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The nonlinear nth-order differential equations are considered. By using inequality techniques and
coincidence degree theory, some criteria are obtained to guarantee the existence and uniqueness of
T-periodic solutions for the equations. The obtained results are also valid and new for the problem
discussed in the previous literature. Moreover, two illustrative examples are provided to illustrate
the effectiveness of our results.

1. Introduction

In applied science, some practical problems are associated with the periodic solutions for
nonlinear high-order differential equations, such as nonlinear oscillations [1, 2], electronic
theory [3], biological model, and other models [4–6]. In particular, during the past thirty
years, there has been a great amount of work on the existence and uniqueness of periodic
solutions for the nth-order nonlinear differential equation

x(n) +
n−1∑

j=1

ajx
(j) + g(t, x) = e(t), (1.1)

where e : R → R and g : R × R → R are continuous functions, e(t) is 2π-periodic with
respect to t, g is 2π-periodic in the first variable, and ai (i = 1, 2, . . . , n − 1) are constants.
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Many of these results can be found in [7–11] and the references cited therein. Among the
known results, we find that the assumption

(H) g(t, x) is continuous, and there are positive constants m0 and M0 such that

m0 ≤
∣∣gx(t, x)

∣∣ ≤ M0, ∀(t, x) ∈ R × R (1.2)

is employed, and it plays an important role in the proofs of these known results (see, e.g.,
[9–11]). Recently, under some spectral conditions of linear differential operator, Li [12, 13]
discussed the existence and uniqueness of T -periodic solutions of nonlinear differential
equations.

However, to the best of our knowledge, there exist few results for the existence and
uniqueness of periodic solutions of (1.1) without (H) and the spectral conditions of linear
differential operator. Thus, in this case, it is worth to study the problem of existence and
uniqueness of periodic solutions of nth-order nonlinear differential equation (1.1).

The purpose of this paper is to investigate the existence and uniqueness of T -
periodic solutions of (1.1). By using some inequality techniques and Mawhin’s continuation
theorem, we establish some sufficient conditions for the existence and uniqueness of T -
periodic solutions of (1.1) when (H) and the spectral conditions are avoided. Moreover, two
illustrative examples are given in Section 4.

2. Preliminary Results

Let us introduce some notations. We will useΦ to denote the empty set. For n ∈ N, we denote
by Cn

T the Banach space

Cn
T ={u ∈ Cn(R,R) : u(t) = u(t + T), ∀t ∈ R}, (2.1)

endowed with the norm

‖u‖(n) =
n∑

k=0

∣∣u(k)
∣∣
∞,

(
u ∈ Cn

T

)
, (2.2)

where, for a function v ∈ C0
T , we have that

|v|∞ = max
[0,T]

|v|. (2.3)

For x ∈ C0
T , we will denote

|x|p =

(∫T

0
|x(t)|pdt

)1/p

,
(
p > 0

)
. (2.4)
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Now, let f̃ : Rn+1 → R be a continuous function, T -periodic with respect to the first variable,
and consider the nth-order differential equation

u(n) = f̃
(
t, u, u′, u′′, . . . , u(n−1)

)
. (2.5)

Lemma 2.1 (see [14]). Assume that the following conditions hold.

(i) There exists ρ > 0 such that, for each λ ∈ (0, 1], one has that any possible T -periodic
solution u of the problem

u(n) = λf̃
(
t, u, u′, u′′, . . . , u(n−1)

)
(2.6)

satisfies the priori estimation ‖u‖(n−1) < ρ.

(ii) The continuous function F : R → R defined by

F(x) =
∫T

0
f̃(t, x, 0, 0, . . . , 0)dt, (x ∈ R) (2.7)

satisfies F(−ρ)F(ρ) < 0.

Then, (2.5) has at least one T -periodic solution u such that ‖u‖(n−1) < ρ.

From Lemma 2.2 in [15] and the proof of inequality (10) in [7, pp 3402], one obtains
the following.

