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We study the existence of positive solutions for the nonlinear four-point singular boundary
value problem with higher-order p-Laplacian dynamic delay differential equations on time scales,
subject to some boundary conditions. By using the fixed-point index theory, the existence of
positive solution and many positive solutions for nonlinear four-point singular boundary value
problem with p-Laplacian operator are obtained.

1. Introduction

The study of dynamic equations on time scales goes back to its founder Stefan Hilger [1] and
is a new area of still fairly theoretical exploration in mathematics. Boundary value problems
for delay differential equations arise in a variety of areas of appliedmathematics, physics, and
variational problems of control theory (see [2, 3]). In recent years, many authors have begun
to pay attention to the study of boundary value problems or with p-Laplacian equations or
with p-Laplacian dynamic equations on time scales (see [4–19] and the references therein).

In [7], Sun and Li considered the existence of positive solution of the following
dynamic equations on time scales:

uΔ∇(t) + a(t)f(t, u(t)) = 0, t ∈ (0, T),

βu(0) − γuΔ(0) = 0, αu
(
η
)
= u(T),

(1.1)
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where β, γ ≥ 0, β + γ > 0, η ∈ (0, ρ(T)), 0 < α < T/η. They obtained the existence of single and
multiple positive solutions of the problem (1.1) by using fixed point theorem and Leggett-
Williams fixed point theorem, respectively.

In [10], Avery andAnderson discussed the following dynamic equation on time scales:

uΔ∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T),

u(0) = 0, αu
(
η
)
= u(T).

(1.2)

He obtained some results for the existence of one positive solution of the problem (1.2) based
on the limits f0 = limu→ 0+(f(u)/u) and f∞ = limu→∞(f(u)/u).

In [11], Wang et al. discussed the following dynamic equation by usingAvery-Peterson
fixed theorem (see [10]):

(
φp(u′)

)′ + q(t)f(t, u(t), u(t − 1), u′(t)) = 0, t ∈ (0, 1), (1.3)

u(t) = ξ(t), −1 ≤ t ≤ 0, u(1) = 0, (1.4)

u(t) = ξ(t), −1 ≤ t ≤ 0, u′(1) = 0. (1.5)

They obtained some results for the existence, three positive solutions of the problem (1.3),
(1.4) and (1.3), (1.5), respectively.

However, there are not many concerning the p-Laplacian problems on time scales.
Especially, for the singularmulti point boundary value problems for higher-order p-Laplacian
dynamic delay differential equations on time scales, with the author’s acknowledg, no one
has studied the existence of positive solutions in this case.

Recently, in [16], we study the existence of positive solutions for the following
nonlinear two-point singular boundary value problem with p-Laplacian operator

(
φp

(
u′))′ + a(t)f(u(t)) = 0, 0 < t < 1,

αφp(u(0)) − βφp

(
u′(0)

)
= 0, γφp(u(1)) + δφp

(
u′(1)

)
= 0,

(1.6)

by using the fixed point theorem of cone expansion and compression of norm type, the
existence of positive solution and infinitely many positive solutions for nonlinear singular
boundary value problem (1.6) with p-Laplacian operator are obtained.

Now, motivated by the results mentioned above, in this paper, we study the existence
of positive solutions for the following nonlinear four-point singular boundary value problem
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with higher-order p-Laplacian dynamic delay differential equations operator on time scales
(SBVP):

(
φp

(
uΔn−1

(t)
))∇

+ g(t)f
(
u(t), u(t − τ), uΔ(t), . . . , uΔn−2

(t)
)
= 0, 0 < t < T, (1.7)

u(t) = ζ(t), −τ ≤ t ≤ 0,

uΔi

(0) = 0, 1 ≤ i ≤ n − 3,

αφp

(
uΔn−2

(0)
)
− βφp

(
uΔn−1

(ξ)
)
= 0,

γφp

(
uΔn−2

(T)
)
+ δφp

(
uΔn−1(

η
))

= 0,
n ≥ 3,

(1.8)

where φp(s) is p-Laplacian operator, that is, φp(s) = |s|p−2s, p > 1, φq = φ−1
p , 1/p + 1/q = 1;

ξ, η ∈ (0, T), τ ∈ [0, T] is prescribed and ξ < η, g : (0, T) → [0,∞), α > 0, β ≥ 0, γ > 0, δ ≥ 0.
In this paper, by constructing one integral equation which is equivalent to the problem

(1.7), (1.8), we research the existence of positive solutions for nonlinear singular boundary
value problem (1.7), (1.8) when g and f satisfy some suitable conditions.

