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The synchronization of coupled networks with mixed delays is investigated by employing
Lyapunov functional method and intermittent control. A sufficient condition is derived to ensure
the global synchronization of coupled networks, which is controlled by the designed intermittent
controller. Finally, a numerical simulation is constructed to justify the theoretical analysis.

1. Introduction

Various large-scale and complicated systems can be modelled by complex networks, such as
the Internet, genetic networks, ecosystems, electrical power grids, and the social networks.
A complex network is a large set of interconnected nodes, which can be described by the
graph with the nodes representing individuals in the graph and the edges representing
the connections among them. The most remarkable recent advances in study of complex
networks are the developments of the small-world network model [1] and scale-free network
model [2], which have been shown to be very closer to most real-world networks as
compared with the random-graph model [3, 4]. Thereafter, small-world and scale-free
networks have been extensively investigated.

The dynamical behaviors of complex networks have become a focal topic of great
interest, particularly the synchronization phenomena, which is observed in natural, social,
physical, and biological systems and has been widely applied in a variety of fields, such as
secure communication, image processing, and harmonic oscillation generation. It is noted
that the dynamical behavior of a complex network is determined not only by the dynamical
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rules governing the isolated nodes, referred to as self-dynamics, but also by information flow
along the edges, which depends on the topology of the network. Synchronization in an array
of linearly coupled dynamical systems was investigated in [5]. Later, many results on local,
global, and partial synchronization in various coupled systems have also been obtained in
[6–15]. As a special case of coupled systems, coupled neural networks with time delay have
also been found to exhibit complex behaviors. The estimation and diagnosis for time delay
systems are discussed in [16, 17], and synchronization for coupled neural networks with time
delay has been investigated by many researchers, for example, [8–15].

In the case that the whole network cannot synchronize by itself, some controllers
should be designed and applied to force the network to synchronize. Recently, another
interesting intermittent control was introduced and studied, that is, the control time is
periodic, and in any period the time is composed of work time and rest time. It is a
straightforward engineering approach to process control of any typelan approach that
has been used for a variety of purposes in such engineering fields as manufacturing,
transportation, and communication. Intermittent control has been introduced to control
nonlinear dynamical systems [18] and has been studied in [19–26]. In [18], the authors
investigated numerically chaos synchronization under the condition that the interacting
systems, that is, master and slave systems are coupled intermittently. In [19, 20], the
stabilization problems of chaotic systems with or without delays by periodically intermittent
control were discussed. Huang et al. discussed the synchronization of coupled chaotic
systems with delay by using intermittent state feedback in [21]. In [25], the authors
synchronize coupled networks using pinning control and intermittent control. In [26], cluster
synchronization was studied for coupled networks without time delay using adaptive
intermittent control.

Another type of time delays, namely, distributed delays, has begun to receive research
attention. The main reason is that a neural network usually has a spatial nature due to the
presence of an amount of parallel pathways of a variety of axon sizes and lengths, and it
is desirable to model them by introducing continuously distributed delays over a certain
duration of time, such that the distant past has less influence compared to the recent behavior
of the state [27]. Therefore, both discrete and distributed time delays should be taken into
account [28–33]. Although synchronization has been investigated under intermittent control,
[25, 26], there is still no theoretical result of synchronization for coupled networks withmixed
delay.

Motivated by the above discussion, the intermittent controller will be designed to
achieve the synchronization for coupled networks with mixed delay. The rest of the paper
is organized as follows. In Section 2, some preliminary definitions and lemmas are briefly
outlined. Some synchronization criteria are given and intermittent controller are designed in
Section 3. An illustrative simulation is given to verify the theoretical analysis in Section 4.
Conclusions are finally drawn.

Notations

R
n is the n-dimensional Euclidean space; R

m×n denotes the set of m × n real matrix. I is
the identity matrix with appropriate dimension, and the superscript “T” represents the
transpose. Matrix dimensions, if not explicitly stated, are assumed to be compatible for
algebraic operations.
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2. Model Description and Preliminaries

Consider a dynamical network consisting of N identical and diffusively coupled nodes,
with each node being an n-dimensional delayed neural network. The state equations of the
network are

ẋi(t) = −Dxi(t) +Af(xi(t)) + Bg(xi(t − τ)) + C

∫ t

t−τ
h(xi(v))dv

+ I(t) +
N∑

j=1,j /= i

GijΓ
(
xj(t) − xi(t)