Lemma 2.2. Let x(t) ∈ C1
T . Suppose that there exists a constant D ≥ 0 such that

|x(τ0)| ≤ D, τ0 ∈ [0, T], (2.8)

then

|x|2 ≤
T

π

∣∣x′∣∣
2 +

√
TD, |x|∞ ≤ D +

1
2

√
T

(∫T

0

∣∣x′(t)
∣∣2dt
)1/2

. (2.9)

Lemma 2.3. For any u ∈ C2
T , one has that

∫T

0

∣∣u′(t)
∣∣2dt ≤

(
T

2π

)2 ∫T

0

∣∣u′′(t)
∣∣2dt. (2.10)

Proof. Lemma 2.3 is a direct consequence of the Wirtinger inequality, and see [16, 17] for its
proof.
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By the same approach used in the proof of Lemma 3 of [7], we have the following.

Lemma 2.4. For any u ∈ Cn
T , one has that

∣∣∣u(j)
∣∣∣
∞
≤ T (n−1)−j

(
1
2

)(n−1)−(j−1) ∫T

0

∣∣∣u(n)(t)
∣∣∣dt,

(
j = 1, 2, . . . , n − 1

)
. (2.11)

Lemma 2.5. Let k be an even number, n = 2k, and

Λ =
{
j : j ∈ {1, 2, . . . , k − 1}, (−1)ja2j < 0

}
. (2.12)

Assume that one of the following conditions is satisfied:

(H1) for t, x1, x2 ∈ R, x1 /=x2,

1 +
∑

j∈Λ

(
T

2π

)2(k−j)
(−1)ja2j > 0,

(
g(t, x1) − g(t, x2)

)
(x1 − x2) > 0, (2.13)

(H2) there exists a nonnegative constant B such that

1 > B

(
T

π

)2( T

2π

)2(k−1)
, 1 +

∑

j∈Λ

(
T

2π

)2(k−j)
(−1)ja2j > B

(
T

π

)2( T

2π

)2(k−1)
,

B(x1 − x2)2 ≥ −(g(t, x1) − g(t, x2)
)
(x1 − x2) > 0,

(2.14)

where t, x1, x2 ∈ R, x1 /=x2, then (1.1) has at most one T-periodic solution.

Proof. Suppose that u1(t) and u2(t) are two T-periodic solutions of (1.1). Set Z(t) = u1(t) −
u2(t). Then, we obtain

(u1(t) − u2(t))(n)+
n−1∑

j=1

aj(u1(t) − u2(t))(j) +
(
g(t, u1(t)) − g(t, u2(t))

)
= 0. (2.15)

Integrating (2.15) from 0 to T , it results that

∫T

0

(
g(t, u1(t)) − g(t, u2(t))

)
dt = 0. (2.16)

Therefore, in view of integral mean value theorem, it follows that there exists a constant
γ ∈ [0, T] such that

g
(
γ, u1

(
γ
)) − g

(
γ, u2

(
γ
))

= 0. (2.17)
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Since g(t, x) is a strictly monotone function in x, (2.17) implies that

Z
(
γ
)
= u1

(
γ
) − u2

(
γ
)
= 0. (2.18)

Then, from (2.9), we have

|Z|2 ≤
T

π

∣∣Z′∣∣
2. (2.19)

Multiplying (2.15) by Z(t) and then integrating it from 0 to T , it follows that

∫T

0

∣∣∣Z(k)(t)
∣∣∣
2
dt +

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣Z(j)(t)
∣∣∣
2
dt = −

∫T

0
Z(t)

(
g(t, u1(t)) − g(t, u2(t))

)
dt

= −
∫T

0
(u1(t) − u2(t))

(
g(t, u1(t)) − g(t, u2(t))

)
dt.

(2.20)

Now suppose that (H1) (or (H2)) holds, and we will consider two cases as follows.

Case i. If (H1) holds, (2.10) and (2.20) yield that

0 ≤
⎛

⎝1 +
∑

j∈Λ

(
T

2π

)2(k−j)
(−1)ja2j

⎞

⎠
∫T

0

∣∣∣Z(k)(t)
∣∣∣
2
dt

≤
∫T

0

∣∣∣Z(k)(t)
∣∣∣
2
dt +

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣Z(j)(t)
∣∣∣
2
dt

= −
∫T

0
(u1(t) − u2(t))

(
g(t, u1(t)) − g(t, u2(t))

)
dt

≤ 0, where Λ/= ∅,

0 ≤
∫T

0

∣∣∣Z(k)(t)
∣∣∣
2
dt

≤
∫T

0

∣∣∣Z(k)(t)
∣∣∣
2
dt +

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣Z(j)(t)
∣∣∣
2
dt

= −
∫T

0
(u1(t) − u2(t))