Our main tool of this paper is the following fixed point index theory.

Theorem 1.1 (see [18]). Suppose E is a real Banach space,K ⊂ E is a cone, letΩr = {u ∈ K : ‖u‖ ≤
r}. Let operator T : Ωr → K be completely continuous and satisfy Tx /=x, for all x ∈ ∂Ωr . Then

(i) if ‖Tx‖ ≤ ‖x‖, for all x ∈ ∂Ωr , then i(T,Ωr , K) = 1;

(ii) if ‖Tx‖ ≥ ‖x‖, for all x ∈ ∂Ωr , then i(T,Ωr , K) = 0.

This paper is organized as follows. In Section 2, we present some preliminaries and
lemmas that will be used to prove our main results. In Section 3, we study the existence of
at least two solutions of the systems (1.7), (1.8). In Section 4, we give an examples as the
application.

2. Preliminaries and Lemmas

A time scale T is an arbitrary nonempty closed subset of real numbers R+. In [1, 14, 20], we
can find some basic definitions about time scale. The operators σ and ρ from T to T:

σ(t) = inf{τ ∈ T | τ > t} ∈ T, ρ(t) = sup{τ ∈ T | τ < t} ∈ T (2.1)

are called the forward jump operator and the backward jump operator, respectively.
If T = R, then xΔ(t) = x∇(t) = x′(t). If T = Z, then xΔ(t) = x(t + 1) − x(t) is the forward

difference operator, while x∇(t) = x(t) − x(t − 1) is the backward difference operator.
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A function f is left-dense continuous (i.e., ld-continuous), if f is continuous at each
left-dense point in T and its right-sided limit exists at each right-dense point in T. It is well
known that f is ld-continuous.

If F∇(t) = f(t), then we define the nabla integral by

∫b

a

f(t)∇t = F(b) − F(a). (2.2)

If FΔ(t) = f(t), then we define the delta integral by

∫b

a

f(t)Δt = F(b) − F(a). (2.3)

In the rest of this paper, T is closed subset of R with 0 ∈ Tk, T ∈ Tk. And let

B =
{
u ∈ C[−τ, 0] ∩ Cn−2

ld [0, T] : uΔi

(0) = 0, 0 ≤ i ≤ n − 3
}
. (2.4)

Here,

Cn−2
ld [0, T] =

{
u : [0, T] → R | u(t) is left − dense n − 2 order continuously differentiable

}
.

(2.5)

Then B is a Banach space with the norm ‖u‖ = maxt∈[0,T]|uΔn−2
(t)|. And let

K =
{
u ∈ B : uΔn−2

(t) ≥ 0, uΔn−2
(t) is concave function, t ∈ [0, T]

}
. (2.6)

Obviously, K is a cone in B. Set Kr = {u ∈ K : ‖u‖ ≤ r}.

Definition 2.1. u(t) is called a solution of SBVP (1.7) and (1.8) if it satisfies the following:

(1) u ∈ C[−τ, 0] ∩ Cn−1
ld

(0, T);

(2) u(t) > 0 for all t ∈ (0, T) and satisfy conditions (1.8);

(3) (φp(uΔn−1
(t)))

∇
= −g(t)f(u(t), u(t − τ), uΔ(t), . . . , uΔn−2

(t)) hold for t ∈ (0, T).
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In the rest of the paper, we also make the following assumptions:

(H1) f ∈ Cld([0,+∞)n, [0,+∞));

(H2) g(t) ∈ Cld((0, T), [0,+∞)) and there exists t0 ∈ (0, T), such that

g(t0) > 0, 0 <

∫T

0
g(s)∇s < +∞; (2.7)

(H3) ζ(t) ∈ C([−τ, 0], ζ(t) > 0 on [−τ, 0) and ζ(0) = 0.

It is easy to check that condition (H2) implies that

0 <

∫T

0
φq

(∫s

0
g(s1)∇s1

)
Δs < +∞. (2.8)

We can easily get the following lemmas.

