝑛−1

𝑥
𝑛−1



+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑆
𝑛−1

𝐺𝑥
𝑛−1



+
𝛼𝑛 − 𝛼

𝑛−1



𝑓 (𝑥
𝑛−1

)


+
𝛾𝑛 − 𝛾

𝑛−1



𝐵𝑛−1𝑥𝑛−1


+
𝛿𝑛 − 𝛿

𝑛−1



𝑆𝑛−1𝐺𝑥𝑛−1
]

+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

𝑦𝑛−1 − 𝛽
𝑛−1

𝑥
𝑛−1

 .

(259)

On the other hand, repeating the same arguments as those of
(52) and (54) in the proof ofTheorem 24, we can deduce that
for all 𝑛 ≥ 1

𝑆𝑛𝐺𝑥𝑛 − 𝑆
𝑛−1

𝐺𝑥
𝑛−1



≤
𝑥𝑛 − 𝑥

𝑛−1

 +
𝑆𝑛𝐺𝑥𝑛−1 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1

 ,

𝐵𝑛𝑥𝑛 − 𝐵
𝑛−1

𝑥
𝑛−1

 ≤
𝑥𝑛 − 𝑥

𝑛−1

 +𝑀

𝑛−1

∏

𝑖=0

𝜆
𝑖
,

(260)

for some constant 𝑀 > 0. Taking into account 0 <

lim inf
𝑛→∞

𝛽
𝑛

≤ lim sup
𝑛→∞

𝛽
𝑛

< 1, we may assume,
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without loss of generality, that {𝛽
𝑛
} ⊂ [𝑐, 𝑑]. Utilizing (259)-

(260) we have

𝑧𝑛 − 𝑧
𝑛−1



≤
1

1 − 𝛽
𝑛

× {𝛼
𝑛
𝜌
𝑥𝑛 − 𝑥

𝑛−1

 + 𝛾
𝑛
[
𝑥𝑛 − 𝑥

𝑛−1

 +𝑀

𝑛−1

∏

𝑖=0

𝜆
𝑖
]

+ 𝛿
𝑛
[
𝑥𝑛 − 𝑥

𝑛−1

 +
𝑆𝑛𝐺𝑥𝑛−1 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1

]

+
𝛼𝑛 − 𝛼

𝑛−1



𝑓 (𝑥
𝑛−1

)
 +

𝛾𝑛 − 𝛾
𝑛−1



𝐵𝑛−1𝑥𝑛−1


+
𝛿𝑛 − 𝛿

𝑛−1



𝑆𝑛−1𝐺𝑥𝑛−1
}

+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

𝑦𝑛−1 − 𝛽
𝑛−1

𝑥
𝑛−1



=
1

1 − 𝛽
𝑛

{ (1 − 𝛽
𝑛
− 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑥
𝑛−1



+ 𝛾
𝑛
𝑀

𝑛−1

∏

𝑖=0

𝜆
𝑖
+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛−1 − 𝑆
𝑛−1

𝐺𝑥
𝑛−1



+
𝛼𝑛 − 𝛼

𝑛−1



𝑓 (𝑥
𝑛−1

)


+
𝛾𝑛 − 𝛾

𝑛−1



𝐵𝑛−1𝑥𝑛−1


+
𝛿𝑛 − 𝛿

𝑛−1



𝑆𝑛−1𝐺𝑥𝑛−1
}

+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

𝑦𝑛−1 − 𝛽
𝑛−1

𝑥
𝑛−1



= (1 −
𝛼
𝑛
(1 − 𝜌)

1 − 𝛽
𝑛

)
𝑥𝑛 − 𝑥

𝑛−1

 +
𝛾
𝑛
𝑀

1 − 𝛽
𝑛

𝑛−1

∏

𝑖=0

𝜆
𝑖

+
𝛿
𝑛

1 − 𝛽
𝑛

𝑆𝑛𝐺𝑥𝑛−1 − 𝑆
𝑛−1

𝐺𝑥
𝑛−1



+
1

1 − 𝛽
𝑛

[
𝛼𝑛 − 𝛼

𝑛−1



𝑓 (𝑥
𝑛−1

)
 +

𝛾𝑛 − 𝛾
𝑛−1



×
𝐵𝑛−1𝑥𝑛−1

 +
𝛿𝑛 − 𝛿

𝑛−1



𝑆𝑛−1𝐺𝑥𝑛−1
]

+

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

𝑦𝑛−1 − 𝛽
𝑛−1

𝑥
𝑛−1



≤ (1 −
𝛼
𝑛
(1 − 𝜌)

1 − 𝛽
𝑛

)
𝑥𝑛 − 𝑥

𝑛−1

 +𝑀

𝑛−1

∏

𝑖=0

𝜆
𝑖

+
𝑆𝑛𝐺𝑥𝑛−1 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1

 +
1

1 − 𝛽
𝑛

× [
𝛼𝑛 − 𝛼

𝑛−1



𝑓 (𝑥
𝑛−1

)


+
𝛾𝑛 − 𝛾

𝑛−1



𝐵𝑛−1𝑥𝑛−1


+
𝛿𝑛 − 𝛿

𝑛−1



𝑆𝑛−1𝐺𝑥𝑛−1
] +

𝛽𝑛 − 𝛽
𝑛−1



(1 − 𝛽
𝑛−1

) (1 − 𝛽
𝑛
)

×
𝛼𝑛−1𝑓 (𝑥

𝑛−1
) + 𝛾
𝑛−1

𝐵
𝑛−1

𝑥
𝑛−1

+ 𝛿
𝑛−1

𝑆
𝑛−1

𝐺𝑥
𝑛−1



≤ (1 −
𝛼
𝑛
(1 − 𝜌)

