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The constant parameter identification problem in the Kirchhoff-type equation with viscosity is
studied. The problem is formulated by a minimization of quadratic cost functionals by distributive
measurements. The existence of optimal parameters and necessary optimality conditions for the
parameters are proved.

1. Introduction

The model of transversal vibration of a string has long history starting from D’ Alembert and
Euler. It is widely regarded that themodel proposed by D’ Alembert is simple and elementary
model describing small transversal vibration of a string in which the effect of elasticity is not
considered.

Whenwe take into account the change of length of a string in its small vibrationmainly
due to the effect of elasticity, the classical model from D’ Alembert is no more correct to cover
the more realistic phenomena.

More accurate or appropriate model for the transversal vibration of an elastic string,
given by
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)
∂2y
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= 0, (1.1)

has been proposed by Kirchhoff [1]. Here L is the length of the string, h is the area of the
cross section, ρ is the mass density, P0 is the initial tension, and E is the Young’s modulus of
a material. For the derivations of (1.1), we can refer to the article of Ferrel and Medeiros [2].
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As a general form of (1.1), we consider the following damped equation with
appropriate boundary and initial conditions:

∂2y

∂t2
−m

(∫
Ω

∣∣∇y∣∣2dx)Δy − γ ∂y
∂t

= f, (1.2)

where Ω is a smooth domain in Rn, γ > 0. Many researches have been devoted to the study
of (1.2) for both damped (γ > 0) or undamped (γ = 0) cases, see Arosio [3], Spagnolo [4],
Pohožaev [5], Lions [6], Nishihara, and Yamada [7] and their long roll of bibliographical
references. Those researches are mainly concerned with the well-posedness of solutions in
global or local sense under the various data conditions and their decays.

Especially when we take into account the viscosity effect of its vibration due to its
inner friction, the damping coefficient γ in (1.2) is replaced by γΔ. In this case we can refer
to Cavalcanti et al. [8] to show the well-posedness in the Hadamard sense under the data
condition (y(0, x), ∂y(0, x)/∂t, f) ∈ D(Δ)×H1

0(Ω)×L2(0, T ;L2(Ω)). Making use of this result,
we are going to study the constant identification problem in the equation of Kirchhoff-type
equation with viscosity as follows:

∂2y

∂t2
−
(
α + β

∫
Ω

∣∣∇y∣∣2dx)Δy − γΔ∂y
∂t

= f in Q,

y = 0 on Σ,

y(0, x) = y0(x),
∂y

∂t
(0, x) = y1(x) in Ω,

(1.3)

where Q = (0, T) × Ω, Σ = (0, T) × ∂Ω. Here the constants α and β are physical constants
explained above, and γ stands for the rate of viscosity.

Recently, Hwang and Nakagiri [9] studied optimal control problems for (1.3) under
the framework of Lions [10]. And Hwang [11] studied constant parameter identification for
the problem of an extensible beam equation. In this paper we will study constant parameter
identification problems for (1.3) in the following way.

At first, we assume that the desired state is known, but constant parameters α, β, γ
involved in the above equation are unknown. For more details, we refer to Ha and Nakagiri
[12], Hwang and Nakagiri [13]. We show the existence of an optimal parameters in an
admissible set and its characterizations, namely, a parameter identification problem in which
we use the term optimal parameter to denote the best parameter within any admissible set for
which the solution of (1.3) gives a minimum of the given functional. We take this functional
by L2-quadratic norm of observed state minus desired state that is usually regarded as a cost
function in optimal control theory.

In this paper we pursue to find necessary conditions for an optimal parameters by
using Gâteaux differentiability of the solution mapping and giving variational inequality via
an adjoint equation. Proceeding in this way, we can obtain similar results with optimal control
problems due to Lions [10]. For more detailed study, we refer to Ahmed [14] for abstract
evolution equations.

We explain our identification problem precisely as follows. At first, in order to
study parameter identification problem in the framework of optimal control theory due to
Lions [10], we need to modify the positive constants, α, β, γ in (1.3) by α0 + α, β, γ0 + γ ,
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respectively, where α0 and γ0 are fixed positive constants, and α, β, γ are nonnegative
constants. Therefore, we take the set P = {(x1, x2, x3) | xi ≥ 0, i = 1, 2, 3} as the set of
parameters (α, β, γ) in (1.3). By doing this, we can guarantee the well-posedness of (1.3) in
verifying the Gâteaux differentiability of the solution mapping from the set of parameters to
the corresponding solution space of (1.3).