Lemma 2.2. Suppose condition (H2) holds. Then there exists a constant θ ∈ (0, 1/2) satisfing

0 <

∫T−θ

θ

g(t)∇t < ∞. (2.9)

Furthermore, the function

A(t) =
∫ t

θ

φq

(∫ t

s

g(s1)∇s1

)

Δs +
∫T−θ

t

φq

(∫s

t

g(s1)∇s1

)
∇s, t ∈ [θ, T − θ], (2.10)

is positive continuous functions on [θ, T − θ]; therefore, A(t) has minimum on [θ, T − θ]. Hence we
suppose, that there exists L > 0 such that A(t) ≥ L, t ∈ [θ, T − θ].

Proof. At first, it is easily seen that A(t) is continuous on [θ, T − θ]. Next, let

A1(t) =
∫ t

θ

φq

(∫ t

s

g(s1)∇s1

)

Δs, A2(t) =
∫T−θ

t

φq

(∫ s

t

g(s1)∇s1

)
Δs. (2.11)

Then, from condition (H2), we have that the function A1(t) is strictly monotone nondecreas-
ing on [θ, T − θ] and A1(θ) = 0, the function A2(t) is strictly monotone nonincreasing on
[θ, T −θ] andA2(T −θ) = 0, which implies L = mint∈[θ,T−θ]A(t) > 0. The proof is complete.

Lemma 2.3. Let u ∈ K and θ of Lemma 2.2, then

u(t) ≥ θ‖u‖, t ∈ [θ, T − θ]. (2.12)

The proof of the above lemma is similar to the proof in [17, Lemma 2.2], so we omit it.
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Lemma 2.4. Suppose that conditions (H1), (H2), (H3) hold, u(t) ∈ B ∩ Cn−1
ld (0, 1) is a solution of

the following boundary value problems:

(
φp

(
uΔn−1

(t)
))∇

+ g(t)f
(
u(t), u(t − τ) + h(t − τ), uΔ(t), . . . , uΔn−2

(t)
)
= 0, 0 < t < T, (2.13)

u(t) = 0, −τ ≤ t ≤ 0,

uΔi

(0) = 0, 1 ≤ i ≤ n − 3,

αφp

(
uΔn−2

(0)
)
− βφp

(
uΔn−1

(ξ)
)
= 0,

γφp

(
uΔn−2

(T)
)
+ δφp

(
uΔn−1(

η
))

= 0,
n ≥ 3,

(2.14)

where

h(t) =

⎧
⎨

⎩

ζ(t), −τ ≤ t ≤ 0,

0, 0 ≤ t ≤ T.
(2.15)

Then, u(t) = u(t) + h(t), −τ ≤ t ≤ T is a positive solution to the SBVP (1.7) and (1.8).

Proof. It is easy to check that u(t) satisfies (1.7) and (1.8).

So in the rest of the sections of this paper, we focus on SBVP (2.13) and (2.14).

Lemma 2.5. Suppose that conditions (H1), (H2), (H3) hold, u(t) ∈ B ∩ Cn−1
ld

(0, 1) is a solution of
boundary value problems (2.13), (2.14) if and only if u(t) ∈ B is a solution of the following integral
equation:

u(t) =

⎧
⎪⎨

⎪⎩

ζ(t), −τ ≤ t ≤ 0,
∫ t

0

∫s1

0
· · ·
∫ sn−3

0
w(sn−2)Δsn−2Δsn−3 · · ·Δs1, 0 ≤ t ≤ T,

(2.16)

where

w(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φq

(
β

α

∫σ

ξ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

+
∫ t

0
φq

(∫σ

s

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs,

0 ≤ t ≤ σ,

φq

(
δ

γ

∫η

σ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

+
∫T

t

φq

(∫ s

σ

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs,

σ ≤ t ≤ T.

(2.17)
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Proof. Necessity. Obviously, for t ∈ (−τ, 0), we have u(t) = ζ(t). If t ∈ (0, 1), by the equation
of the boundary condition, we have uΔn−1

(ξ) ≥ 0, uΔn−1
(η) ≤ 0, then there exists a constant

σ ∈ [ξ, η] ⊂ (0, T) such that uΔn−1
(σ) = 0.

Firstly, by integrating the equation of the problems (2.13) on (σ, T), we have

φp

(
uΔn−1

(t)
)
= φp

(
uΔn−1

(σ)
)
−
∫ t

σ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s,

(2.18)

then

uΔn−1
(t) = −φq

(∫ t

σ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

, (2.19)

thus

uΔn−2
(t) = uΔn−2

(σ) −
∫ t

σ

φq

(∫ s

σ

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs.

