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The existence results of positive ω-periodic solutions are obtained for the second-order functional
differential equation with multiple delays u′′(t) + a(t)u(t) = f(t, u(t), u(t − τ1(t)), . . . , u(t − τn(t))),
where a(t) ∈ C(R) is a positive ω-periodic function, f : R × [0,+∞)n+1 → [0,+∞) is a continuous
function which is ω-periodic in t, and τ1(t), . . . , τn(t) ∈ C(R, [0,+∞)) are ω-periodic functions.
The existence conditions concern the first eigenvalue of the associated linear periodic boundary
problem. Our discussion is based on the fixed-point index theory in cones.

1. Introduction

In this paper, we deal with the existence of positive periodic solution of the second-order
functional differential equation with multiple delays

u
′′
(t) + a(t)u(t) = f(t, u(t), u(t − τ1(t)), . . . , u(t − τn(t))), t ∈ R, (1.1)

where a(t) ∈ C(R) is a positive ω-periodic function, f : R × [0,+∞)n+1 → [0,+∞) is a
continuous functionwhich isω-periodic in t, and τ1(t),. . .,τn(t) ∈ C(R, [0,+∞)) areω-periodic
functions ω > 0 is a constant.

In recent years, the existence of periodic solutions for second-order functional
differential equations has been researched by many authors see [1–8] and references therein.
In some practice models, only positive periodic solutions are significant. In [4–8], the
authors obtained the existence of positive periodic solutions for some second-order functional
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differential equations by using fixed-point theorems of cone mapping. Especially in [5], Wu
considered the second-order functional differential equation

u
′′
(t) + a(t)u(t) = λf(t, u(t − τ1(t)), . . . , u(t − τn(t))), t ∈ R, (1.2)

and obtained the existence results of positive periodic solutions by using the Krasnoselskii
fixed-point theorem of cone mapping when the coefficient a(t) satisfies the condition that
0 < a(t) < π2/ω2 for every t ∈ R. And in [8], Li obtained the existence results of positive
ω-periodic solutions for the second-order differential equation with constant delays

−u′′
(t) + a(t)u(t) = f(t, u(t − τ1), . . . , u(t − τn)), t ∈ R, (1.3)

by employing the fixed-point index theory in cones. For the second-order differential
equations without delay, the existence of positive periodic solutions has been discussed by
more authors, see [9–14].

Motivated by the paper mentioned above, we research the existence of positive
periodic solutions of (1.1). We aim to obtain the essential conditions on the existence of
positive periodic solution of (1.1) by constructing a special cone and applying the fixed-point
index theory in cones.

In this paper, we assume the following conditions:

(H1) a ∈ C(R, (0,+∞)) is ω-periodic function and there exists a constant 1 ≤ p ≤ +∞
such that

‖a‖p ≤ K
(
2p∗
)
, (1.4)

where ‖a‖p is the p-norm of a in Lp[0, ω], p∗ is the conjugate exponent of p defined
by (1/p) + (1/p∗) = 1, and the function K(q) is defined by

K
(
q
)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2π
qω1+2/q

(
2

2 + q

)1−2/q( Γ
(
1/q
)

Γ
(
1/2 + 1/q

)

)2

, if 1 ≤ q < +∞,

4
ω

, if q = +∞
(1.5)

in which Γ is the Gamma function.

(H2) f ∈ C(R × [0,+∞)n+1, [0,+∞)) and f(t, x0, x1, . . . , xn) is ω-periodic in t.

(H3) τ1(t), . . . , τn(t) ∈ C(R, [0,∞)) are ω-periodic functions.