Let y(q) = y(q; t, x) be the solution for a given q = (α, β, γ) ∈ P and Pad ⊂ P be an
admissible parameter set. We consider the following two quadratic distributive functionals:

J1
(
q
)
=
∫T

0

∫
Ω

∣∣y(q; t, x) − Y1(t, x)
∣∣2dx dt + ∫

Ω

∣∣∣y(q; T, x) − YT
1 (x)

∣∣∣2dx, (1.4)
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(
q
)
=
∫T

0

∫
Ω

∣∣∣∣∣∂y
(
q; t, x

)
∂t

− Y2(t, x)

∣∣∣∣∣
2

dx dt for q ∈ Pad, (1.5)

where Yi ∈ L2(Q), i = 1, 2 and YT
1 ∈ L2(Ω) are the desired values.

The parameter identification problem for (1.3) with the cost J = J1 in (1.4) or J = J2 in
(1.5) is to find and characterize an optimal parameters q∗ = (α∗, β∗, γ∗) ∈ Pad satisfying that

J
(
q∗
)
= inf

{
J
(
q
)
: q ∈ Pad

}
. (1.6)

We prove the existence of an optimal parameter q∗ by using the continuity of solutions on
parameters and establish the necessary optimality conditions by introducing appropriate
adjoint systems for which we prove the strong Gâteaux differentiability of the nonlinear
mapping q → y(q).

Another novelty of this paper is that the first-order Volterra integrodifferential
equation is utilized as a proper adjoint system to establish the necessary optimality condition
of the velocity’s measurement case (1.5) as in [9, 13].

2. Preliminaries

We consider the following Dirichlet boundary value problem for Kirchhoff-type equation
with damping term:

∂2y

∂t2
−
(
α + β

∫
Ω

∣∣∇y∣∣2dx)Δy − γΔ∂y
∂t

= f in Q,

y = 0 on Σ,

y(0, x) = y0(x),
∂y

∂t
(0, x) = y1(x) in Ω,

(2.1)

where f is a forcing function, y0 and y1 are initial data, and α, β, γ > 0 are some physical
constants. In this paper we study (2.1) in the class of strong solutions. For the purpose we



4 Abstract and Applied Analysis

suppose that f ∈ L2(0, T ;L2(Ω)), y0 ∈ D(Δ) = H2(Ω) ∩H1
0(Ω), and y1 ∈ H1

0(Ω). The solution
space S(0, T)which is the space of strong solutions of (2.1) is defined by

S(0, T) =
{
g | g ∈ L2(0, T ;D(Δ)), g ′ ∈ L2(0, T ;D(Δ)), g ′′ ∈ L2

(
0, T ;L2(Ω)

)}
, (2.2)

endowed with the norm

∥∥g∥∥S(0,T) = (∥∥g∥∥2
L2(0,T ;D(Δ)) +

∥∥g ′∥∥2
L2(0,T ;D(Δ)) +

∥∥g ′′∥∥2
L2(0,T ;L2(Ω))

)1/2
. (2.3)

Here, g ′ and g ′′ denote the first- and second-order distributional derivatives of g. The scalar
products and norms on L2(Ω) and H1

0(Ω) are denoted by (φ, ψ)2, |φ|2 and (φ, ψ)H1
0 (Ω), ‖φ‖,

respectively. The scalar product and norm on [L2(Ω)]n are also denoted by (φ, ψ)2 and |φ|2.
Then, the scalar product (φ, ψ)H1

0 (Ω) and the norm ‖φ‖ ofH1
0(Ω) are given by (∇φ,∇ψ)2 and

‖φ‖ = |∇φ|2, respectively. Finally the norm and the scalar product on D(Δ) are given by
(Δφ,Δψ)2 and ‖φ‖D(Δ) = |Δφ|2, respectively. The duality pairing betweenH1

0(Ω) andH−1(Ω)
is denoted by 〈φ, ψ〉.