1 − 𝛽
𝑛

)
𝑥𝑛 − 𝑥

𝑛−1



+𝑀
1
[

𝑛−1

∏

𝑖=0

𝜆
𝑖
+
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1

 +
𝛾𝑛 − 𝛾

𝑛−1



+
𝛿𝑛 − 𝛿

𝑛−1

 ] +
𝑆𝑛𝐺𝑥𝑛−1 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1

 ,

(261)

where sup
𝑛≥0

{(1/(1 − 𝑑)
2

)(‖𝑓(𝑥
𝑛
)‖ + ‖𝐵

𝑛
𝑥
𝑛
‖ + ‖𝑆

𝑛
𝐺𝑥
𝑛
‖ +

𝑀)} ≤ 𝑀
1
for some𝑀

1
> 0. In the meantime, observe that

𝑥
𝑛+1

− 𝑥
𝑛
= 𝜎
𝑛
(𝐺𝑥
𝑛
− 𝐺𝑥
𝑛−1

) + (𝜎
𝑛
− 𝜎
𝑛−1

) (𝐺𝑥
𝑛−1

− 𝑧
𝑛−1

)

+ (1 − 𝜎
𝑛
) (𝑧
𝑛
− 𝑧
𝑛−1

) .

(262)

This together with (261), implies that
𝑥𝑛+1 − 𝑥

𝑛



≤ 𝜎
𝑛

𝐺𝑥𝑛 − 𝐺𝑥
𝑛−1

 +
𝜎𝑛 − 𝜎

𝑛−1



𝐺𝑥𝑛−1 − 𝑧
𝑛−1



+ (1 − 𝜎
𝑛
)
𝑧𝑛 − 𝑧

𝑛−1



≤ 𝜎
𝑛

𝑥𝑛 − 𝑥
𝑛−1

 +
𝜎𝑛 − 𝜎

𝑛−1



𝐺𝑥𝑛−1 − 𝑧
𝑛−1



+ (1 − 𝜎
𝑛
) {(1 −

𝛼
𝑛
(1 − 𝜌)

1 − 𝛽
𝑛

)
𝑥𝑛 − 𝑥

𝑛−1



+𝑀
1
[

𝑛−1

∏

𝑖=0

𝜆
𝑖
+
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1



+
𝛾𝑛 − 𝛾

𝑛−1

 +
𝛿𝑛 − 𝛿

𝑛−1

 ]

+
𝑆𝑛𝐺𝑥𝑛−1 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1

 }

≤ (1 −
(1 − 𝜎

𝑛
) 𝛼
𝑛
(1 − 𝜌)

1 − 𝛽
𝑛

)
𝑥𝑛 − 𝑥

𝑛−1



+
𝜎𝑛 − 𝜎

𝑛−1



𝐺𝑥𝑛−1 − 𝑧
𝑛−1



+𝑀
1
[

𝑛−1

∏

𝑖=0

𝜆
𝑖
+
𝛼𝑛 − 𝛼

𝑛−1

 +
𝛽𝑛 − 𝛽

𝑛−1



+
𝛾𝑛 − 𝛾

𝑛−1

 +
𝛿𝑛 − 𝛿

𝑛−1

 ]
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+
𝑆𝑛𝐺𝑥𝑛−1 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1



≤ (1 −
(1 − 𝜎

𝑛
) 𝛼
𝑛
(1 − 𝜌)

1 − 𝛽
𝑛

)
𝑥𝑛 − 𝑥

𝑛−1



+𝑀
2
[

𝑛−1

∏

𝑖=0

𝜆
𝑖
+
𝜎𝑛 − 𝜎

𝑛−1

 +
𝛼𝑛 − 𝛼

𝑛−1



+
𝛽𝑛 − 𝛽

𝑛−1

 +
𝛾𝑛 − 𝛾

𝑛−1

 +
𝛿𝑛 − 𝛿

𝑛−1

 ]

+
𝑆𝑛𝐺𝑥𝑛−1 − 𝑆

𝑛−1
𝐺𝑥
𝑛−1

 ,

(263)

where sup
𝑛≥0

{𝑀
1
+‖𝐺𝑥

𝑛
−𝑧
𝑛
‖} ≤ 𝑀

2
for some𝑀

2
> 0. Since

∑
∞

𝑛=0
𝛼
𝑛
= ∞ and (1−𝜎

𝑛
)𝛼
𝑛
(1−𝜌)/(1−𝛽

𝑛
) ≥ (1−𝜎

𝑛
)𝛼
𝑛
(1−𝜌),

we obtain from conditions (i) and (iv) that∑∞
𝑛=0

((1−𝜎
𝑛
)𝛼
𝑛
(1−

𝜌)/(1 − 𝛽
𝑛
)) = ∞. Thus, applying Lemma 7 to (263), we

deduce from condition (iii) and the assumption on {𝑆
𝑛
} that

(noting that 0 < 𝜆
𝑖
≤ 𝑏 < 1, for all 𝑖 ≥ 0)

lim
𝑛→∞

𝑥𝑛+1 − 𝑥
𝑛

 = 0. (264)

Next, we show that ‖𝑥
𝑛
− 𝐺𝑥
𝑛
‖ → 0 as 𝑛 → ∞.

Indeed, according to Lemma 8 we have from (253)

𝑦𝑛 − 𝑝


2

=
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑝)) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝) + 𝛾

𝑛
(𝐵
𝑛
𝑥
𝑛
− 𝑝)

+ 𝛿
𝑛
(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑝) + 𝛼

𝑛
(𝑓 (𝑝) − 𝑝)



2

≤
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑝)) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝)

+ 𝛾
𝑛
(𝐵
𝑛
𝑥
𝑛
− 𝑝) + 𝛿

𝑛
(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑝)



2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑝)



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


2

+ 2𝛼
𝑛
⟨𝑓 (𝑝) − 𝑝, 𝐽 (𝑥

𝑛+1
− 𝑝)⟩

≤ 𝛼
𝑛
𝜌
𝑥𝑛 − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛿
𝑛

𝑥𝑛 − 𝑝


2

+ 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝


= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑝


2

+ 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝


≤
𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝
 .