In Assumption (H1), if p = +∞, since K(2) = π2/ω2, then (1.4) implies that a satisfies
the condition

0 < a(t) ≤ π2

ω2
, t ∈ [0, ω]. (1.6)

This condition includes the case discussed in [5].
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The techniques used in this paper are completely different from those in [5]. Our
results are more general than those in [5] in two aspects. Firstly, we relax the conditions
of the coefficient a(t) appeared in an equation in [5] and expand the range of its values.
Secondly, by constructing a special cone and applying the fixed-point index theory in cones,
we obtain the essential conditions on the existence of positive periodic solutions of (1.1). The
conditions concern the first eigenvalue of the associated linear periodic boundary problem,
which improve and optimize the results in [5]. To our knowledge, there are very few works
on the existence of positive periodic solutions for the above functional differential equations
under the conditions concerning the first eigenvalue of the corresponding linear equation.

Our main results are presented and proved in Section 3. Some preliminaries to discuss
(1.1) are presented in Section 2.

2. Preliminaries

In order to discuss (1.1), we consider the existence of ω-periodic solution of the
corresponding linear differential equation

u
′′
+ a(t)u = h(t), t ∈ R, (2.1)

where h ∈ C(R) is a ω-periodic function. It is obvious that finding an ω-periodic solution of
(2.1) is equivalent to finding a solution of the linear periodic boundary value problem

u
′′
+ a(t)u = h(t), t ∈ [0, ω],

u(0) = u(ω), u′(0) = u′(ω).
(2.2)

In [14], Torres show the following existence resulted.

Lemma 2.1. Assume that (H1 ) holds, then for every h ∈ C[0, ω], the linear periodic boundary
problem (2.2) has a unique solution expressed by

u(t) =
∫ω

0
G(t, s)h(s)ds, t ∈ [0, ω], (2.3)

whereG(t, s) ∈ C([0, ω]×[0, ω]) is the Green function of the linear periodic boundary problem (2.2),
which satisfies the positivity: G(t, s) > 0 for every (t, s) ∈ [0, ω] × [0, ω].

For the details, see [14, Theorem 2.1 and Corollary 2.3].
Form ∈ N, we useCm

ω (R) to denote themth-order continuous differentiableω-periodic
functions space. Let X = Cω(R) be the Banach space of all continuous ω-periodic functions
equipped the norm ‖u‖ = max0≤t≤ω|u(t)|.

Let

K0 = {u ∈ X | u(t) ≥ 0, t ∈ R} (2.4)
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be the cone of all nonnegative functions in X. Then X is an ordered Banach space by the cone
K0. K0 has a nonempty interior

int(K0) = {u ∈ X | u(t) > 0, t ∈ R}. (2.5)

Let

G = min
0≤t,s≤ω

G(t, s), G = max
0≤t,s≤ω

G(t, s); σ = G/G. (2.6)

Lemma 2.2. Assume that (H1) holds, then for every h ∈ X, (2.1) has a unique ω-periodic solution
u. Let T : h 
→ u, then T : X → X is a completely continuous linear operator, and when h ∈ K0, Th
has the positivity estimate

Th(t) ≥ σ‖Th‖, ∀t ∈ R. (2.7)

Proof. Let h ∈ X. By Lemma 2.1, the linear periodic boundary problem (2.2) has a unique
solution u ∈ C2[0, ω] given by (2.3). We extend u to a ω-periodic function, which is still
denoted by u, then u := Th ∈ C2

ω(R) is a unique ω-periodic solution of (2.1). By (2.3),

Th(t) =
∫ω

0
G(t, s)h(s)ds, t ∈ [0, ω]. (2.8)

From this we see that T maps every bounded set in X to a bounded equicontinuous set of X.
Hence, by the Ascoli-Arzelà theorem, T : X → X is completely continuous.

Let h ∈ K0. For every t ∈ [0, ω], from (2.8) it follows that

Th(t) =
∫ω

0
G(t, s)h(s)ds ≤ G

∫ω

0
h(s)ds, (2.9)

and therefore,

‖Th‖ ≤ G

∫ω

0
h(s)ds. (2.10)

Using (2.8) and this inequality, we have that

Th(t) =
∫ω

0
G(t, s)h(s)ds ≥ G

∫ω

0
h(s)ds

=
(
G/G

)
·G
∫ω

0
h(s)ds

≥ σ‖Th‖.