(2.20)

By uΔn−1
(σ) = 0 and condition (2.18), let t = η on (2.18), we have

φp

(
uΔn−1(

η
))

= −
∫η

σ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s. (2.21)

By the equation of the boundary condition (2.14), we have

φp

(
uΔn−2

(T)
)
= −δ

γ
φp

(
uΔn−1(

η
))

, (2.22)

then

uΔn−2
(T) = φq

(
δ

γ

∫η

σ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)
. (2.23)

Then, by (2.20) and leting t = T on (2.20), we have

uΔn−2
(σ) = φq

(
δ

γ

∫η

σ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

+
∫T

σ

φq

(∫s

σ

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs.

(2.24)
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Then

uΔn−2
(t) = φq

(
δ

γ

∫η

σ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

+
∫T

t

φq

(∫s

σ

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs.

(2.25)

Then, by integrating (2.25) for n − 2 times on (0, T), we have

u(t) =
∫ t

0

∫s1

0
· · ·
∫ sn−3

0
φq

(
σ

γ

∫η

δ

g(s)f
(
u(s), u(s − τ)

+h(s − τ), uΔ(s), . . . , uΔn−2
(s)
)
∇s

)
Δssn−2 · · ·Δs2Δs1

+
∫ t

0

∫s1

0
· · ·
∫ sn−3

0

(∫T

sn−2
φq

(∫s

σ

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)

×∇r

)
Δs

)

Δssn−2 · · ·Δs2Δs1.

(2.26)

Similarly, for t ∈ (0, σ), by integrating the equation of problems (2.13) on (0, σ), we have

u(t) =
∫ t

0

∫s1

0
· · ·
∫ sn−3

0
φq

(
β

α

∫σ

ξ

g(s)f
(
u(s), u(s − τ)

+h(s − τ), uΔ(s), . . . , uΔn−2
(s)
)
∇s

)

Δssn−2 · · ·Δs2Δs1

+
∫ t

0

∫s1

0
· · ·
∫ sn−3

0

(∫ sn−2

0
φq

(∫σ

s

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)

×∇r

)
Δs

)
Δssn−2 · · ·Δs2Δs1.

(2.27)

Therefore, for any t ∈ [0, T], u(t) can be expressed as equation

u(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ζ(t), −τ ≤ t ≤ 0,
∫ t

0

∫s1

0
· · ·
∫ sn−3

0
w(sn−2)Δsn−2Δsn−3 · · ·Δs1, 0 ≤ t ≤ T,

(2.28)

where w(t) is expressed as (2.17). Then the results of Lemma 2.3 hold.
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Sufficiency. Suppose that u(t) =
∫ t
0

∫s1
0 · · · ∫sn−30 w(sn−2)Δsn−2Δsn−3 · · ·Δs1, 0 ≤ t ≤ T . Then

by (2.17), we have

uΔn−1
(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φq

(∫σ

t

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)
≥ 0,

0 ≤ t ≤ σ,

−φq

(∫ t

σ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

≤ 0,

σ ≤ t ≤ T.

(2.29)

So, (φp(uΔn−1
))∇ + g(t)f(u(t), u(t − τ) + h(t − τ), uΔ(t), . . . , uΔn−2

(t)) = 0, 0 < t < T . These imply
that (2.13) holds. Furthermore, by letting t = 0 and t = T on (2.17) and (2.29), we can obtain
the boundary value equations of (2.14). The proof is complete.

Now, we define an operator equation T given by

(Tu)(t) =

⎧
⎪⎨

⎪⎩

ζ(t), −τ ≤ t ≤ 0,
∫ t

0

∫s1

0
· · ·
∫sn−3

0
w(sn−2)Δsn−2Δsn−3 · · ·Δs1, 0 ≤ t ≤ T,

(2.30)

where w(t) is given by (2.17).
From the definition of T and the previous discussion, we deduce that, for each u ∈ K,

Tu ∈ K. Moreover, we have the following lemmas.

Lemma 2.6. T : K → K is completely continuous.