(265)

Utilizing Lemma 15 we get from (253) and (265)

𝑥𝑛+1 − 𝑝


2

=
𝜎𝑛 (𝐺𝑥𝑛 − 𝑝) + (1 − 𝜎

𝑛
) (𝑦
𝑛
− 𝑝)



2

≤ 𝜎
𝑛

𝐺𝑥𝑛 − 𝑝


2

+ (1 − 𝜎
𝑛
)
𝑦𝑛 − 𝑝



2

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔 (

𝐺𝑥𝑛 − 𝑦
𝑛

)

≤ 𝜎
𝑛

𝑥𝑛 − 𝑝


2

+ (1 − 𝜎
𝑛
)

× [
𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝
]

− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔 (

𝐺𝑥𝑛 − 𝑦
𝑛

)

≤
𝑥𝑛 − 𝑝



2

+ 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝


− 𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔 (

𝐺𝑥𝑛 − 𝑦
𝑛

) ,

(266)

which hence yields

𝜎
𝑛
(1 − 𝜎

𝑛
) 𝑔 (

𝐺𝑥𝑛 − 𝑦
𝑛

)

≤
𝑥𝑛 − 𝑝



2

−
𝑥𝑛+1 − 𝑝



2

+ 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝


≤ (
𝑥𝑛 − 𝑝

 +
𝑥𝑛+1 − 𝑝

)
𝑥𝑛 − 𝑥

𝑛+1



+ 2𝛼
𝑛

𝑓 (𝑝) − 𝑝


𝑥𝑛+1 − 𝑝
 .

(267)

Since 𝛼
𝑛
→ 0 and ‖𝑥

𝑛+1
−𝑥
𝑛
‖ → 0, from condition (iv) and

the boundedness of {𝑥
𝑛
}, it follows that

lim
𝑛→∞

𝑔 (
𝐺𝑥𝑛 − 𝑦

𝑛

) = 0. (268)

Utilizing the properties of 𝑔, we have

lim
𝑛→∞

𝐺𝑥𝑛 − 𝑦
𝑛

 = 0, (269)

which, together with (253) and (257), implies that
𝑥𝑛 − 𝑦

𝑛



≤
𝑥𝑛 − 𝑥

𝑛+1

 +
𝑥𝑛+1 − 𝑦

𝑛



=
𝑥𝑛 − 𝑥

𝑛+1

 + 𝜎
𝑛

𝐺𝑥𝑛 − 𝑦
𝑛

 → 0

as 𝑛 → ∞.

(270)

That is,

lim
𝑛→∞

𝑥𝑛 − 𝑦
𝑛

 = 0. (271)

Since
𝑥𝑛 − 𝐺𝑥

𝑛

 ≤
𝑥𝑛 − 𝑦

𝑛

 +
𝑦𝑛 − 𝐺𝑥

𝑛

 , (272)

it immediately follows from (269) and (271) that

lim
𝑛→∞

𝑥𝑛 − 𝐺𝑥
𝑛

 = 0. (273)
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On the other hand, observe that 𝑦
𝑛
can be rewritten as

follows:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ (𝛾
𝑛
+ 𝛿
𝑛
)
𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝑒
𝑛
�̂�
𝑛
,

(274)

where 𝑒
𝑛
= 𝛾
𝑛
+ 𝛿
𝑛
and �̂�
𝑛
= (𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
)/(𝛾
𝑛
+ 𝛿
𝑛
).

Utilizing Lemma 11, we have

𝑦𝑛 − 𝑝


2

=
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑝) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝) + 𝑒

𝑛
(�̂�
𝑛
− 𝑝)



2

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝑒
𝑛

�̂�𝑛 − 𝑝


2

− 𝛽
𝑛
𝑒
𝑛
𝑔
1
(
�̂�𝑛 − 𝑥

𝑛

)

= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

− 𝛽
𝑛
𝑒
𝑛
𝑔
1
(
�̂�𝑛 − 𝑥

𝑛

)

+ 𝑒
𝑛



𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

− 𝑝



2

= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

− 𝛽
𝑛
𝑒
𝑛
𝑔
1
(
�̂�𝑛 − 𝑥

𝑛

)

+ 𝑒
𝑛



𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝐵
𝑛
𝑥
𝑛
− 𝑝) +

𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑝)



2

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

− 𝛽
𝑛
𝑒
𝑛
𝑔
1
(
�̂�𝑛 − 𝑥

𝑛

)

+ 𝑒
𝑛
[

𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


2

]

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

− 𝛽
𝑛
𝑒
𝑛
𝑔
1
(
�̂�𝑛 − 𝑥

𝑛

)

+ 𝑒
𝑛
[

𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑥𝑛 − 𝑝


2

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑥𝑛 − 𝑝


2

]

= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

− 𝛽
𝑛
𝑒
𝑛
𝑔
1
(
�̂�𝑛 − 𝑥

𝑛

)

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+
𝑥𝑛 − 𝑝



2

− 𝛽
𝑛
𝑒
𝑛
𝑔
1
(
�̂�𝑛 − 𝑥

𝑛

) ,

(275)

which hence implies that

𝛽
𝑛
𝑒
𝑛
𝑔
1
(
�̂�𝑛 − 𝑥

𝑛

)

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+
𝑥𝑛 − 𝑝



2

−
𝑦𝑛 − 𝑝



2

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ (
𝑥𝑛 − 𝑝

 +
𝑦𝑛 − 𝑝

)
𝑥𝑛 − 𝑦

𝑛

 .