(2.11)

Hence, by the periodicity of u, (2.7) holds for every t ∈ R.
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From (2.7)we easily see that T(K0) ⊂ int(K0); namely, T : X → X is a strongly positive
linear operator. By the well-known Krein-Rutman theorem, the spectral radius r(T) > 0 is a
simple eigenvalue of T , and T has a corresponding positive eigenfunction φ ∈ K0; that is,

Tφ = r(T)φ. (2.12)

Since φ can be replaced by cφ, where c > 0 is a constant, we can choose φ ∈ K0 such that

∫ω

0
φ(t)dt = 1. (2.13)

Set λ1 = 1/r(T), then φ = T(λ1φ). By Lemma 2.2 and the definition of T , φ ∈ C2
ω(R) satisfies

the differential equation

φ
′′
(t) + a(t)φ(t) = λ1φ(t), t ∈ R. (2.14)

Thus, λ1 is the minimum positive real eigenvalue of the linear equation (2.1) under the ω-
periodic condition. Summarizing these facts, we have the following lemma.

Lemma 2.3. Assume that (H1) holds, then there exist φ ∈ K0 ∩ C2
ω(R) such that (2.13) and (2.14)

hold.

Let f : R × [0,∞)n+1 → [0,∞) satisfy the assumption (H2). For every u ∈ X, set

F(u)(t) := f(t, u(t), u(t − τ1), . . . , u(t − τn)), t ∈ R. (2.15)

Then F : K0 → K0 is continuous. Define a mapping A : K0 → X by

A = T ◦ F. (2.16)

By the definition of operator T , theω-periodic solution of (1.1) is equivalent to the fixed point
of A. Choose a subcone of K0 by

K = {u ∈ K0 | u(t) ≥ σ‖u‖C, t ∈ R}. (2.17)

By the strong positivity (2.7) of T and the definition of A, we easily obtain the following.

Lemma 2.4. Assume that (H1) holds, then A(K0) ⊂ K and A : K → K is completely continuous.

Hence, the positive ω-periodic solution of (1.1) is equivalent to the nontrivial fixed
point ofA. We will find the nonzero fixed point ofA by using the fixed-point index theory in
cones.

We recall some concepts and conclusions on the fixed-point index in [15, 16]. Let X
be a Banach space and K ⊂ X a closed convex cone in X. Assume that Ω is a bounded open
subset ofX with boundary ∂Ω, andK∩Ω/= ∅. LetA : K∩Ω → K be a completely continuous
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mapping. IfAu/=u for any u ∈ K∩∂Ω, then the fixed-point index i(A,K∩Ω, K) has definition.
One important fact is that if i(A,K∩Ω, K)/= 0, thenA has a fixed point inK∩Ω. The following
two lemmas in [16] are needed in our argument.

Lemma 2.5. Let Ω be a bounded open subset of X with θ ∈ Ω, and A : K ∩ Ω → K a completely
continuous mapping. If μAu/=u for every u ∈ K ∩ ∂Ω and 0 < μ ≤ 1, then i(A,K ∩Ω, K) = 1.

Lemma 2.6. Let Ω be a bounded open subset of X and A : K ∩ Ω → K a completely continuous
mapping. If there exists an e ∈ K \ {θ} such that u −Au/=μe for every u ∈ K ∩ ∂Ω and μ ≥ 0, then
i(A,K ∩Ω, K) = 0.

3. Main Results

We consider the existence of positive ω-periodic solutions of (1.1). Assume that f : R ×
[0,∞)n+1 → [0,∞) satisfy (H2). To be convenient, we introduce the notations

f0 = lim inf
x→ 0+

min
t∈[0,ω]

f(t, x0, x1, . . . , xn)
x

,

f0 = lim sup
x→ 0+

max
t∈[0,ω]

f(t, x0, x1, . . . , xn)
x

,

f∞ = lim inf
x→+∞

min
t∈[0,ω]

f(t, x0, x1, . . . , xn)
x

,

f∞ = lim sup
x→+∞

max
t∈[0,ω]

f(t, x0, x1, . . . , xn)
x

,

(3.1)

where x = max{x0, x1, . . . , xn} and x = min{x0, x1, . . . , xn}. Our main results are as follows.