)
,

(2.1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ R

n is the state vector of the ith node; D =
diag(d1, d2, . . . , dn) > 0 denotes the rate with which the cell i resets its potential to the
resting state when isolated from other cells and inputs; A ∈ R

n×n, B ∈ R
n×n, and

C ∈ R
n×n represent the connection weight matrix, the discretely delayed connection

weight matrix, and the distributively delayed connection weights, respectively; f(xi(·)) =
[f1(xi1(·)), f2(xi2(·)), . . . , fn(xin(·))]T ∈ R

n, g(xi(·)) = [g1(xi1(·)), g2(xi2(·)), . . . , gn(xin(·))]T ∈
R

n and h(xi(·)) = [h1(xi1(·)), h2(xi2(·)),. . . , hn(xin(·))]T ∈ R
n are activation functions; I(t) is

the input vector of each node; Γ ∈ R
n×n is the inner coupling matrix; G = (Gij)N×N is the

coupling configuration matrix representing the topological structure of the network, where
Gij is defined as follows: if there exists a connection between node i and node j, Gij > 0,
otherwise Gij = 0 (j /= i), and the diagonal elements of matrix G are defined by

Gii = −
N∑

j=1,j /= i

Gij , (2.2)

which ensures the diffusion that
∑N

j=1 Gij = 0. Equivalently, network (2.1) can be rewritten in
a form as follows:

ẋi(t) = −Dxi(t) +Af(xi(t)) + Bg(xi(t − τ)) + C

∫ t

t−τ
h(xi(v))dv

+ I(t) +
N∑
j=1

GijΓxj(t), i = 1, 2, . . . ,N.

(2.3)

Suppose that the coupled network (2.3) is connected in the sense that there are no isolated
clusters, then the coupling matrix G is irreducible.

Note that a solution to an isolated node satisfies

ds(t)
dt

= −Ds(t) +Af(s(t)) + Bg(s(t − τ)) + C

∫ t

t−τ
h(s(v))dv + I(t). (2.4)
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To realize the synchronization of network (2.3), the intermittent strategy is selected, and the
controlled network can be described by

ẋi(t) = −Dxi(t) +Af(xi(t)) + Bg(xi(t − τ)) + C

∫ t

t−τ
h(xi(v))dv

+ I(t) +
N∑
j=1

GijΓxj(t) + ui, i = 1, 2, . . . ,N,

(2.5)

where

ui = −ki(t)(xi(t) − s(t)), (2.6)

k(t) is the intermittent linear state feedback control gain defined as follows:

ki(t) =

{
ki, nω ≤ t ≤ nω + δ,

0, nω + δ < t ≤ (n + 1)ω,
(2.7)

where ki ∈ R is a constant control gain, ω > 0 is the control period, and δ > 0 is called the
control width. In this paper, our goal is to design suitable δ, ω, and ki such that network
(2.5) synchronize with respect to the isolated node s(t). Denote ei(t) = xi(t) − s(t), then the
following error dynamical system is obtained:

ėi(t) = − Dei(t) +A
[
f(xi(t)) − f(s(t))

]
+ B

[
g(xi(t − τ)) − g(s(t − τ))

]

+ C

∫ t

t−τ
[h(xi(v)) − h(s(v))]dv +

N∑
j=1

GijΓej(t) − kiei(t), nω ≤ t ≤ nω + δ,

ėi(t) = − Dei(t) +A
[
f(xi(t)) − f(s(t))

]
+ B

[
g(xi(t − τ)) − g(s(t − τ))

]

+ C

∫ t

t−τ
[h(xi(v)) − s(v)]dv +

N∑
j=1

GijΓej(t), nω + δ < t ≤ (n + 1)ω.

(2.8)

(H) We assume that f , g, and h are Lipschitz continuous functions; there exist positive
constants Lf , Lg and Lh such that, for all x, y ∈ R

m,

∥∥f(x) − f
(
y
)∥∥ ≤ Lf

∥∥x − y
∥∥,

∥∥g(x) − g
(
y
)∥∥ ≤ Lg

∥∥x − y
∥∥,

∥∥h(x) − h
(
y
)∥∥ ≤ Lh

∥∥x − y
∥∥.

(2.9)
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Definition 2.1. For any positive integers p, q, r, s, we define the Kronecker product of two
matrices A ∈ R

p×q, B ∈ R
r×s as follows:

A ⊗ B =

⎡
⎢⎣
a11B · · · a1qB
...