(276)

Utilizing (271), conditions (i), (ii), (iv), and the boundedness
of {𝑥
𝑛
}, {𝑦
𝑛
} and {𝑓(𝑥

𝑛
)}, we get

lim
𝑛→∞

𝑔
1
(
�̂�𝑛 − 𝑥

𝑛

) = 0. (277)

From the properties of 𝑔
1
, we have

lim
𝑛→∞

�̂�𝑛 − 𝑥
𝑛

 = 0. (278)

Utilizing Lemma 15 and the definition of �̂�
𝑛
, we have

�̂�𝑛 − 𝑝


2

=



𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛾
𝑛
+ 𝛿
𝑛

− 𝑝



2

=



𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝐵
𝑛
𝑥
𝑛
− 𝑝) +

𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑝)



2

≤
𝛾
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+
𝛿
𝑛

𝛾
𝑛
+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑝


2

−
𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2

𝑔
2
(
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤
𝑥𝑛 − 𝑝



2

−
𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2
𝑔
2
(
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

) ,

(279)

which leads to
𝛾
𝑛
𝛿
𝑛

(𝛾
𝑛
+ 𝛿
𝑛
)
2

𝑔
2
(
𝑆𝑛𝐺𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤
𝑥𝑛 − 𝑝



2

−
�̂�𝑛 − 𝑝



2

≤ (
𝑥𝑛 − 𝑝

 +
�̂�𝑛 − 𝑝

)
𝑥𝑛 − �̂�

𝑛

 .

(280)

Since {𝑥
𝑛
} and {�̂�

𝑛
} are bounded, we deduce from (278) and

condition (ii) that
lim
𝑛→∞

𝑔
2
(
𝐵𝑛𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

) = 0. (281)

From the properties of 𝑔
2
, we have

lim
𝑛→∞

𝐵𝑛𝑥𝑛 − 𝑆
𝑛
𝐺𝑥
𝑛

 = 0. (282)

Furthermore, 𝑦
𝑛
can also be rewritten as follows:

𝑦
𝑛
= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ (𝛼
𝑛
+ 𝛿
𝑛
)
𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛼
𝑛
+ 𝛿
𝑛

= 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝑑
𝑛
�̃�
𝑛
,

(283)
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where 𝑑
𝑛
= 𝛼
𝑛
+ 𝛿
𝑛
and �̃�
𝑛
= (𝛼
𝑛
𝑓(𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛
)/(𝛼
𝑛
+ 𝛿
𝑛
).

Utilizing Lemma 11 and the convexity of ‖ ⋅ ‖2, we have
𝑦𝑛 − 𝑝



2

=
𝛽𝑛 (𝑥𝑛 − 𝑝) + 𝛾

𝑛
(𝐵
𝑛
𝑥
𝑛
− 𝑝) + 𝑑

𝑛
(�̃�
𝑛
− 𝑝)



2

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+ 𝑑
𝑛

�̃�𝑛 − 𝑝


2

− 𝛽
𝑛
𝛾
𝑛
𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

= 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+ 𝑑
𝑛



𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛿
𝑛
𝑆
𝑛
𝐺𝑥
𝑛

𝛼
𝑛
+ 𝛿
𝑛

− 𝑝



2

− 𝛽
𝑛
𝛾
𝑛
𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

= 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑝


2

+ 𝑑
𝑛



𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

(𝑓 (𝑥
𝑛
) − 𝑝) +

𝛿
𝑛

𝛼
𝑛
+ 𝛿
𝑛

(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑝)



2

− 𝛽
𝑛
𝛾
𝑛
𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤ 𝛽
𝑛

𝑥𝑛 − 𝑝


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑝


2

+ 𝑑
𝑛
[

𝛼
𝑛

𝛼
𝑛
+ 𝛿
𝑛

𝑓 (𝑥
𝑛
)−𝑝



2

+
𝛿
𝑛

𝛼
𝑛
+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛−𝑝


2

]

− 𝛽
𝑛
𝛾
𝑛
𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ (𝛽
𝑛
+ 𝛾
𝑛
)
𝑥𝑛 − 𝑝



2

+ 𝛿
𝑛

𝑥𝑛 − 𝑝


2

− 𝛽
𝑛
𝛾
𝑛
𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

= 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ (1 − 𝛼
𝑛
)
𝑥𝑛 − 𝑝



2

− 𝛽
𝑛
𝛾
𝑛
𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+
𝑥𝑛 − 𝑝



2

− 𝛽
𝑛
𝛾
𝑛
𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

) ,

(284)

which hence implies that

𝛽
𝑛
𝛾
𝑛
𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

)

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+
𝑥𝑛 − 𝑝



2

−
𝑦𝑛 − 𝑝



2

≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑝



2

+ (
𝑥𝑛 − 𝑝

 +
𝑦𝑛 − 𝑝

)

×
𝑥𝑛 − 𝑦

𝑛

 .

(285)

Utilizing (271), conditions (i), (ii), (iv), and the boundedness
of {𝑥
𝑛
}, {𝑦
𝑛
} and {𝑓(𝑥

𝑛
)}, we get

lim
𝑛→∞

𝑔
3
(
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛

) = 0. (286)

From the properties of 𝑔
3
, we have

lim
𝑛→∞

𝑥𝑛 − 𝐵
𝑛
𝑥
𝑛

 = 0. (287)

Thus, from (282) and (287), we get

𝑥𝑛 − 𝑆
𝑛
𝐺𝑥
𝑛

 ≤
𝑥𝑛 − 𝐵

𝑛
𝑥
𝑛



+
𝐵𝑛𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

 → 0 as 𝑛 → ∞.

(288)

That is,

lim
𝑛→∞

𝑥𝑛 − 𝑆
𝑛
𝐺𝑥
𝑛

 = 0. (289)

Therefore, from Lemma 12, (273), and (289), it follows that

𝑥𝑛 − 𝑆𝑥
𝑛



≤
𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

 +
𝑆𝑛𝐺𝑥𝑛 − 𝑆

𝑛
𝑥
𝑛

 +
𝑆𝑛𝑥𝑛 − 𝑆𝑥

𝑛



≤
𝑥𝑛 − 𝑆

𝑛
𝐺𝑥
𝑛

 +
𝐺𝑥𝑛 − 𝑥

𝑛



+
𝑆𝑛𝑥𝑛 − 𝑆𝑥

𝑛

 → 0 as 𝑛 → ∞.