Theorem 3.1. Suppose that (H1)–(H3) hold. If f satisfies the condition

(H4) f0 < λ1 < f∞,

then (1.1) has at least one positive ω-periodic solution.

Theorem 3.2. Suppose that (H1)–(H3) hold. If f satisfies the condition

(H5) f∞ < λ1 < f0,

then (1.1) has at least one positive ω-periodic solution.

In Theorem 3.1, the condition (H4) allows f(t, x0, x1, . . . , xn) to be superlinear growth
on x0, x1, . . . , xn. For example,

f(t, x0, x1, . . . , xn) = b0(t)x2
0 + b1(t)x2

1 + · · · + bn(t)x2
n (3.2)

satisfies (H4) with f0 = 0 and f∞ = +∞, where b0, b1, . . . , bn ∈ Cω(R) are positive ω-periodic
functions.
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In Theorem 3.2, the condition (H5) allows f(t, x0, x1, . . . , xn) to be sublinear growth on
x0, x1, . . . , xn. For example,

f(t, x0, x1, . . . , xn) = c0(t)
√
|x0| + c1(t)

√
|x1| + · · · + cn(t)

√
|xn| (3.3)

satisfies (H5) with f0 = +∞ and f∞ = 0, where c0, c1, . . . , cn ∈ Cω(R) are positive ω-periodic
solution.

Applying Theorems 3.1 and 3.2 to (1.2), we have the following.

Corollary 3.3. Suppose that (H1)–(H3) hold. If the parameter λ satisfies one of the following
conditions

(1) λ1/f∞ < λ < λ1/f
0,

(2) λ1/f0 < λ < λ1/f
∞,

then (1.2) has at least one positive ω-periodic solution.

This result improves and extends [5, Theorem 1.3].

Proof of Theorem 3.1. Let K ⊂ X be the cone defined by (2.17) and A : K → K the operator
defined by (2.16). Then the positiveω-periodic solution of (1.1) is equivalent to the nontrivial
fixed point of A. Let 0 < r < R < +∞ and set

Ω1 = {u ∈ X | ‖u‖ < r}, Ω2 = {u ∈ X | ‖u‖ < R}. (3.4)

We show that the operator A has a fixed point in K ∩ (Ω2 \Ω1) when r is small enough and
R large enough.

Since f0 < λ1, by the definition of f0, there exist ε ∈ (0, λ1) and δ > 0, such that

f(t, x0, x1, . . . , xn) ≤ (λ1 − ε)x, t ∈ [0, ω], x ∈ (0, δ), (3.5)

where x = max{x0, x1, . . . , xn} and x = min{x0, x1, . . . , xn}. Choosing r ∈ (0, δ), we prove that
A satisfies the condition of Lemma 2.5 in K ∩ ∂Ω1; namely, μAu/=u for every u ∈ K ∩ ∂Ω1

and 0 < μ ≤ 1. In fact, if there exist u0 ∈ K ∩ ∂Ω1 and 0 < μ0 ≤ 1 such that μ0Au0 = u0 and
since u0 = T(μ0F(u0)), by definition of T and Lemma 2.2, u0 ∈ C2

ω(R) satisfies the differential
equation

u′′
0(t) + a(t)u0(t) = μ0F(u0)(t), t ∈ R, (3.6)

where F(u) is defined by (2.15). Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, we have

0 < σ ‖u0‖ ≤ u0(τ) ≤ ‖u0‖ = r < δ, ∀τ ∈ R. (3.7)

This implies that

0 < max{u0(t), u0(t − τ1(t)), . . . , u0(t − τn(t))} < δ, t ∈ R. (3.8)
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From this and (3.5), it follows that

F(u0)(t) = f(t, u0(t), u0(t − τ1(t)), . . . , u0(t − τn(t)))

≤ (λ1 − ε) ·min{u0(t), u0(t − τ1(t)), . . . , u0(t − τn(t))}
≤ (λ1 − ε)u0(t), t ∈ R.