(
g(t, u1(t)) − g(t, u2(t))

)
dt

≤ 0, where Λ = ∅,

(2.21)

which, together with (2.18), implies that

Z(t) ≡ Z′(t) ≡ · · · ≡ Z(k)(t) ≡ 0, ∀t ∈ R. (2.22)

Hence, (1.1) has at most one T -periodic solution.
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Case ii. If (H2) holds, using (2.9), (2.10), (2.19), and (2.20), we obtain that

⎛

⎝1 +
∑

j∈Λ

(
T

2π

)2(k−j)
(−1)ja2j

⎞

⎠
∫T

0

∣∣∣Z(k)(t)
∣∣∣
2
dt

≤
∫T

0

∣∣∣Z(k)(t)
∣∣∣
2
dt +

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣Z(j)(t)
∣∣∣
2
dt

= −
∫T

0
Z(t)

(
g(t, u1(t)) − g(t, u2(t))

)
dt

≤ B

∫T

0
|Z(t)|2dt

≤ B

(
T

π

)2 ∫T

0

∣∣Z′(t)
∣∣2dt

≤ B

(
T

π

)2( T

2π

)2(k−1) ∫T

0

∣∣∣Z(k)(t)
∣∣∣
2
dt, where Λ/= ∅,

∫T

0

∣∣∣Z(k)(t)
∣∣∣
2
dt ≤

∫T

0

∣∣∣Z(k)(t)
∣∣∣
2
dt +

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣Z(j)(t)
∣∣∣
2
dt

≤ B

(
T

π

)2( T

2π

)2(k−1) ∫T

0

∣∣∣Z(k)(t)
∣∣∣
2
dt, where Λ = ∅.

(2.23)

From (2.18) and (H2), (2.23) yield that

Z(t) ≡ Z′(t) ≡ · · · ≡ Z(k)(t) ≡ 0, ∀t ∈ R. (2.24)

Therefore, (1.1) has at most one T -periodic solution. The proof of Lemma 2.5 is now complete.

Similar to the proof of Lemma 2.5, one can prove the following result.

Lemma 2.6. Let k be an odd number, n = 2k, and

Λ =
{
j : j ∈ {1, 2, . . . , k − 1}, (−1)j+1a2j < 0

}
. (2.25)

Assume that one of the following conditions is satisfied:

(H1) for t, x1, x2 ∈ R, x1 /=x2,

1 +
∑

j∈Λ

(
T

2π

)2(k−j)
(−1)j+1a2j > 0,

(
g(t, x1) − g(t, x2)

)
(x1 − x2) < 0, (2.26)
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(H2) there exists a nonnegative constant B such that

1 > B

(
T

π

)2( T

2π

)2(k−1)
, 1 +

∑

j∈Λ

(
T

2π

)2(k−j)
(−1)j+1a2j > B

(
T

π

)2( T

2π

)2(k−1)
,

B(x1 − x2)2 ≥
(
g(t, x1) − g(t, x2)

)
(x1 − x2) > 0,

(2.27)

where t, x1, x2 ∈ R, x1 /=x2, then (1.1) has at most one T -periodic solution.

Lemma 2.7. Let k be an even number, n = 2k + 1, and

Λ∗ =
{
j : j ∈ {1, 2, . . . , k − 1}, (−1)ja2j < 0

}
. (2.28)

Assume that one of the following conditions is satisfied:

(H3) for t, x1, x2 ∈ R, x1 /=x2,

a2k +
∑

j∈Λ∗

(
T

2π

)2(k−j)
(−1)ja2j > 0,

(
g(t, x1) − g(t, x2)

)
(x1 − x2) > 0, (2.29)

(H4) there exists a nonnegative constant B such that

a2k > B

(
T

π

)2( T

2π

)2(k−1)
, 1 +

∑

j∈Λ∗

(
T

2π

)2(k−j)
(−1)ja2j > B

(
T

π

)2( T

2π

)2(k−1)
,

B(x1 − x2)2 ≥ −(g(t, x1) − g(t, x2)
)
(x1 − x2) > 0,

(2.30)

where t, x1, x2 ∈ R, x1 /=x2, then (1.1) has at most one T -periodic solution.