Definition 2.1. A function y is said to be a strong solution of (2.1) if y ∈ S(0, T) and y satisfies

y′′(t) −
(
α + β

∣∣∇y(t)∣∣22)Δy(t) − γΔy′(t) = f(t), a.e. t ∈ [0, T],

y(0) = y0, y′(0) = y1.
(2.4)

We remark here that S(0, T) is continuously imbedded in C([0, T];D(Δ)) ∩
C1([0, T];H1

0(Ω)) (cf. Dautray and Lions [15, page 555]).
The following variational formulation is used to define the weak solution of (2.1).

Definition 2.2. A function y is said to be a weak solution of (2.1) if y ∈ W(0, T) ≡ {g | g ∈
L2(0, T ;H1

0(Ω)), g ′ ∈ L2(0, T ;H1
0(Ω)), g ′′ ∈ L2(0, T ;H−1(Ω))}, and y satisfies

〈
y′′(·), φ〉 + (

α + β
∣∣∇y(·)∣∣22)(∇y(·),∇φ) + γ(∇y′(·),∇φ)

=
(
f(·), φ) ∀φ ∈ H1

0(Ω) in the sense of D′(0, T),

y(0) = y0, y′(0) = y1.

(2.5)

In order to verify the well-posedness of (2.1), we refer to the results in [8, 9]. The
well-posedness in the sense of Hadamard can be given as follows.

Theorem 2.3. Assume that f ∈ L2(0, T ;L2(Ω)) and y0 ∈ D(Δ), y1 ∈ H1
0(Ω). Then the problem

(2.1) has a unique strong solution y in S(0, T). And the solution mapping p = (y0, y1, f) → y(p)
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of P ≡ D(Δ) ×H1
0(Ω) × L2(0, T ;L2(Ω)) into S(0, T) is strongly continuous. Further, for each p1 =

(y1
0 , y

1
1 , f1) ∈ P and p2 = (y2

0 , y
2
1 , f2) ∈ P , we have the following inequality:

∣∣∇(
y′(p1; t) − y′(p2; t))∣∣22 + ∣∣Δ(

y
(
p1; t

) − y(p2; t))∣∣22 +
∫ t

0

∣∣Δ(
y′(p1; s) − y′(p2; s))∣∣22ds

≤ C
(∣∣∣Δ(

y1
0 − y2

0

)∣∣∣2
2
+
∣∣∣∇(

y1
1 − y2

1

)∣∣∣2
2
+
∥∥f1 − f2∥∥2

L2(0,T ;L2(Ω))

)
,

(2.6)

where C is a constant and t ∈ [0, T].

Proof (see Hwang and Nakagiri [9]). We will omit writing the integral variables in the
definite integral without any confusion. For example, in (2.6), we will write

∫ t
0 |∇y′(p1)|2ds

instead of
∫ t
0 |∇y′(p1; s)|2ds.

3. Identification Problems

In this section we study the identification problem for the unknown parameters q = (α, β, γ) ∈
P in the problem

∂2y

∂t2
−
(
α0 + α + β

∣∣∇y∣∣22)Δy − (
γ0 + γ

)
Δ
∂y

∂t
= f in Q,

y = 0 on Σ,

y(0, x) = y0(x),
∂y

∂t
(0, x) = y1(x) in Ω,

(3.1)

where α0, γ0 > 0, y0 ∈ D(Δ), y1 ∈ H1
0(Ω), and f ∈ L2(0, T ;L2(Ω)) are fixed. The physical

constants q = (α, β, γ) in (3.1) are an unknown parameter that should be identified. In this
setting we take P = {(x1, x2, x3) | xi ≥ 0, i = 1, 2, 3} to be the space of parameters q = (α, β, γ)
with the Euclidian norm. By Theorem 2.3 we have that for each q ∈ P there exists a unique
solution y = y(q) ∈ S(0, T) of (3.1).

At first we show the continuous dependence of solutions on parameters q = (α, β, γ).

Theorem 3.1. The solution map q → y(q) from P = {(x1, x2, x3) | xi ≥ 0, i = 1, 2, 3} into S(0, T)
is continuous.