(3.9)

By this inequality and (3.6), we have

u′′
0(t) + a(t)u0(t) = μ0F(u0)(t) ≤ (λ1 − ε)u0(t), t ∈ R. (3.10)

Let φ ∈ K ∩ C2
ω(R) be the function given in Lemma 2.4. Multiplying the inequality (3.10) by

φ(t) and integrating on [0, ω], we have

∫ω

0

[
u′′
0(t) + a(t)u0(t)

]
φ(t)dt ≤ (λ1 − ε)

∫ω

0
u0(t)φ(t)dt. (3.11)

For the left side of the above inequality using integration by parts, then using the periodicity
of u0 and φ and (2.14), we have

∫ω

0

[
u′′
0(t) + a(t)u0(t)

]
φ(t)dt =

∫ω

0
u0(t)

[
φ′′(t) + a(t)φ(t)

]
dt

= λ1

∫ω

0
u0(x)φ(t)dt.

(3.12)

Consequently, we obtain that

λ1

∫ω

0
u0(x)φ(t)dt ≤ (λ1 − ε)

∫ω

0
u0(x)φ(t)dt. (3.13)

Since u0 ∈ K ∩ ∂Ω1, by the definition of K and (2.13),

∫ω

0
u0(x)φ(t)dt ≥ σ‖u0‖

∫ω

0
φ(t)dt = σ‖u0‖ > 0. (3.14)

From this and (3.13), we conclude that λ1 ≤ λ1−ε , which is a contradiction. Hence,A satisfies
the condition of Lemma 2.5 in K ∩ ∂Ω1. By Lemma 2.5, we have

i(A,K ∩Ω1, K) = 1. (3.15)

On the other hand, since f∞ > λ1, by the definition of f∞, there exist ε1 > 0 and H > 0
such that

f(t, x0, x1, . . . , xn) ≥ (λ1 + ε1) x, t ∈ [0, ω], x > H, (3.16)
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where x = max{x0, x1, . . . , xn} and x = min{x0, x1, . . . , xn}. Choose R > max{H/σ, δ} and
e(t) ≡ 1. Clearly, e ∈ K \ {θ}. We show thatA satisfies the condition of Lemma 2.6 inK ∩∂Ω2;
namely, u −Au/=μφ for every u ∈ K ∩ ∂Ω2 and μ ≥ 0. In fact, if there exist u1 ∈ K ∩ ∂Ω2 and
μ1 ≥ 0 such that u1 − Au1 = μ1e, since u1 − μ1e = Au1 = T(F(u1)), by the definition of T and
Lemma 2.2, u1 ∈ C 2

ω(R) satisfies the differential equation

u
′′
1(t) + a(t)

(
u1(t) − μ1

)
= F(u1)(t), t ∈ R. (3.17)

Since u1 ∈ K ∩ ∂Ω2, by the definitions of K and Ω2, we have

u1(τ) ≥ σ‖u1‖ = σR > H, ∀τ ∈ R. (3.18)

This means that

min{u1(t), u1(t − τ1(t)), . . . , u1(t − τn(t))} > H, t ∈ R. (3.19)

Combining this with (3.16), we have that

F(u1)(t) = f(t, u1(t), u1(t − τ1(t)), . . . , u1(t − τn(t)))

≥ (λ1 + ε1) ·max{u1(t), u1(t − τ1(t)), . . . , u1(t − τn(t))}
≥ (λ1 + ε1)u1(t), t ∈ R.