Proof. Because

(Tu)Δ
n−1
(t)=wΔ(t)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φq

(∫σ

t

g(s)f
(
u(s), u(s− τ)+ h(s− τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)
≥ 0,

0 ≤ t ≤ σ,

−φq

(∫ t

σ

g(s)f
(
u(s), u(s− τ)+h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

≤ 0,

σ ≤ t ≤ T,

(2.31)

is continuous, decreasing on [0, T] and satisfies (Tu)Δ
n−1
(σ) = 0, then, Tu ∈ K for each u ∈ K

and (Tu)Δ
n−2
(σ) = maxt∈[0,T](Tu)

Δn−2
(t). This shows that TK ⊂ K. Furthermore, it is easy to

check by Arzela-ascoli Theorem that T : K → K is completely continuous.
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Lemma 2.7. Suppose that conditions (H1), (H2), (H3) hold, the solution u(t) of problem (2.13),
(2.14) satisfies

max
0≤t≤T

|u(t − τ) + h(t − τ)| ≤ max
−τ≤t≤0

|ζ(t)|,

u(t) ≤ TuΔ(t) ≤ · · · ≤ Tn−3uΔn−3
(t), t ∈ [0, T],

(2.32)

and for θ ∈ (0, T/2) in Lemma 2.2, one has

uΔn−3
(t) ≤ T

θ
uΔn−2

(t), t ∈ [θ, T − θ]. (2.33)

Proof. Firstly, we can have

max
0≤t≤T

|u(t − τ) + h(t − τ)| ≤ max
0≤t≤T

|u(t − τ)| +max
0≤t≤T

|h(t − τ)|

= max
−τ≤t≤T−τ

|u(t)| + max
−τ≤t≤T−τ

|h(t)|

= max
−τ≤t≤0

|ζ(t)|.

(2.34)

Next, if u(t) is the solution of problem (2.13), (2.14), then uΔn−2
(t) is concave function,

and uΔi
(t) ≥ 0 (i = 0, 1, . . . , n − 2), t ∈ [0, T]. Thus, we have

uΔi

(t) =
∫ t

0
uΔi+1

(s)Δs ≤ tuΔi+1
(t) ≤ TuΔi+1

(t), i = 0, 1, . . . , n − 4, (2.35)

that is, u(t) ≤ TuΔ(t) ≤ · · · ≤ Tn−3uΔn−3
(t), t ∈ [0, T].

Finally, by Lemma 2.3, for t ∈ [θ, T − θ], we have uΔn−2
(t) ≥ θ‖uΔn−2‖. By uΔn−3

(t) =∫ t
0 u

Δn−2
(s)Δs ≤ T‖uΔn−2‖, we have

uΔn−3
(t) ≤ T

θ
uΔn−2

(t), t ∈ [θ, T − θ]. (2.36)

The proof is complete.

For convenience, we set

H = max
−τ≤t≤0

|ζ(t)|, θ∗ =
2
L
, θ∗ =

1
(
T + φq

(
β/α
))
φq

(∫T
0 g(r)∇r

) ,

m ∈ (θ∗,∞), M ∈ (0, θ∗),

(2.37)
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where L is the constant from Lemma 2.2. By Lemma 2.5, we can also set

f0 = lim
un → 0

max
(u1,u2,...,un)∈ℵ

f(u1, u2, . . . , un)

u
p−1
n

,

f∞ = lim
un →∞

min
(u1,u2,...,un)∈ℵ

f(u1, u2, . . . , un)

u
p−1
n

,

(2.38)

where ℵ = {(u1, u2, . . . , un)| 0 ≤ u1 ≤ Tu3 · · · ≤ Tn−3un−1 ≤ (Tn−2/θ)un, u2 ≤ H}.

3. The Existence of Multiple Positive Solutions

In this section, we also make the following conditions:

(A1) f(u1, u2, . . . , un) ≥ (mr)p−1, for θr ≤ un ≤ r, (u1, u2, . . . , un) ∈ ℵ;
(A2) f(u1, u2, . . . , un) ≤ (MR)p−1, for 0 ≤ un ≤ R, (u1, u2, . . . , un) ∈ ℵ.

Next, we will discuss the existence of multiple positive solutions.

Theorem 3.1. Suppose that conditions (H1), (H2), (H3), and (A2) hold. Assume that f also satisfies

(A3) f0 = +∞;

(A4) f∞ = +∞.