. . .
...

ap1B · · · apqB

⎤
⎥⎦ ∈ R

pr×qs. (2.10)

Lemma 2.2. By the definition of Kronecker product, the following properties hold:

(1) (A ⊗ B)T = AT ⊗ BT ;

(2) (αA) ⊗ B = A ⊗ (αB), where α is a real number;

(3) (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD).

Lemma 2.3. For any vectors x, y ∈ R
m, and positive-definite matrixQ ∈ R

m×m, the following matrix
inequality holds:

2xTy ≤ xTQx + yTQ−1y. (2.11)

Lemma 2.4 (Jensen’s inequality [34]). For any constant matrix V ∈ R
m×m, V > 0, scalar

0 < r(t) < r, vector function ν : [0, r] → R
m such that the integrations concerned are well defined,

then

r(t)
∫ r(t)

0
νT (s)Vν(s)ds ≥

(∫ r(t)

0
ν(s)ds

)T

V

(∫ r(t)

0
ν(s)ds

)
. (2.12)

Lemma 2.5 (Halanay inequality [35]). Let V : [μ − τ,∞) → [0,∞) be a continuous function
such that

dV (t)
dt

≤ −aV (t) + bmaxVt (2.13)

is satisfied for t ≥ μ. If a > b > 0, then

V (t) ≤ [
maxVμ

]
exp

{−r(t − μ
)}
, t ≥ μ, (2.14)

wheremaxVt = supt−τ≤θ≤tV (θ), and r > 0 is the smallest real root of the following equation:

−r = −a + b exp{rτ}. (2.15)

Lemma 2.6 (see [19]). Let V : [μ − τ,∞) → [0,∞) be a continuous function, such that

dV (t)
dt

≤ aV (t) + bmaxVt (2.16)
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is satisfied for t ≥ μ. If a > 0, b > 0, then

V (t) ≤ maxVt ≤
[
maxVμ

]
exp

{
(a + b)

(
t − μ

)}
, t ≥ μ, (2.17)

wheremaxVt = supt−τ≤θ≤tV (θ).

3. Criteria for Synchronization

Theorem 3.1. Suppose that assumption (H) holds. The controlled coupled network (2.5) globally
synchronizes to (2.4) if there are positive definite matrix P , positive constants α, β, γ, a1, a2, b1, b2
such that the following conditions hold:

(a) IN ⊗ (Q + a1P) +G ⊗ Γ −K ⊗ In ≤ 0,

(b) IN ⊗ (Q − a2P) +G ⊗ Γ ≤ 0,

(c) β−1L2
gIn − b1P ≤ 0,

(d) γ−1L2
h
In − b2P ≤ 0,

(e) a1 > b = b1 + τ2b2

(f) ρ = r(δ − τ) − (a2 + b)(ω − δ) > 0,

where Q = −PD + (α/4)PAATP + α−1L2
f In + (β/4)PBBTP + (γ/4)PCCTP + a1P , K =

diag(k1, k2, . . . , kN) and r is the positive solution of −r = −a1 + berτ .

Proof. Consider the following Lyapunov function:

V (t) =
1
2

N∑
i=1

ei(t)TPei(t) =
1
2
eT (IN ⊗ P)e(t), (3.1)

where e(t) = [eT1 (t), e
T
2 (t), . . . , e

T
N(t)]T . Calculate the derivative V (t) with respect to time t

along the trajectory of error system (2.8), and estimate it.
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For lω ≤ t ≤ lω + δ, using Lemma 2.3 and assumption, we have the following:

V̇ (t) =
N∑
i=1

eTi (t)Pėi(t)

=
N∑
i=1

eTi (t)P

⎡
⎣ −Dei(t) +A

(
f(xi(t)) − f(s(t))

)
+ B

(
g(xi(t − τ)) − g(s(t − τ))

)

+C

(∫ t

t−τ
h(xi(v))dv −

∫ t

t−τ
h(s(v))dv

)
+

N∑
j=1

GijΓej(t) − kiei(t)

⎤
⎦

≤
N∑
i=1

⎡
⎣ − eTi (t)PDei(t) +

α

4
eTi (t)PAATPei(t) + α−1∥∥f(xi(t)) − f(s(t))

∥∥2

+
β

4
eTi (t)PBB

TPei(t) + β−1
∥∥g(xi(t − τ)) − g(s(t − τ))