(290)

That is,

lim
𝑛→∞

𝑥𝑛 − 𝑆𝑥
𝑛

 = 0. (291)

Suppose that 𝛽
𝑛
≡ 𝛽 for some fixed 𝛽 ∈ (0, 1) such that

𝛼
𝑛
+ 𝛽 + 𝛾

𝑛
+ 𝛿
𝑛
= 1 for all 𝑛 ≥ 0. Define a mapping 𝑉𝑥 =

(1 − 𝜃
1
− 𝜃
2
)𝑆𝑥 + 𝜃

1
𝐵𝑥 + 𝜃

2
𝐺𝑥, where 𝜃

1
, 𝜃
2
∈ (0, 1) are two

constants with 𝜃
1
+ 𝜃
2
< 1. Then, by Lemmas 14 and 17, we

have that Fix(𝑉) = Fix(𝑆) ∩ Fix(𝐵) ∩ Fix(𝐺) = 𝐹. For each
𝑘 ≥ 1, let {𝑝

𝑘
} be a unique element of 𝐶 such that

𝑝
𝑘
=
1

𝑘
𝑓 (𝑝
𝑘
) + (1 −

1

𝑘
)𝑉𝑝
𝑘
. (292)

From Lemma 13, we conclude that 𝑝
𝑘
→ 𝑞 ∈ Fix(𝑉) = 𝐹 as

𝑘 → ∞. Repeating the same arguments as those of (81) in
the proof of Theorem 24, we can conclude that for every 𝑛, 𝑘

𝑦𝑛 − 𝐵𝑝
𝑘



≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝐵𝑝

𝑘

 + 𝛽
𝑥𝑛 − 𝐵𝑝

𝑘



+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝐵𝑝
𝑘

 + 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝐵𝑝
𝑘



≤ 𝜃
𝑛
+ 𝛽

𝑥𝑛 − 𝐵𝑝
𝑘

 + (1 − 𝛽)
𝑥𝑛 − 𝑝

𝑘

 ,

(293)

where 𝜃
𝑛

= 𝛼
𝑛
‖𝑓(𝑥
𝑛
) − 𝐵𝑝

𝑘
‖ + (1 − 𝛽)‖𝐵

𝑛
𝑝
𝑘
− 𝐵𝑝
𝑘
‖ +

𝛿
𝑛
‖𝑆
𝑛
𝐺𝑥
𝑛
−𝐵
𝑛
𝑥
𝑛
‖. Since lim

𝑛→∞
𝛼
𝑛
= lim
𝑛→∞

‖𝐵
𝑛
𝑝
𝑘
−𝐵𝑝
𝑘
‖ =

lim
𝑛→∞

‖𝑆
𝑛
𝐺𝑥
𝑛
− 𝐵
𝑛
𝑥
𝑛
‖ = 0, we know that 𝜃

𝑛
→ 0 as
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𝑛 → ∞. So, it immediately follows that

𝑥𝑛+1 − 𝐵𝑝
𝑘



2

=
𝑦𝑛 − 𝐵𝑝

𝑘



2

+
𝑥𝑛+1 − 𝑦

𝑛



× [2
𝑦𝑛 − 𝐵𝑝

𝑘

 +
𝑥𝑛+1 − 𝑦

𝑛

]

≤ (𝛽
𝑥𝑛 − 𝐵𝑝

𝑘

 + (1 − 𝛽)
𝑥𝑛 − 𝑝

𝑘

)
2

+ 𝜃
𝑛
[2 (𝛽

𝑥𝑛 − 𝐵𝑝
𝑘

 + (1 − 𝛽)
𝑥𝑛 − 𝑝

𝑘

) + 𝜃
𝑛
]

+
𝑥𝑛+1 − 𝑦

𝑛

 [2
𝑦𝑛 − 𝐵𝑝

𝑘

 +
𝑥𝑛+1 − 𝑦

𝑛

]

= 𝛽
2𝑥𝑛 − 𝐵𝑝

𝑘



2

+ (1 − 𝛽)
2𝑥𝑛 − 𝑝

𝑘



2

+ 2𝛽 (1 − 𝛽)
𝑥𝑛 − 𝐵𝑝

𝑘



𝑥𝑛 − 𝑝
𝑘

 + 𝜏
𝑛

≤ 𝛽
2𝑥𝑛 − 𝐵𝑝

𝑘



2

+ (1 − 𝛽)
2𝑥𝑛 − 𝑝

𝑘



2

+ 𝛽 (1 − 𝛽) (
𝑥𝑛 − 𝐵𝑝

𝑘



2

+
𝑥𝑛 − 𝑝

𝑘



2

) + 𝜏
𝑛

= 𝛽
𝑥𝑛 − 𝐵𝑝

𝑘



2

+ (1 − 𝛽)
𝑥𝑛 − 𝑝

𝑘



2

+ 𝜏
𝑛
,

(294)

where 𝜏
𝑛
= 𝜃
𝑛
[2(𝛽‖𝑥

𝑛
−𝐵𝑝
𝑘
‖+(1−𝛽)‖𝑥

𝑛
−𝑝
𝑘
‖)+𝜃
𝑛
]+‖𝑥
𝑛+1

−

𝑦
𝑛
‖[2‖𝑦
𝑛
− 𝐵𝑝
𝑘
‖ + ‖𝑥

𝑛+1
− 𝑦
𝑛
‖] → 0 as 𝑛 → ∞.

For any Banach limit 𝜇, from (294), we derive

𝜇
𝑛

𝑥𝑛 − 𝐵𝑝
𝑘



2

= 𝜇
𝑛

𝑥𝑛+1 − 𝐵𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

. (295)

In addition, note that

𝑥𝑛 − 𝐺𝑝
𝑘



2

≤
𝑥𝑛 − 𝐺𝑥

𝑛
+ 𝐺𝑥
𝑛
− 𝐺𝑝
𝑘



2

≤ (
𝑥𝑛 − 𝐺𝑥

𝑛

 +
𝑥𝑛 − 𝑝

𝑘

)
2

=
𝑥𝑛 − 𝑝

𝑘



2

+
𝑥𝑛 − 𝐺𝑥

𝑛



× (2
𝑥𝑛 − 𝑝

𝑘

 +
𝑥𝑛 − 𝐺𝑥

𝑛

) ,

𝑥𝑛 − 𝑆𝑝
𝑘



2

≤
𝑥𝑛 − 𝑆𝑥

𝑛
+ 𝑆𝑥
𝑛
− 𝑆𝑝
𝑘



2

≤ (
𝑥𝑛 − 𝑆𝑥

𝑛

 +
𝑥𝑛 − 𝑝

𝑘

)
2

=
𝑥𝑛 − 𝑝

𝑘



2

+
𝑥𝑛 − 𝑆𝑥

𝑛



× (2
𝑥𝑛 − 𝑝

𝑘

 +
𝑥𝑛 − 𝑆𝑥

𝑛

) .