Proof. Let q = (α, β, γ) be arbitrarily fixed. Suppose that qm = (αm, βm, γm) → q = (α, β, γ) in
P. Let ym = y(qm) and y = y(q) be the solutions of (3.1) for q = qm and for q, respectively.
Since {qm} is bounded in P, by Theorem 2.3, we see that

∣∣Δy′
m(t)

∣∣2
2 +

∣∣Δym(t)∣∣22 +
∫ t

0

∣∣Δy′
m

∣∣2
2ds ≤ C0 <∞, ∀t ∈ [0, T], (3.2)
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where C0 > 0 is a constant depending only on α0, β0, γ0, y0, y1, and f . Applying (3.2) to (3.1),
we can deduce by choosing appropriate subsequence of {ym} denoted again by {ym} that

ym −→ y weakly in S(0, T) as m −→ ∞. (3.3)

Since D(Δ) ↪→ H1
0(Ω) is compact, we can deduce from [16, pages 273–278] that the space

S(0, T) is compactly imbedded in L2(0, T ;H1
0(Ω)). Therefore, we can take a subsequence

{ymk} of {ym}, if necessary, such that

ymk −→ y strongly in L2
(
0, T ;H1

0(Ω)
)
as k −→ ∞. (3.4)

Equation (3.4) implies that

∣∣∇ymk(·)
∣∣2
2 −→

∣∣∇y(·)∣∣22 a.e. in (0, T) as k −→ ∞. (3.5)

Taking into account (3.3) and (3.5) and coming back to (3.1), we deduce that y is the solution
of (3.1) corresponding to the parameter q.

In order to obtain strong convergency, we set ψm = ym − y. Then, in weak sense, ψm
satisfies

∂2ψm

∂t2
−
(
α0 + αm + βm

∣∣∇ym∣∣22) Δψm − (
γ0 + γm

)
Δ
∂ψm
∂t

= Fm in Q,

ψm = 0 on Σ,

ψm(0, x) = 0,
∂ψm
∂t

(0, x) = 0 in Ω,

(3.6)

where

Fm =
(
αm − α + βm

∣∣∇ym∣∣22 − β∣∣∇y∣∣22)Δy − (
γ − γm

)
Δ
∂y

∂t
. (3.7)

Using (3.5) and the Lebesgue-dominated convergence theorem, we can verify that

Fm −→ 0 in L2
(
0, T ;L2(Ω)

)
as m → ∞. (3.8)

Multiplying (3.6) by Δψ ′
m, and integrating it over Ω × [0, t], we have

∣∣∇ψ ′
m(t)

∣∣2
2 +

(
α0 + αm + βm

∣∣∇ym(t)∣∣22)∣∣Δψm(t)∣∣22 + 2
(
γ0 + γm

) ∫ t

0

∣∣Δψ ′
m

∣∣2
2ds

= −2
∫ t

0

(Fm,Δψ ′
m

)
2ds +

∫ t

0
2βm

(∇ym,∇y′
m

)
2

∣∣Δψm∣∣22ds.
(3.9)
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By the Cauchy-Schwarz inequality and the fact that ym ∈ S(0, T) ↪→ C([0, T];D(Δ)) ∩
C1([0, T];H1

0(Ω)), we have following inequalities:

∣∣∣∣∣−2
∫ t

0

(Fm,∇ψ ′
m

)
2ds

∣∣∣∣∣ ≤ 2
∫ t

0
|Fm|2

∣∣Δψ ′
m

∣∣
2ds

≤ 1
γ0
‖Fm‖2L2(0,T ;L2(Ω)) + γ0

∫ t

0

∣∣Δψ ′
m

∣∣2
2ds,

∣∣∣∣∣
∫ t

0
2βm

(∇ym,∇y′
m

)
2

∣∣Δψm∣∣22ds
∣∣∣∣∣ ≤ 2βm

∫ t

0

∣∣∇ym∣∣2∣∣∇y′
m

∣∣
2

∣∣Δψm∣∣22ds

≤ 2βm
∥∥ym∥∥C([0,T];H1

0 (Ω))

∥∥y′
m

∥∥
C([0,T];H1

0 (Ω))

∫ t

0

∣∣Δψm∣∣22ds.
(3.10)

Then by (3.9) and (3.10), we can obtain

∣∣∇ψ ′
m(t)

∣∣2
2 +

∣∣Δψm(t)∣∣22 +
∫ t

0

∣∣Δψ ′
m

∣∣2
2ds ≤ C‖Fm‖2L2(0,T ;L2(Ω)) + C

∫ t

0

∣∣Δψm∣∣22ds, (3.11)

where C > 0. Hence by applying Gronwall’s inequality to (3.11), we have

∣∣∇ψ ′
m(t)

∣∣2
2 +

∣∣Δψm(t)∣∣22 +
∫ t

0

∣∣Δψ ′
m

∣∣2
2ds ≤ C exp(CT)‖Fm‖2L2(0,T ;L2(Ω)). (3.12)

Combining (3.8) and (3.12), we have

ψm −→ 0 in C([0, T];D(Δ)),

ψ ′
m −→ 0 in C

(
[0, T];H1

0(Ω)
)
∩ L2(0, T ;D(Δ)),

(3.13)

so that

ym(·) −→ y(·) strongly in S(0, T). (3.14)

This proves Theorem 3.1.