(3.20)

From this inequality and (3.17), it follows that

u
′′
1(t) + a(t)u1(t) = μ1a(t) + F(u1)(t) ≥ (λ1 + ε1)u1(t), t ∈ R. (3.21)

Multiplying this inequality by φ(t) and integrating on [0, ω], we have

∫ω

0

[
u

′′
1(t) + a(t)u1(t)

]
φ(t)dt ≥ (λ1 + ε1)

∫ω

0
u1(t)φ(t)dt. (3.22)

For the left side of the above inequality using integration by parts and (2.14), we have

∫ω

0

[
u′′
1(t) + a(t)u1(t)

]
φ(t)dt =

∫ω

0
u1(t)

[
φ′′(t) + a(t)φ(t)

]
dt

= λ1

∫ω

0
u1(x)φ(t)dt.

(3.23)

From this and (3.22), it follows that

λ1

∫ω

0
u1(x)φ(t)dt ≥ (λ1 + ε1)

∫ω

0
u1(x)φ(t)dt. (3.24)
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Since u1 ∈ K ∩ ∂Ω2, by the definition of K and (2.13), we have

∫ω

0
u1(x)φ(t)dt ≥ σ‖u1‖

∫ω

0
φ(t)dt = σ‖u1‖ > 0. (3.25)

Hence, from (3.24) it follows that λ1 ≥ λ1 + ε1, which is a contradiction. Therefore, A satisfies
the condition of Lemma 2.6 in K ∩ ∂Ω2. By Lemma 2.6, we have

i(A,K ∩Ω2, K) = 0. (3.26)

Now by the additivity of the fixed-point index (3.15), and (3.26), we have

i
(
A,K ∩

(
Ω2 \Ω1

)
, K
)
= i(A,K ∩Ω2, K) − i(A,K ∩Ω1, K) = −1. (3.27)

HenceA has a fixed point inK∩(Ω2\Ω1), which is a positiveω-periodic solution of (1.1).

Proof of Theorem 3.2. LetΩ1,Ω2 ⊂ X be defined by (3.4). We prove that the operatorA defined
by (2.16) has a fixed point in K ∩ (Ω2 \Ω1) if r is small enough and R is large enough.

By f0 > λ1 and the definition of f0, there exist ε > 0 and δ > 0, such that

f(t, x0, x1, . . . , xn) ≥ (λ1 + ε)x, t ∈ [0, ω], x ∈ (0, δ), (3.28)

where x = max{x0, x1, . . . , xn}. Let r ∈ (0, δ) and e(t) ≡ 1. We prove that A satisfies the
condition of Lemma 2.6 in K ∩ ∂Ω1; namely, u −Au/=μe for every u ∈ K ∩ ∂Ω1 and μ ≥ 0. In
fact, if there exist u0 ∈ K∩∂Ω1 and μ0 ≥ 0 such that u0 −Au0 = μ0e and since u0 −μ0e = Au0 =
T(F(u0)), by the definition of T and Lemma 2.2, u0 ∈ C2

ω(R) satisfies the differential equation

u
′′
0(t) + a(t)

(
u0(t) − μ0

)
= F(u0)(t), t ∈ R. (3.29)

Since u0 ∈ K ∩ ∂Ω1, by the definitions of K and Ω1, u0 satisfies (3.7), and hence (3.8) holds.
From (3.8) and (3.28), it follows that

F(u0)(t) = f(t, u0(t), u0(0 − τ1(t)), . . . , u0(t − τn(t)))

≥ (λ1 + ε) ·max{u0(t), u0(t − τ1(t)), . . . , u0(t − τn(t))}
≥ (λ1 + ε)u0(t), t ∈ R.

(3.30)

By this and (3.29), we obtain that

u
′′
0(t) + a(t)u0(t) = μ0a(t) + F(u0)(t) ≥ (λ1 + ε)u0(t), t ∈ R. (3.31)

Multiplying this inequality by φ(t) and integrating on [0, ω], we have

∫ω

0

[
u

′′
0(t) + a(t)u0(t)

]
φ(t)dt ≥ (λ1 + ε)

∫ω

0
u0(t)φ(t)dt. (3.32)
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For the left side of this inequality using integration by parts and (2.14), we have

∫ω

0

[
u

′′
0(t) + a(t)u0(t)

]
φ(t)dt =

∫ω

0
u0(t)

[
φ′′(t) + a(t)φ(t)

]
dt

= λ1

∫ω

0
u0(x)φ(t)dt.