(296)

It is easy to see from (273) and (291) that

𝜇
𝑛

𝑥𝑛 − 𝐺𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

,

𝜇
𝑛

𝑥𝑛 − 𝑆𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

.

(297)

Utilizing (295) and (297), we deduce that

𝜇
𝑛

𝑥𝑛 − 𝑉𝑝
𝑘



2

= 𝜇
𝑛

(1 − 𝜃
1
− 𝜃
2
) (𝑥
𝑛
− 𝑆𝑝
𝑘
)

+ 𝜃
1
(𝑥
𝑛
− 𝐵𝑝
𝑘
) + 𝜃
2
(𝑥
𝑛
− 𝐺𝑝
𝑘
)


2

≤ (1 − 𝜃
1
− 𝜃
2
) 𝜇
𝑛

𝑥𝑛 − 𝑆𝑝
𝑘



2

+ 𝜃
1
𝜇
𝑛

𝑥𝑛 − 𝐵𝑝
𝑘



2

+ 𝜃
2
𝜇
𝑛

𝑥𝑛 − 𝐺𝑝
𝑘



2

≤ 𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

.

(298)

Repeating the same arguments as those of (99) in the proof
of Theorem 24, we can obtain that

1

2𝑘
𝜇
𝑛

𝑥𝑛 − 𝑝
𝑘



2

≥ 𝜇
𝑛
⟨𝑓 (𝑝
𝑘
) − 𝑝
𝑘
, 𝐽 (𝑥
𝑛
− 𝑝
𝑘
)⟩ . (299)

Since 𝑝
𝑘
→ 𝑞 ∈ Fix(𝑉) = 𝐹 as 𝑘 → ∞, by the uniform

Gateaux differentiability of the norm of𝑋 we have

𝜇
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥

𝑛
− 𝑞)⟩ ≤ 0. (300)

On the other hand, from (257) and the norm-to-weak∗
uniform continuity of 𝐽 on bounded subsets of 𝑋, it follows
that

lim
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛+1

− 𝑞)⟩ − ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩

 = 0.

(301)

So, utilizing Lemma 18, we deduce from (300) and (301) that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑥
𝑛
− 𝑞)⟩ ≤ 0, (302)

which together with (271) and the norm-to-weak∗ uniform
continuity of 𝐽 on bounded subsets of𝑋, implies that

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞)⟩ ≤ 0. (303)

Finally, let us show that 𝑥
𝑛
→ 𝑞 as 𝑛 → ∞. Utilizing

Lemma 8 (i), from (253) and the convexity of ‖ ⋅ ‖, we get

𝑦𝑛 − 𝑞


2

≤
𝛼𝑛 (𝑓 (𝑥

𝑛
) − 𝑓 (𝑞)) + 𝛽

𝑛
(𝑥
𝑛
− 𝑞)

+ 𝛾
𝑛
(𝐵
𝑛
𝑥
𝑛
− 𝑞) + 𝛿

𝑛
(𝑆
𝑛
𝐺𝑥
𝑛
− 𝑞)



2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩
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≤ 𝛼
𝑛

𝑓 (𝑥
𝑛
) − 𝑓 (𝑞)



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑞


2

+ 𝛾
𝑛

𝐵𝑛𝑥𝑛 − 𝑞


2

+ 𝛿
𝑛

𝑆𝑛𝐺𝑥𝑛 − 𝑞


2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩

≤ 𝛼
𝑛
𝜌
𝑥𝑛 − 𝑞



2

+ 𝛽
𝑛

𝑥𝑛 − 𝑞


2

+ 𝛾
𝑛

𝑥𝑛 − 𝑞


2

+ 𝛿
𝑛

𝑥𝑛 − 𝑞


2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩

= (1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑞


2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩ ,

(304)

and hence

𝑥𝑛+1 − 𝑞


2

≤ 𝜎
𝑛

𝐺𝑥𝑛 − 𝑞


2

+ (1 − 𝜎
𝑛
)
𝑦𝑛 − 𝑞



2

≤ 𝜎
𝑛

𝑥𝑛 − 𝑞


2

+ (1 − 𝜎
𝑛
)

× [(1 − 𝛼
𝑛
(1 − 𝜌))

𝑥𝑛 − 𝑞


2

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩ ]

= [1 − (1 − 𝜎
𝑛
) 𝛼
𝑛
(1 − 𝜌)]

𝑥𝑛 − 𝑞


2

+ 2 (1 − 𝜎
𝑛
) 𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦

𝑛
− 𝑞)⟩

= [1 − (1 − 𝜎
𝑛
) 𝛼
𝑛
(1 − 𝜌)]

𝑥𝑛 − 𝑞


2

+ (1 − 𝜎
𝑛
) 𝛼
𝑛
(1 − 𝜌)

2 ⟨𝑓 (𝑞) − 𝑞, 𝐽 (𝑦
𝑛
− 𝑞)⟩

1 − 𝜌
.

(305)

From conditions (i) and (iv), it is easy to see that ∑∞
𝑛=0

(1 −

𝜎
𝑛
)𝛼
𝑛
(1 − 𝜌) = ∞. Applying Lemma 7 to (305), we infer that

𝑥
𝑛
→ 𝑞 as 𝑛 → ∞. This completes the proof.