Then, the SBVP (2.13), (2.14) hase at last two solutions u1, u2 such that

0 < ‖u1‖ < R < ‖u2‖. (3.1)

Proof. For any u ∈ K, by Lemma 2.3, we have

uΔn−2
(t) ≥ θ‖u‖, t ∈ [θ, T − θ]. (3.2)

First, by condition (A3), for any N > 2/θL, there exists a constant ρ∗ ∈ (0, R) such that

f(u1, u2, . . . , un) ≥ (Nun)p−1, 0 < un ≤ ρ∗, un /= 0. (3.3)

Set Ωρ∗ = {u ∈ K : ‖u‖ < ρ∗}. For any u ∈ ∂Ωρ∗ , by (3.2)we have

ρ∗ = ‖u‖ ≥ uΔn−2
(t) ≥ θ‖u‖ = θρ∗, t ∈ [θ, T − θ]. (3.4)

For any u ∈ ∂Ωρ∗ , by (3.3) and Lemmas 2.3–2.6, we will discuss it from three perspectives.
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(i) If σ ∈ [θ, T − θ], we have

2‖Tu‖ = 2(Tu)Δ
n−2
(σ)

≥
∫σ

0
φq

(∫σ

s

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs

+
∫T

σ

φq

(∫s

σ

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs

≥
∫σ

θ

φq

(∫σ

s

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs

+
∫T−θ

σ

φq

(∫ s

σ

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs

≥ NθA(σ)‖u‖ ≥ 2‖u‖.

(3.5)

(ii) If σ ∈ (T − θ, T], we have

‖Tu‖ = (Tu)Δ
n−2
(σ)

≥ φq

(
β

α

∫σ

ξ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

+
∫σ

0
φq

(∫σ

s

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs

≥
∫T−θ

θ

φq

(∫T−θ

s

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)

Δs

≥ NθA(T − θ)‖u‖ > ‖u‖.

(3.6)

(iii) If σ ∈ (0, θ), we have

‖Tu‖ = (Tu)Δ
n−2
(σ)

≥ φq

(
δ

γ

∫η

σ

g(s)f
(
u(s), u(s − τ) + h(r − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

+
∫T

σ

φq

(∫s

σ

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs

≥
∫T−θ

θ

φq

(∫s

θ

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs

≥ NθA(θ)‖u‖ > ‖u‖.

(3.7)

Therefore, no matter under which condition, we all have

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Ωρ∗ . (3.8)
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Then, by Theorem 1.1, we have

i
(
T,Ωρ∗ , K

)
= 0. (3.9)

Next, by condition (A4), for any N > 2/θL, there exists a constant ρ0 > 0 such that

f(u1, u2, . . . , un) ≥
(
Nun

)p−1
, un > ρ0. (3.10)

We choose a constant ρ∗ > max{R, ρ0/θ}, obviously ρ∗ < R < ρ∗. SetΩρ∗ = {u ∈ K : ‖u‖ < ρ∗}.
For any u ∈ ∂Ωρ∗ , by Lemma 2.3, we have

u(t) ≥ θ‖u‖ = θρ∗ > ρ0, t ∈ [θ, T − θ]. (3.11)

Then, by (3.10), Lemmas 2.3–2.6 and also similar to the previous proof, we can also have from
three perspectives that

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Ωρ∗ . (3.12)

Then, by Theorem 1.1, we have

i
(
T,Ωρ∗ , K

)
= 0. (3.13)

Finally, set ΩR = {u ∈ K : ‖u‖ < R}. For any u ∈ ∂ΩR, we have u(t) ≤ ‖u‖ = R, by (A2) we
know

‖Tu‖ = (Tu)Δ
n−2
(σ)

≤ φq

(
β

α

∫σ

ξ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

+
∫T

0
φq

(∫σ

s

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs

≤
(
T + φq

(
β

α

))
MRφq

(∫T

0
g(r)∇r

)

≤ R = ‖u‖.

(3.14)

Thus,

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂ΩR. (3.15)

Then, by Theorem 1.1, we have

i(T,ΩR,K) = 1. (3.16)
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Therefore, by (3.9), (3.13), (3.16), ρ∗ < R < ρ∗ we have

i
(
T,ΩR \Ωρ∗ , K

)
= 1, i

(
T,Ωρ∗ \ΩR,K

)
= −1. (3.17)

Then T has fixed point u1 ∈ ΩR \ Ωρ∗ and fixed point u2 ∈ Ωρ∗ \ ΩR. Obviously, u1, u2 are
all positive solutions of problem (2.13), (2.14) and ρ∗ < ‖u1‖ < R < ‖u2‖ < ρ∗. Proof of
Theorem 3.1 is complete.