As explained before, we choose the L2 objective costs to be minimized for the
identification of q = (α, β, γ) which are given by

J1
(
q
)
=
∥∥y(q) − Y1

∥∥2
L2(0,T ;L2(Ω)) +

∣∣∣y(q; T) − YT
1

∣∣∣2
2
, (3.15)

J2
(
q
)
=
∥∥y′(q) − Y2

∥∥2
L2(0,T ;L2(Ω)) for q ∈ Pad, (3.16)

where Yi ∈ L2(0, T ;L2(Ω)), i = 1, 2, and YT
1 ∈ L2(Ω).
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If Pad is compact, then for the minimizing sequence {qm} such as J(qm) → J∗ =
inf{J(q) : q ∈ Pad} we can choose a subsequence {qmj} of {qm} such that qmj → q∗ ∈ Pad

and y(qmj) → y(q∗) strongly in S(0, T) by Theorem 3.1. Due to the continuous imbedding
S(0, T) ↪→ C([0, T];D(Δ)) ∩ C1([0, T];H1

0(Ω)) we have J∗ = J(q∗) for the costs (3.15) and
(3.16). Thus we have the following corollary.

Corollary 3.2. If Pad is compact, then there exists at least one optimal parameter q∗ ∈ Pad for the cost
J1 in (3.15) or J2 in (3.16).

Let the admissible set Pad be compact and convex in P, and let q∗ = (α∗, β∗, γ∗) be
an optimal parameter on Pad for the cost J(q). As is well known the necessary optimality
condition of an optimal parameter q∗ = (α∗, β∗, γ∗) for the cost J is given by

DJ
(
q∗
)(
q − q∗) ≥ 0 ∀q ∈ Pad, (3.17)

where DJ(q∗) denotes the Gâteaux derivative of J(q) at q = q∗.
The Gâteaux differentiability of the above quadratic costs Ji(q), i = 1, 2 follows from

that of the nonlinear solution mapping q → y(q) of Pad into S(0, T). The following theorem
proves the Gâteaux differentiability of the nonlinear solution mapping q → y(q) and gives
its characterization.

Theorem 3.3. The map q → y(q) of Pad into S(0, T) is Gâteaux differentiable at q = q∗ and such
the Gâteaux derivative of y(q) at q = q∗ in the direction q − q∗ ∈ P, say z = Dy(q∗)(q − q∗), is a
unique solution of the following linear problem:

∂2z

∂t2
−
(
α0 + α∗ + β∗

∣∣∇y∗∣∣2
2

)
Δz − 2β∗

(∇z,∇y∗)
2Δy

∗ − (
γ0 + γ∗

)
Δ
∂z

∂t
= G(q − q∗;y∗) in Q,

z = 0 on Σ,

z(0, x) = 0,
∂z

∂t
(0, x) = 0 in Ω,

(3.18)

where y∗ = y(q∗) and

G(q − q∗;y∗) = (α − α∗)Δy∗ +
(
β − β∗)∣∣∇y∗∣∣2

2Δy
∗ +

(
γ − γ∗)Δ∂y∗

∂t
. (3.19)
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Proof. Let λ ∈ [0, 1], and let yλ and y∗ be the solutions of (3.1) corresponding to q∗ + λ(q − q∗)
and q∗, respectively. We set zλ = λ−1(yλ − y∗), λ /= 0. Then zλ satisfies the following problem
in the weak sense:

∂2zλ
∂t2

−
(
α0 + α∗ + β∗

∣∣∇y∗∣∣2
2

)
Δzλ − β∗

(∇zλ,∇yλ +∇y∗)
2Δyλ −

(
γ0 + γ∗

)
Δ
∂zλ
∂t

= G(q − q∗;yλ) in Q,

zλ = 0 on Σ,

zλ(0, x) = 0,
∂zλ
∂t

(0, x) = 0 in Ω,

(3.20)

where

G(q − q∗;yλ) = (α − α∗)Δyλ +
(
β − β∗)∣∣∇yλ∣∣22Δyλ + (

γ − γ∗)Δ∂yλ
∂t

. (3.21)

Since yλ ∈ S(0, T)we can easily know that G(q − q∗;yλ) ∈ L2(0, T ;L2(Ω)) and

∥∥G(q − q∗;yλ)∥∥L2(0,T ;L2(Ω)) ≤ C0
∣∣q − q∗∣∣∥∥yλ∥∥S(0,T) < C1, (3.22)

where Ci, i = 0, 1 are positive constants.
By similar arguments in the proof of Theorem 3.1, multiplying the both sides of (3.20)

by −Δz′λ and integrating it over Ω × [0, t], we can obtain the following inequality:

|Δzλ(t)|22 +
∣∣∇z′λ(t)∣∣22 +

∫ t

0

∣∣Δz′λ∣∣22ds ≤ K∥∥G(q − q∗;yλ)∥∥2
L2(0,T ;L2(Ω)) (3.23)

for some K > 0. Therefore, combining (3.20) and (3.23), we can deduce that there exists a
z ∈ S(0, T) and a sequence {λk} ⊂ [0, 1] tending to 0 such that

zλk −→ z weakly in S(0, T). (3.24)

By Theorem 3.1,

∇yλk −→ ∇y∗ strongly in
[
C
(
[0, T];L2(Ω)

)]n
as k −→ ∞ (3.25)

so that by (3.24) and by the compact imbedding theorem given in [16, pages 273–278], we
can know that

zλk −→ z strongly in L2
(
0, T ;H1

0(Ω)
)
as k −→ ∞. (3.26)

Combining (3.25) and (3.26), we can have

(∇zλk(t),∇yλk(t))2 −→ (∇z(t),∇y∗(t)
)
2 a.e. in (0, T) (3.27)
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as k → ∞. Therefore by Theorem 3.1, (3.27), and the Lebesgue-dominated convergence
theorem we can verify that

(∇zλk ,∇yλk +∇y∗)
2Δyλk −→ 2

(∇z,∇y∗)
2Δy

∗ strongly in L2
(
0, T ;L2(Ω)

)
(3.28)

as k → ∞. At the same time, we can also verify that

G(q − q∗;yλk) −→ G(q − q∗;y∗)
≡ (α − α∗)Δy∗ +

(
β − β∗)∣∣∇y∗∣∣2

2Δy
∗ +

(
γ − γ∗)Δ∂y∗

∂t
strongly in L2

(
0, T ;L2(Ω)

)
(3.29)

as λk → 0. Hence we can see from (3.24) to (3.29) that zλk → z = Dy(u)w weakly in S(0, T)
as λk → 0 in which z is a strong solution of (3.18).

This convergency can be improved by showing the strong convergence of {zλ} in the
strong topology of S(0, T). Subtracting (3.18) from (3.20) and denoting zλ − z by φλ, we see
that

∂2φλ

∂t2
−
(
α0 + α∗ + β∗

∣∣∇y∗∣∣2
2

)
Δφλ −

(
γ0 + γ∗

)
Δ
∂φλ
∂t

= G(q − q∗;yλ) − G(q − q∗;y∗) + δ(yλ, zλ) in Q,

φλ = 0 on Σ,

φλ(0, x) = 0,
∂φλ
∂t

(0, x) = 0 in Ω,

(3.30)

where

δ
(
yλ, zλ

)
= β∗

(∇zλ,∇yλ +∇y∗)
2Δyλ − 2β∗

(∇z,∇y∗)
2Δy

∗. (3.31)

Estimating φλ as in (3.23), we can easily deduce that

∣∣∇φ′
λ(t)

∣∣2
2 +

∣∣Δφλ(t)∣∣22 +
∫ t

0

∣∣Δφ′
λ

∣∣2
2ds

≤ C2
∥∥G(q − q∗;yλ) − G(q − q∗;y∗) + δ(yλ, zλ)∥∥2

L2(0,T ;L2(Ω))

≤ 2C2

(∥∥G(q − q∗;yλ) − G(q − q∗;y∗)∥∥2
L2(0,T ;L2(Ω)) +

∥∥δ(yλ, zλ)∥∥2
L2(0,T ;L2(Ω))

)
,

(3.32)

where C2 is a positive constant. By virtue of (3.28), (3.29), and (3.30), we can deduce that

φλ −→ 0 in C([0, T];D(Δ)) as λ −→ 0,

φ′
λ −→ 0 in C

(
[0, T];H1

0(Ω)
)
∩ L2(0, T ;D(Δ)) as λ −→ 0.