Corollary 34. Let 𝐶 be a nonempty closed convex subset of
a uniformly convex Banach space 𝑋 which has a uniformly
Gateaux differentiable norm. Let Π

𝐶
be a sunny nonexpansive

retraction from 𝑋 onto 𝐶. Let {𝜌
𝑛
}
∞

𝑛=0
be a sequence of positive

numbers in (0, 𝑏] for some 𝑏 ∈ (0, 1) and 𝐴
𝑖
: 𝐶 → 𝑋𝜉

𝑖
-

strictly pseudocontractive and �̂�
𝑖
-strongly accretive with 𝜉

𝑖
+

�̂�
𝑖
≥ 1 for each 𝑖 = 0, 1, . . .. Define a mapping 𝐺

𝑖
: 𝐶 → 𝐶

by Π
𝐶
(𝐼 − 𝜆

𝑖
𝐴
𝑖
)𝑥 = 𝐺

𝑖
𝑥 for all 𝑥 ∈ 𝐶 and 𝑖 = 0, 1, . . ., where

1−(𝜉
𝑖
/(1+𝜉

𝑖
))(1−√(1 − �̂�

𝑖
)/𝜉
𝑖
) ≤ 𝜆
𝑖
≤ 1 for all 𝑖 = 0, 1, . . .. Let

𝐵
𝑛
: 𝐶 → 𝐶 be the𝑊-mapping generated by 𝐺

𝑛
, 𝐺
𝑛−1

, . . . , 𝐺
0

and 𝜌
𝑛
, 𝜌
𝑛−1

, . . . , 𝜌
0
. Let 𝑉 : 𝐶 → 𝐶 be a self-mapping such

that 𝐼 − 𝑉 : 𝐶 → 𝑋 is 𝜁-strictly pseudocontractive and 𝜃-
strongly accretive with 𝜃 + 𝜁 ≥ 1. Let 𝑓 : 𝐶 → 𝐶 be a
contractionwith coefficient 𝜌 ∈ (0, 1). Let {𝑆

𝑖
}
∞

𝑖=0
be a countable

family of nonexpansive mappings of 𝐶 into itself such that
𝐹 = (⋂

∞

𝑖=0
Fix(𝑆
𝑖
)) ∩ Fix(𝑉) ∩ (⋂

∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)) ̸= 0. For

arbitrarily given 𝑥
0
∈ 𝐶, let {𝑥

𝑛
} be the sequence generated

by

𝑥
𝑛+1

= 𝜎
𝑛
((1 − 𝑙) 𝐼 + 𝑙𝑉) 𝑥

𝑛
+ (1 − 𝜎

𝑛
)

× [𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝐵
𝑛
𝑥
𝑛
+ 𝛿
𝑛
𝑆
𝑛
((1−𝑙) 𝐼+𝑙𝑉) 𝑥

𝑛
] ,

∀𝑛 ≥ 0,

(306)

where 1 − (𝜁/(1 + 𝜁))(1 − √(1 − 𝜃)/𝜁) ≤ 𝑙 ≤ 1 and {𝛼
𝑛
}, {𝛽
𝑛
},

{𝛾
𝑛
}, {𝛿
𝑛
}, and {𝜎

𝑛
} are the sequences in (0, 1) such that𝛼

𝑛
+𝛽
𝑛
+

𝛾
𝑛
+ 𝛿
𝑛
= 1 for all 𝑛 ≥ 0. Suppose that the following conditions

hold:

(i) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑∞

𝑛=0
𝛼
𝑛
= ∞;

(ii) {𝛾
𝑛
}, {𝛿
𝑛
} ⊂ [𝑐, 𝑑] for some 𝑐, 𝑑 ∈ (0, 1);

(iii) ∑∞
𝑛=1

(|𝜎
𝑛
−𝜎
𝑛−1

|+ |𝛼
𝑛
−𝛼
𝑛−1

|+ |𝛽
𝑛
−𝛽
𝑛−1

|+ |𝛾
𝑛
−𝛾
𝑛−1

|+

|𝛿
𝑛
− 𝛿
𝑛−1

|) < ∞;
(iv) 0 < lim inf

𝑛→∞
𝛽
𝑛
≤ lim sup

𝑛→∞
𝛽
𝑛
< 1 and 0 <

lim inf
𝑛→∞

𝜎
𝑛
≤ lim sup

𝑛→∞
𝜎
𝑛
< 1.

Assume that∑∞
𝑛=1

sup
𝑥∈𝐷

‖𝑆
𝑛
𝑥 − 𝑆
𝑛−1

𝑥‖ < ∞ for any bounded
subset 𝐷 of 𝐶 and let 𝑆 be a mapping of 𝐶 into itself defined
by 𝑆𝑥 = lim

𝑛→∞
𝑆
𝑛
𝑥 for all 𝑥 ∈ 𝐶 and suppose that Fix(𝑆) =

⋂
∞

𝑖=0
Fix(𝑆
𝑖
). Then, there hold the following:

(I) lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0;

(II) the sequence {𝑥
𝑛
}
∞

𝑛=0
converges strongly to some 𝑞 ∈

𝐹 which is the unique solution of the variational
inequality problem (VIP)

⟨(𝐼 − 𝑓) 𝑞, 𝐽 (𝑞 − 𝑝)⟩ ≤ 0, ∀𝑝 ∈ 𝐹, (307)

provided 𝛽
𝑛
≡ 𝛽 for some fixed 𝛽 ∈ (0, 1).