Theorem 3.2. Suppose that conditions (H1), (H2), (H3), (A1) hold. Assume that f also satisfies

(A5) f0 = 0;

(A6) f∞ = 0.

Then, the SBVP (2.13), (2.14) has at last two solutions u1, u2 such that 0 < ‖u1‖ < r < ‖u2‖.

Proof. First, by f0 = 0, for ε1 ∈ (0, θ∗), there exists a constant ρ∗ ∈ (0, r) such that

f(u1, u2, . . . , un) ≤ (ε1un)p−1, 0 < un ≤ ρ∗. (3.18)

Set Ωρ∗ = {u ∈ K : ‖u‖ < ρ∗}, for any u ∈ ∂Ωρ∗ , by (3.18), we have

‖Tu‖ = (Tu)Δ
n−2
(σ)

≤ φq

(
β

α

∫σ

ξ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

+
∫T

0
φq

(∫σ

s

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs

≤ φq

(
β

α

∫σ

ξ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

+ Tφq

(∫T

0
g(r)f

(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)

≤
(
T + φq

(
β

α

))
ε1ρ∗φq

(∫T

0
g(r)∇r

)

≤ ρ∗ = ‖u‖,

(3.19)

that is,

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Ωρ∗ (3.20)

Then, by Theorem 1.1, we have

i
(
T,Ωρ∗ , K

)
= 1. (3.21)
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Next, let f∗(x) = max0≤un−1≤xf(u1, u2, . . . , un−1); note that f∗(x) is monotone increasing
with respect to x ≥ 0. Then, from f∞ = 0, it is easy to see that

lim
x→∞

f∗(x)
xp−1 = 0. (3.22)

Therefore, for any ε2 ∈ (0, θ∗), there exists a constant ρ∗ > r such that

f∗(x) ≤ (ε2x)p−1, x ≥ ρ∗. (3.23)

Set Ωρ∗ = {u ∈ K : ‖u‖ < ρ∗}, for any u ∈ ∂Ωρ∗ , by (3.23), we have

‖Tu‖ = (Tu)Δ
n−2
(σ)

≤ φq

(
β

α

∫σ

ξ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

+
∫T

0
φq

(∫σ

s

g(r)f
(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)
Δs

≤ φq

(
β

α

∫σ

ξ

g(s)f
(
u(s), u(s − τ) + h(s − τ), uΔ(s), . . . , uΔn−2

(s)
)
∇s

)

+ Tφq

(∫T

0
g(r)f

(
u(r), u(r − τ) + h(r − τ), uΔ(r), . . . , uΔn−2

(r)
)
∇r

)

≤
(
T + φq

(
β

α

))
φq

(∫T

0
g(r)f∗(ρ∗

)∇r

)

≤
(
T + φq

(
β

α

))
ε2ρ

∗φq

(∫T

0
g(r)∇r

)

≤ r∗ = ‖u‖,

(3.24)

that is,

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂Ωρ∗ . (3.25)

Then, by Theorem 1.1, we have

i
(
T,Ωρ∗ , K

)
= 1. (3.26)

Finally, set Ωr = {u ∈ K : ‖u‖ < r}. For any u ∈ ∂Ωr , by (A1), Lemma 2.3 and also
similar to the previous proof of Theorem 3.1, we can also have

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂Ωr . (3.27)

Then, by Theorem 1.1, we have

i(T,Ωr , K) = 0. (3.28)
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Therefore, by (3.21), (3.28), (3.26), ρ∗ < r < ρ∗, we have

i
(
T,Ωr \Ωρ∗ , K

)
= −1, i

(
T,Ωρ∗ \Ωr , K

)
= 1. (3.29)

Then T has fixed point u1 ∈ Ωr \ Ωρ∗ and fixed point u2 ∈ Ωρ∗ \ Ωr . Obviously, u1, u2 are
all positive solutions of problem (2.13), (2.14) and ρ∗ < ‖u1‖ < r < ‖u2‖ < ρ∗. The proof of
Theorem 3.2 is complete.