(3.33)
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Finally, by means of (3.30) and (3.33) it is followed that

zλ(·) −→ z(·) strongly in (0, T) as λ −→ 0. (3.34)

This completes the proof.

3.1. Case of Distributive and Terminal Value Observations

The cost functional J1 in (3.15) is represented by

J1
(
q
)
=
∫T

0

∣∣y(q; t) − Y1(t)
∣∣2
2dt +

∣∣∣y(q; T) − YT
1

∣∣∣2
2
, q ∈ P. (3.35)

Then it is easily verified that the optimality condition (3.17) is written as

∫T

0

(
y
(
q∗; t

) − Y1(t), Dy
(
q∗
)(
q − q∗)(t))2dt + (

y
(
q; T

) − YT
1 , Dy

(
q∗
)(
q − q∗)(T))

2

≥ 0, ∀q ∈ Pad,

(3.36)

where q∗ = (α∗, β∗, γ∗) is the optimal parameter for (3.35), and z = Dy(q∗)(q− q∗) is a solution
of (3.18). The necessary condition for the optimal parameter q∗ = (α∗, β∗, γ∗) is given in the
following theorem.

Theorem 3.4. The optimal parameter q∗ = (α∗, β∗, γ∗) for (3.35) is characterized by the following
system of equations and inequality:

∂2y∗

∂t2
−
(
α0 + α∗ + β∗

∣∣∇y∗∣∣2
2

)
Δy∗ − (

γ0 + γ∗
)
Δ
∂y∗

∂t
= f in Q,

y∗ = 0 on Σ,

y∗(0, x) = y0(x),
∂y∗

∂t
(0, x) = y1(x) in Ω,

∂2p

∂t2
−
(
α0 + α∗ + β∗

∣∣∇y∗∣∣2
2

)
Δp − 2β∗

(∇p,∇y∗)
2Δy

∗ +
(
γ0 + γ∗

)
Δ
∂p

∂t
= y∗ − Y1 in Q,

p = 0 on Σ,

p(T, x) = 0,
∂p

∂t
(T, x) = −y∗(T) + YT

1 in Ω,

(3.37)

∫
Q

pG(q − q∗;y∗)dx dt ≥ 0, ∀q =
(
α, β, γ

) ∈ Pad. (3.38)

Proof. Since y∗−Y1 ∈ L2(0, T ;L2(Ω)) and y∗(T)−YT
1 ∈ L2(Ω), it is verified by the time reversion

t → T − t, and there is a unique weak solution p ∈W(0, T) of (3.37) (cf. [15, pages 558–574]).
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Multiplying both sides of the weak form of (3.37) by z = Dy(q∗)(q − q∗) and integrating it by
parts on [0, T], we have that

∫T

0

(
y∗ − Y1, z

)
2dt

=
∫T

0

(
p′′ −

(
α0 + α∗ + β∗

∣∣∇y∗∣∣2
2

)
Δp − 2β∗

(∇p,∇y∗)
2Δy

∗ +
(
γ0 + γ∗

)
Δp′, z

)
2
dt

=
∫T

0

(
p, z′′ −

(
α0 + α∗ + β∗

∣∣∇y∗∣∣2
2

)
Δz − 2β∗

(∇z,∇y∗)
2Δy

∗ − (
γ0 + γ∗

)
Δz′

)
2
dt

−
(
y
(
q; T

) − YT
1 , Dy

(
q∗
)(
q − q∗)(T))

2

=
∫T

0

(
p,G(q − q∗;y∗))

2dt −
(
y
(
q; T

) − YT
1 , Dy

(
q∗
)(
q − q∗)(T))

2
.

(3.39)

Therefore, (3.39) and (3.36) imply that the required optimality condition (3.36) is equivalent
to the condition (3.38). This proves Theorem 3.4.