Proof. Multiplying (2.15) by Z(t) and then integrating it from 0 to T , yields that

a2k

∫T

0

∣∣∣Z(k)(t)
∣∣∣
2
dt +

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣Z(j)(t)
∣∣∣
2
dt = −

∫T

0
Z(t)

(
g(t, u1(t)) − g(t, u2(t))

)
dt

= −
∫T

0
(u1(t) − u2(t))

× (g(t, u1(t)) − g(t, u2(t))
)
dt.

(2.31)

Now the proof proceeds in the same way as in Lemma 2.5.

Similar to the proof of Lemma 2.7, we can prove the following results.
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Lemma 2.8. Let k be an odd number, n = 2k + 1, and

Λ∗=
{
j : j ∈ {1, 2, . . . , k − 1}, (−1)j+1a2j < 0

}
. (2.32)

Assume that one of the following conditions is satisfied:

(H3) for t, x1, x2 ∈ R, x1 /=x2,

a2k +
∑

j∈Λ∗

(
T

2π

)2(k−j)
(−1)j+1a2j > 0,

(
g(t, x1) − g(t, x2)

)
(x1 − x2) < 0, (2.33)

(H4) there exists a nonnegative constant B such that

a2k > B

(
T

π

)2( T

2π

)2(k−1)
, a2k +

∑

j∈Λ∗

(
T

2π

)2(k−j)
(−1)j+1a2j > B

(
T

π

)2( T

2π

)2(k−1)
,

B(x1 − x2)2 ≥
(
g(t, x1) − g(t, x2)

)
(x1 − x2) > 0,

(2.34)

where t, x1, x2 ∈ R, x1 /=x2, then (1.1) has at most one T -periodic solution.

3. Main Results

Theorem 3.1. Let k be an even number and n = 2k. Assume that one of the following conditions is
satisfied:

(H1)
∗ let (H1) hold, and there exists a nonnegative constant d0 such that

(
g(t, u) − e(t)

)
u > 0, ∀t ∈ R, |u| ≥ d0, (3.1)

(H2)
∗ there exist nonnegative constants d0 and B such that (H2) holds,

(
g(t, u) − e(t)

)
u < 0, ∀t ∈ R, |u| ≥ d0, (3.2)

then (1.1) has a unique T -periodic solution.

Proof. From Lemma 2.5, together with (H1)
∗ (or (H2)

∗), it is easy to see that (1.1) has at most
one T -periodic solution. Thus, to prove Theorem 3.1, it suffices to show that (1.1) has at least
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one T -periodic solution. To do this, we shall use Lemma 2.1 with the nonlinearity f̃ : Rn+1 →
R given by

f̃
(
t, u, u′, u′′, . . . , u(n−1)

)
= e(t) −

n−1∑

j=1

aju
(j) − g(t, u). (3.3)

For λ ∈ (0, 1], we consider the nth-order differential equation

u(n)(t) + λ
n−1∑

j=1

aju
(j) + λg(t, u(t)) = λe(t). (3.4)

Let us show that (i) in Lemma 2.1 is satisfied, which means that there exists ρ > 0 such that
any possible T -periodic solution u of (3.4) is such that

‖u‖(n−1) < ρ. (3.5)

Let λ ∈ (0, 1] and let u be a possible T -periodic solution of (3.4). In what follows, Cj denotes
a fixed constant independent of λ and u. Integrating (3.4) from 0 to T , it results that

∫T

0

[
g(t, u(t)) − e(t)

]
dt = 0, (3.6)

which together with (H1)
∗ (or (H2)

∗) implies that

∃ξ ∈ [0, T] : |u(ξ)| < d0. (3.7)

Hence, from (2.9), we have that

|u|∞ ≤ d0 +
1
2

√
T

(∫T

0

∣∣u′(t)
∣∣2dt
)1/2

. (3.8)

In view of (2.10), (3.8) implies that

|u|∞ ≤ d0 +
1
2

√
T

(
T

2π

)k−1(∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

)1/2

. (3.9)

It follows that

∣∣∣∣∣

∫T

0
e(t)u(t)dt

∣∣∣∣∣ ≤ Td0|e|∞ +
1
2
T
√
T

(
T

2π

)k−1
|e|∞
(∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

)1/2

,

∣∣∣∣∣

∫T

0
g(t, 0)u(t)dt

∣∣∣∣∣ ≤ Td0
∣∣g(t, 0)

∣∣
∞ +

1
2
T
√
T

(
T

2π

)k−1∣∣g(t, 0)
∣∣
∞

(∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

)1/2

.