Similar to Theorems 3.1 and 3.2, we also obtain the following theorems.

Theorem 3.3. Suppose that conditions (H1), (H2), (H3), and (A2) hold and

(A7) f∞ = λ ∈ ((2θ∗/θ)p−1,∞),

(A8) f0 = ϕ ∈ ((2θ∗/θ)p−1,∞).

Then, the SBVP (2.13), (2.14) has at last two solutions u1, u2 such that 0 < ‖u1‖ < R < ‖u2‖.

Theorem 3.4. Suppose that conditions (H1), (H2), (H3), and (A1) hold and

(A9) f0 = ϕ ∈ [0, (θ∗/4)
p−1);

(A10) f∞ = λ ∈ [0, (θ∗/4)
p−1).

Then, the SBVP (2.13), (2.14) has at last two solutions u1, u2 such that 0 < ‖u1‖ < r < ‖u2‖.

4. An Example

Example 4.1. Consider the following 3-order singular boundary value problem (SBVP) with
p-Laplacian:

(
φp

(
uΔΔ
))∇

(t) +
1

64π4
t−1/2(1 − t)

[
u(t) + u(t − 1) +

(
uΔ
)2
(t) +

(
uΔ
)4
(t)
]
= 0, 0 < t < 1,

u(t) = −tet, −1 ≤ t ≤ 0,

2φp

(
uΔ(0)

)
− φp

(
uΔΔ
(
1
4

))
= 0, φp

(
uΔ(1)

)
+ δφp

(
uΔΔ
(
1
2

))
= 0,

(4.1)

where

β = γ = 1, α = 2, p = 4, δ ≥ 0, p = 4, ξ =
1
4
,

η =
1
3
, θ =

1
4
, τ = T = 1.

(4.2)
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So, by Lemma 2.4, we discuss the following SBVP:

(
φp

(
uΔΔ
))∇

(t) +
1

64π4
t−1/2(1 − t)

[
u(t) + [u(t − 1) + h(t − 1)]

+
(
uΔ
)2
(t) +

(
uΔ
)4
(t)
]
= 0, 0 < t < 1,

u(t) = 0, −1 ≤ t ≤ 0,

2φp

(
uΔ(0)

)
− φp

(
uΔΔ
(
1
4

))
= 0, φp

(
uΔ(1)

)
+ δφp

(
uΔΔ
(
1
2

))
= 0,

(4.3)

where

h(t) =

⎧
⎨

⎩

ζ(t), −1 ≤ t ≤ 0,

0, 0 ≤ t ≤ 1,
ζ(t) = −tet,

g(t) =
1

64π4
t−1/2(1 − t), f(u1, u2, u3) = u1 + u2 + u2

3 + u4
3.

(4.4)

Then, obviously,

q =
4
3
,

∫1

0
g(t)∇t =

1
64π3

, H = max
−1≤t≤0

|ζ(t)| = e, f∞ = +∞, f0 = +∞, (4.5)

so conditions (H1), (H2), (H3), (A2), and (A3) hold.
Next,

φq

(∫1

0
a(t)∇t

)

=
1
4π

, θ∗ =
4π

1 + 3
√
4
, (4.6)

we choose R = 3, M = 2 and for θ = 1/4, because of the monotone increasing of f(u1, u2, u3)
on [0,∞)3, then

f(u1, u2, u3) ≤ f

(
3
4
, e, 3

)
=

3
4
+ e + 90, 0 ≤ u3 ≤ 3, 0 ≤ u1 ≤ 1

4
u3, 0 ≤ u2 ≤ e. (4.7)

Therefore, by

M ∈ (0, θ∗), (MR)p−1 = (6)3 = 216, (4.8)

we know

f(u1, u2, u3) ≤ (MR)p−1, 0 ≤ u3 ≤ 3, 0 ≤ u1 ≤ 1
4
u3, 0 ≤ u2 ≤ e, (4.9)
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so condition (A2) holds. Then, by Theorem 3.1, SBVP (4.3) has at least two positive solutions
v1, v2 and 0 < ‖v1‖ < 3 < ‖v2‖. Then, by Lemma 2.4, v1(t) = v1(t) + h(t), v2(t) = v2(t) + h(t),
t ∈ (−1, 1) are the positive solutions of the SBVP (4.1).
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