(3.33)

From this and (3.32), it follows that

λ1

∫ω

0
u1(x)φ(t)dt ≥ (λ1 + ε1)

∫ω

0
u1(x)φ(t)dt. (3.34)

Since u0 ∈ K ∩ ∂Ω1, from the definition of K and (2.13) it follows that (3.14) holds. By (3.14)
and (3.34), we see that λ1 ≥ λ1 + ε, which is a contradiction. Hence, A satisfies the condition
of Lemma 2.6 in K ∩ ∂Ω1. By Lemma 2.6, we have

i(A,K ∩Ω1, K) = 0. (3.35)

Since f∞ < λ1, by the definition of f∞, there exist ε1 ∈ (0, λ1) and H > 0 such that

f(t, x0, x1, . . . , xn) ≤ (λ1 − ε1)x, t ∈ [0, ω], x > H, (3.36)

where x = min{x0, x1, . . . , xn}. Choosing R > max{H/σ, δ}, we show that A satisfies the
condition of Lemma 2.5 in K ∩ ∂Ω2; namely, μAu/=u for every u ∈ K ∩ ∂Ω2 and 0 < μ ≤ 1. In
fact, if there exist u1 ∈ K ∩ ∂Ω2 and 0 < μ1 ≤ 1 such that μ1Au1 = u1, since u1 = T(μ1F(u1)),
by the definition of T and Lemma 2.2, u1 ∈ C2

ω(Ω) satisfies the differential equation

u
′′
1(t) + a(t)u1(t) = μ1F(u1)(t), t ∈ R. (3.37)

Since u1 ∈ K ∩ ∂Ω2, by the definitions ofK andΩ2, u1 satisfies (3.18), and hence (3.19) holds.
By (3.19) and (3.36), we have

F(u1)(t) = f(t, u1(t), u1(t − τ1(t)), . . . , u1(t − τn(t)))

≤ (λ1 − ε1) ·min{u1(t), u1(t − τ1(t)), . . . , u1(t − τn(t))}
≤ (λ1 − ε1)u1(t), t ∈ R.

(3.38)

From this inequality and (3.37), it follows that

u
′′
1(t) + a(t)u1(t) = μ1F(u1)(t) ≤ (λ1 − ε1)u1(t), t ∈ R. (3.39)

Multiplying this inequality by φ(t) and integrating on [0, ω], we have

∫ω

0

[
u

′′
1(t) + a(t)u1(t)

]
φ(t)dt ≤ (λ1 − ε1)

∫ω

0
u1(t)φ(t)dt. (3.40)
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For the left side of this inequality using integration by parts and (2.14), we have

∫ω

0

[
u

′′
1(t) + a(t)u1(t)

]
φ(t)dt =

∫ω

0
u1(t)

[
φ

′′
(t) + a(t)φ(t)

]
dt

= λ1

∫ω

0
u1(x)φ(t)dt.

(3.41)

Consequently, we obtain that

λ1

∫ω

0
u1(x)φ(t)dt ≤ (λ1 − ε1)

∫ω

0
u1(x)φ(t)dt. (3.42)

Since u1 ∈ K ∩ ∂Ω2, by the definition of K and (2.13) we see that (3.25) holds. From (3.25)
and (3.42), we see that λ1 ≤ λ1 − ε1 , which is a contradiction. Hence,A satisfies the condition
of Lemma 2.5 in K ∩ ∂Ω2. By Lemma 2.5 we have

i(A,K ∩Ω2, K) = 1. (3.43)

Now, from (3.35) and (3.43) it follows that

i
(
A,K ∩

(
Ω2 \Ω1

)
, K
)
= i(A,K ∩Ω2, K) − i(A,K ∩Ω1, K) = 1. (3.44)

Hence,A has a fixed point inK∩(Ω2\Ω1), which is a positiveω-periodic solution of (1.1).
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