Proof. In Theorem 33, we put 𝐵
1
= 𝐼 − 𝑉, 𝐵

2
= 0 and 𝜇

1
= 𝑙

where 1 − (𝜁/(1 + 𝜁))(1 − √(1 − 𝜃)/𝜁) ≤ 𝑙 ≤ 1. Then, GSVI
(13) is equivalent to the VIP of finding 𝑥∗ ∈ 𝐶 such that

⟨𝐵
1
𝑥
∗

, 𝐽 (𝑥 − 𝑥
∗

)⟩ ≥ 0, ∀𝑥 ∈ 𝐶. (308)

In this case, 𝐵
1
: 𝐶 → 𝑋 is 𝜁-strictly pseudocontractive

and 𝜃-strongly accretive. Repeating the same arguments
as those in the proof of Corollary 25, we can infer that
Fix(𝑉) = VI(𝐶, 𝐵

1
). Accordingly, 𝐹 = (⋂

∞

𝑖=0
Fix(𝑆
𝑖
)) ∩ Ω ∩

(⋂
∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)) = (⋂

∞

𝑖=0
Fix(𝑆
𝑖
))∩Fix(𝑉)∩ (⋂∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)),

𝐺𝑥
𝑛
= ((1 − 𝑙) 𝐼 + 𝑙𝑉) 𝑥

𝑛
, (309)

So, the scheme (251) reduces to (306). Therefore, the desired
result follows fromTheorem 33.

Remark 35. OurTheorems 31 and 33 improve, extend, supple-
ment and develop Ceng and Yao’s [10, Theorem 3.2], Cai and
Bu’s [11, Theorem 3.1], Kangtunyakarn’s [38, Theorem 3.1],
and Ceng and Yao’s [8,Theorem 3.1], in the following aspects.
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(i) The problem of finding a point 𝑞 ∈ (⋂
∞

𝑖=0
Fix(𝑆
𝑖
)) ∩

Ω ∩ (⋂
∞

𝑖=0
VI(𝐶, 𝐴

𝑖
)) in our Theorems 31 and 33 is

more general and more subtle than every one of the
problem of finding a point 𝑞 ∈ ⋂

∞

𝑖=0
Fix(𝑇
𝑖
) in [10,

Theorem 3.2], the problem of finding a point 𝑞 ∈

⋂
∞

𝑖=1
Fix(𝑇
𝑖
) ∩ Ω in [11, Theorem 3.1], the problem of

finding a point 𝑞 ∈ Fix(𝑆) ∩ Fix(𝑉) ∩ (⋂𝑁
𝑖=1

VI(𝐶, 𝐴
𝑖
))

in [38, Theorem 3.1], and the problem of finding a
point 𝑞 ∈ Fix(𝑇) in [8, Theorem 3.1].

(ii) The iterative scheme in [38, Theorem 3.1] is extended
to develop the iterative scheme (178) of our Theo-
rem 31, and the iterative scheme in [11,Theorem 3.1] is
extended to develop the iterative scheme (251) of our
Theorem 33. Iterative schemes (178) and (181) in our
Theorems 31 and 33 are more advantageous and more
flexible than the iterative scheme of [11, Theorem 3.1]
because they both are one-step iteration schemes and
involve several parameter sequences {𝛼

𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
},

{𝛿
𝑛
}, (and {𝜎

𝑛
}).

(iii) Our Theorems 31 and 33 extend and generalize Ceng
and Yao’s [8,Theorem 3.1] from a nonexpansive map-
ping to a countable family of nonexpansivemappings,
and Ceng and Yao’s [10, Theorems 3.2] to the setting
of the GSVI (13) and infinitely many VIPs, Kangtun-
yakarn’s [38,Theorem 3.1] from finitely many VIPs to
infinitely many VIPs, from a nonexpansive mapping
to a countable family of nonexpansive mappings and
from a strict pseudocontraction to the GSVI (13). In
the meantime, our Theorems 31 and 33 extend and
generalize Cai and Bu’s [11,Theorem 3.1] to the setting
of infinitely many VIPs.

(iv) The iterative schemes (178) and (251) in ourTheorems
31 and 33 are very different from every one in [10,
Theorem 3.2], [11, Theorem 3.1], [38, Theorem 3.1],
and [8, Theorem 3.1] because the mappings 𝐺 and
𝑇
𝑛
in [11, Theorem 3.1] and the mapping 𝑇 in [8,

Theorem 3.1] are replaced with the same composite
mapping 𝑆

𝑛
𝐺 in the iterative schemes (42) and (130)

and the mapping𝑊
𝑛
in [10, Theorem 3.2] is replaced

by 𝐵
𝑛
.

(v) Cai and Bu’s proof in [11, Theorem 3.1] depends on
the argument techniques in [14], the inequality in 2-
uniformly smooth Banach spaces (see Lemma 4), and
the inequality in smooth and uniform convex Banach
spaces (see Proposition 6). Because the composite
mapping 𝑆

𝑛
𝐺 appears in the iterative scheme (178) of

ourTheorem 31, the proof of ourTheorem 31 depends
on the argument techniques in [14], the inequality in
2-uniformly smooth Banach spaces (see Lemma 4),
the inequality in smooth and uniform convex Banach
spaces (see Proposition 6), the inequalities in uniform
convex Banach spaces (see Lemmas 11 and 15 in
Section 2 of this paper), and the properties of the
𝑊-mapping and the Banach limit (see Lemmas 16,
17, and 18 in Section 2 of this paper). However, the
proof of our Theorem 33 does not depend on the

argument techniques in [14], the inequality in 2-
uniformly smooth Banach spaces (see Lemma 4), and
the inequality in smooth and uniform convex Banach
spaces (see Proposition 6). It depends on only the
inequalities in uniform convex Banach spaces (see
Lemmas 11 and 15 in Section 2 of this paper) and the
properties of the 𝑊-mapping and the Banach limit
(see Lemmas 16–18 in Section 2 of this paper).

(vi) The assumption of the uniformly convex and 2-
uniformly smooth Banach space 𝑋 in [11, Theo-
rem 3.1] is weakened to the one of the uniformly
convex Banach space 𝑋 having a uniformly Gateaux
differentiable norm in ourTheorem 33. Moreover, the
assumption of the uniformly smooth Banach space
𝑋 in [8, Theorem 3.1] is replaced with the one of the
uniformly convex Banach space𝑋 having a uniformly
Gateaux differentiable norm in ourTheorem 33.
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