∥∥2

+
γ

4
eTi (t)PCC

TPei(t) + γ−1
∥∥∥∥∥
∫ t

t−τ
h(xi(v))dv −

∫ t

t−τ
h(s(v))dv

∥∥∥∥∥
2
⎤
⎦

+
N∑
i=1

N∑
j=1

Gije
T
i (t)Γej(t) −

N∑
i=1

kie
T
i (t)ei(t)

≤ eT (t)IN ⊗
(
− PD +

α

4
PAATP + α−1L2

f In

+
β

4
PBBTP +

γ

4
PCCTP + a1P

)
e(t) − a1e

T (t)(IN ⊗ P)e(t)

+ eT (t − τ)
[
IN ⊗

(
β−1L2

gIn − b1P
)]

e(t − τ) + b1e
T (t − τ)(IN ⊗ P)e(t − τ)

+

[∫ t

t−τ
e(v)dv

]T[
IN ⊗

(
γ−1L2

hIn − b2P
)][∫ t

t−τ
e(v)dv

]

+ b2

[∫ t

t−τ
e(v)dv

]T

(IN ⊗ P)

[∫ t

t−τ
e(v)dv

]
+ eT (t)(G ⊗ Γ −K ⊗ In)e(t).

(3.2)

From Jensen’s inequality in Lemma 2.4, we have

b2

[∫ t

t−τ
e(v)dv

]T

(IN ⊗ P)

[∫ t

t−τ
e(v)dv

]
≤ τb2

∫ t

t−τ
eT (v)(IN ⊗ P)e(v)dv. (3.3)

By condition (a), (c), (d), and (3.3), one has

V̇ (t) ≤ −a1V (t) + bmaxVt (3.4)



8 Journal of Applied Mathematics

For lω + δ ≤ t ≤ (l + 1)ω, from conditions (b), (c), and (d), one has

V̇ (t) < a2V (t) + bVt. (3.5)

Next, we will prove the error ‖e(t)‖ → 0.
From Lemma 2.5 and (3.2), one has

V (t) ≤ ‖V (0)‖τe−rt, for 0 ≤ t ≤ δ, (3.6)

where r is the unique positive solution of −r = −a1 + berτ .
From Lemma 2.6, one obtain the following:

V (t) ≤ ‖V (δ)‖τe(a2+b)(t−δ)

= max
δ−τ≤t≤δ

|V (t)|e(a2+b)(t−δ)

≤ ‖V (0)‖τe−r(δ−τ)e(a2+b)(t−δ),

(3.7)

for δ ≤ t ≤ ω.
Suppose that ω − τ > δ, then

‖V (ω)‖τ = max
ω−τ≤t≤ω

|V (t)|

≤ max
ω−τ≤t≤ω

{
‖V (0)‖τe−r(δ−τ)e(a2+b)(t−δ)

}

= ‖V (0)‖τe−r(δ−τ)e(a2+b)(ω−δ)

= ‖V (0)‖τe−ρ.

(3.8)

Using mathematical induction, we can prove, for any positive integer l,

‖V (lω)‖τ ≤ ‖V (0)‖τe−lρ. (3.9)

Assume (3.9) holds when k ≤ l. Now, we prove (3.9) is true when k = l + 1.
First, we have

‖V (lω)‖τ ≤ ‖V (0)‖τe−lρ. (3.10)

When t ∈ [lω, lω + δ],

V (t) ≤ ‖V (lω)‖τe−r(t−lω) ≤ ‖V (0)‖τe−lρe−r(t−lω). (3.11)
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Thus, for t ∈ [lω + δ, (l + 1)ω], we have

V (t) ≤ ‖V (lω + δ)‖τe(a2+b)(t−lω−δ)

=
[

max
lω+δ−τ≤t≤lω+δ

|V (t)|
]
e(a2+b)(t−lω−δ)

≤
[

max
lω+δ−τ≤t≤lω+δ

‖V (0)‖τe−lρe−r(t−lω)
]

× e(a2+b)(t−lω−δ)

≤ ‖V (0)‖τe−lρe−r(δ−τ)e(a2+b)(t−lω−δ),

‖V ((l + 1)ω)‖τ = max
(l+1)ω−τ≤t≤(l+1)ω

|V (t)|

≤ max
(l+1)ω−τ≤t≤(l+1)ω

[
‖V (0)‖τe−lρe−r(δ−τ)e(a2+b)(t−lω−δ)

]

= ‖V (0)‖τe−lρe−r(δ−τ)e(a2+b)(ω−δ)

= ‖V (0)‖τe−(l+1)ρ.