3.2. Case of Velocity Observations

The cost functional J2 in (3.16) is represented by

J2
(
q
)
=
∫T

0

∣∣y′(q; t) − Y2(t)
∣∣2
2dt, q ∈ P. (3.40)

The optimality condition (3.17) for (3.40) is given by

∫T

0

(
y′(q∗; t) − Y2(t), Dy

(
q∗
)(
q − q∗)′(t))

2
dt ≥ 0, ∀q ∈ Pad, (3.41)

where z = Dy(q∗)(q − q∗) is a solution of (3.18).

Remark 3.5. As indicated in [13], if we derive a formal second-order adjoint system of this
quasilinear system related to the velocity observation with the cost (3.40), then it is hard
to explain whether it is well-posed or not. In order to overcome this difficulty, we follow
the idea given in Hwang and Nakagiri [17] in which it is adopted that the first-order
integrodifferential system as an appropriate adjoint-system of a quasilinear system instead
of the formal second-order adjoint system.
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For this reason, we introduce an adjoint-system represented by the following first-
order integrodifferential equation:

∂p

∂t
+
∫T

t

{(
α0 + α∗ + β∗

∣∣∇y∗∣∣2
2

)
Δp + 2β∗

(∇p,∇y∗)
2Δy

∗
}
ds +

(
γ0 + γ∗

)
Δp =

∂y∗

∂t
− Y2 in Q,

p = 0 on Σ,

p(T, x) = 0 in Ω.
(3.42)

Since (∂y∗/∂t) − Y2 ∈ L2(Q) = L2(0, T ;L2(Ω)), by reversing the direction of time t → T − t
and applying the result of [15, pages 656–662] to the problem (3.42), we can assert that (3.42)
admits a unique weak solution p satisfying

p ∈ W
(
H1

0(Ω), L2(Ω)
)
∩ C

(
[0, T];H1

0(Ω)
)
, (3.43)

where the solution spaceW(H1
0(Ω), L2(Ω)) is defined by

W
(
H1

0(Ω), L2(Ω)
)
=
{
g | g ∈ L2

(
0, T ;H1

0(Ω)
)
, g ′ ∈ L2

(
0, T ;L2(Ω)

)}
. (3.44)

Theorem 3.6. The optimal parameter q∗ = (α∗, β∗, γ∗) for (3.40) is characterized by the following
system of equations and inequality:

∂2y∗

∂t2
−
(
α0 + α∗ + β∗

∣∣∇y∗∣∣2
2

)
Δy∗ − (

γ0 + γ∗
)
Δ
∂y∗

∂t
= f in Q,

y∗ = 0 on Σ,

y∗(0, x) = y0(x),
∂y∗

∂t
(0, x) = y1(x) in Ω,

∂p

∂t
+
∫T

t

{(
α0 + α∗ + β∗

∣∣∇y∗∣∣2
2

)
Δp + 2β∗

(∇p,∇y∗)
2Δy

∗
}
ds +

(
γ0 + γ∗

)
Δp =

∂y∗

∂t
− Y2 in Q,

p = 0 on Σ,

p(T, x) = 0 in Ω,
(3.45)∫

Q

p G(q − q∗;y∗)dx dt ≤ 0, ∀q =
(
α, β, γ

) ∈ Pad. (3.46)
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Proof. Multiplying both sides of the weak form of (3.45) by z′ = Dy(q∗)(q − q∗)′, taking dual
pairing betweenH1

0(Ω) andH−1(Ω) and integrating it by parts on [0, T], we have that

∫T

0

(
y∗′ − Y2, z

′)
2dt

=
∫T

0

〈
p′ +

∫T

t

{(
α0 + α∗ + β∗

∣∣∇y∗∣∣2
2

)
Δp + 2β∗

(∇p,∇y∗)
2Δy

∗
}
ds +

(
γ0 + γ∗

)
Δp, z′

〉
dt

= −
∫T

0

(
p, z′′ −

(
α0 + α∗ + β∗

∣∣∇y∗∣∣2
2

)
Δz − 2β∗

(∇z,∇y∗)
2Δy

∗ − (
γ0 + γ∗

)
Δz′

)
2
dt

= −
∫T

0

(
p,G(q − q∗;y∗))

2dt.

(3.47)

Thus, (3.47) and (3.41) imply that the required optimality condition is given by (3.46).
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