(3.12)

Thus, (3.9) holds for all positive integers k.
For any t > 0, there is n0 ≥ 0, such that n0ω ≤ t ≤ (n0 + 1)ω;

V (t) ≤ ‖V (n0ω)‖τe(a2+b)(t−n0ω)

≤ ‖V (0)‖τe−n0ρe(a2+b)ω

≤ ‖V (0)‖τe(a2+b)ωeρ exp
(
− ρ

ω
t
)
.

(3.13)

Let M = ‖V (0)‖τe(a2+b)ωeρ, one has the following inequality:

λm(P)‖e(t)‖2 ≤ V (t) ≤ M exp
(
− ρ

ω
t
)
, for t ≥ 0. (3.14)

Obviously,

‖e(t)‖ ≤
√

M

λm(P)
exp

(
− ρ

2ω
t
)
, (3.15)

which means the coupled networks (2.5) achieve synchronization. The proof is completed.

Corollary 3.2. For given control period ω and control duration δ, coupled networks (2.5) achieve
synchronization, if the control gain K = kIN satisfies

k > Φ(r∗), (3.16)
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where

Φ(r) = M + r +
(
2L2

g + 2τ2L2
h

)
erτ ,

r∗ =
ω − δ

δ − τ

(
M + 2L2

g + 2τ2L2
h

)
.

(3.17)

Proof. In Theorem 3.1, let P = I, β = γ = 1, b1 = 2L2
g , b2 = 2L2

h
, obviously, (c) and (d) in

Theorem 3.1 hold.
Furthermore, let M = λM(Q) + λM(G) × λM(Γ), where λM(·) is the maximum of

eigenvalue, a1 = k − M > 0 and a2 = M, (a) and (b) in Theorem 3.1 hold. From the
above parameters and (f) in Theorem 3.1 hold if r > r∗ and r is the positive solution of
−r = −a1 + (2L2

g + 2τ2L2
h
)erτ , that is, k = r +M+Lf + (2L2

g + 2τ2L2
h
)erτ = Φ(r). Obviously,Φ(r)

is increasing function.
Therefore, (a)–(f) hold if

k > max[Φ(r∗),M] = Φ(r∗). (3.18)

Remark 3.3. Corollary 3.2 shows us how to determine the control gain in a simple way
provided that the control period ω and control duration δ are given.

4. Numerical Example

Consider the following coupled networks:

ẋi(t) = −Dxi(t) +Af(xi(t)) + Bg(xi(t − τ))

+ C

∫ t

t−τ
h(xi(v))dv +

N∑
j=1

GijΓxj(t),

xi(t) = φ(t), −τ ≤ t ≤ 0,

(4.1)

where xi(t) = [xi1(t), xi2(t)]
T , i = 1, 2, 3 are the state variable of the ith neural network.

Choose τ = 1, f(xi(t)) = g(xi(t)) = h(xi(t)) = (3/5)[tanh(xi1), tanh(xi2)]
T , and

D =
[
1 0
0 1

]
, A =

[
2.0 −0.1
−5.0 4.5

]
,

B =
[−1.5 −0.1
−0.2 −2

]
, C =

[−0.2 −0.1
−1.6 −3.2

]
, G =

⎡
⎣−4 2 2

1 −2 1
1 2 −3

⎤
⎦,

(4.2)
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Figure 1: Error state ei1(t).
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Figure 2: Error state ei2(t).

and input vectors I =
[
0
0

]
, and ki(t) is the intermittent linear state feedback control gain

defined as the following:

ki(t) =

{
ki, kω ≤ t ≤ kω + δ,

0, kω + δ < t ≤ (k + 1)ω,
(4.3)

where the control gain k1 = k2 = k3 = 0.1, the control period ω = 3, and the control width
δ = 1.3. The above suitable δ, ω and K such that (4.1) synchronize. The synchronize errors
are given in Figures 1 and 2.
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5. Conclusion

In this paper, synchronization of coupled networks with mixed time delay has been investi-
gated via intermittent control. Some criteria for ensuring coupled networks synchronization
have been derived, and some analytical techniques have been proposed to obtain appropriate
control period ω, control width δ, and control gain for achieving network synchronization.
Finally, the simulation confirmed the effectiveness of the proposed intermittent controller.
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