(3.10)
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On the other hand, multiplying (3.4) by u and integrating from 0 to T , it follows that

∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt + λ

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣u(j)(t)
∣∣∣
2
dt = −λ

∫T

0
u(t)g(t, u(t))dt + λ

∫T

0
e(t)u(t)dt. (3.11)

Now suppose that (H1)
∗(or (H2)

∗) holds, and we will consider two cases as follows.

Case 1. If (H1)
∗ holds, using (2.10), (3.10), and (3.11), we have

⎛

⎝1 +
∑

j∈Λ

(
T

2π

)2(k−j)
(−1)ja2j

⎞

⎠
∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

≤
∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt + λ

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣u(j)(t)
∣∣∣
2
dt

≤ −λ
∫T

0
(u(t) − 0)

(
g(t, u(t)) − g(t, 0)

)
dt − λ

∫T

0
u(t)g(t, 0)dt

+ Td0|e|∞ +
1
2
T
√
T

(
T

2π

)k−1
|e|∞
(∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

)1/2

≤ Td0
(∣∣g(t, 0)

∣∣
∞ + |e|∞

)

+
1
2
T
√
T

(
T

2π

)k−1(∣∣g(t, 0)
∣∣
∞ + |e|∞

)
(∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

)1/2

, where Λ/= ∅,

∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

≤
∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt + λ

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣u(j)(t)
∣∣∣
2
dt

≤ −λ
∫T

0
(u(t) − 0)

(
g(t, u(t)) − g(t, 0)

)
dt − λ

∫T

0
u(t)g(t, 0)dt

+ Td0|e|∞ +
1
2
T
√
T

(
T

2π

)k−1
|e|∞
(∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

)1/2

≤ Td0
(∣∣g(t, 0)

∣∣
∞ + |e|∞

)

+
1
2
T
√
T

(
T

2π

)k−1(∣∣g(t, 0)
∣∣
∞ + |e|∞

)
(∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

)1/2

, where Λ = ∅,

(3.12)
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which imply that there exists a positive constant C1 satisfying
∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt ≤ C1,

∫T

0

∣∣∣u(k)(t)
∣∣∣dt ≤

√
TC1. (3.13)

Case 2. If (H2)
∗ holds, using (2.9), (2.10), (3.10), and (3.11), we obtain

⎛

⎝1 +
∑

j∈Λ

(
T

2π

)2(k−j)
(−1)ja2j

⎞

⎠
∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

≤
∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt + λ

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣u(j)(t)
∣∣∣
2
dt

≤ −λ
∫T

0
(u(t) − 0)

(
g(t, u(t)) − g(t, 0)

)
dt − λ

∫T

0
u(t)g(t, 0)dt

+ Td0|e|∞ +
1
2
T
√
T

(
T

2π

)k−1
|e|∞
(∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

)1/2

≤ B|u|22 + Td0
(∣∣g(t, 0)

∣∣
∞ + |e|∞

)

+
1
2
T
√
T

(
T

2π

)k−1(∣∣g(t, 0)
∣∣
∞ + |e|∞

)
(∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

)1/2

≤ B

(
T

π

∣∣u′∣∣
2 +

√
Td0

)2

+ Td0
(∣∣g(t, 0)

∣∣
∞ + |e|∞

)

+
1
2
T
√
T

(
T

2π

)k−1(∣∣g(t, 0)
∣∣
∞ + |e|∞

)
(∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

)1/2

≤ B

(
T

π

(
T

2π

)k−1∣∣∣u(k)
∣∣∣
2
+
√
Td0

)2

+ Td0
(∣∣g(t, 0)

∣∣
∞ + |e|∞

)

+
1
2
T
√
T

(
T

2π

)k−1(∣∣g(t, 0)
∣∣
∞ + |e|∞

)
(∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

)1/2

, where Λ/= ∅,

∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

≤
∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt + λ

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣u(j)(t)
∣∣∣
2
dt

≤ −λ
∫T

0
(u(t) − 0)

(
g(t, u(t)) − g(t, 0)

)
dt − λ

∫T

0
u(t)g(t, 0)dt

+ Td0|e|∞ +
1
2
T
√
T

(
T

2π

)k−1
|e|∞
(∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

)1/2
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≤ B

(
T

π

(
T

2π

)k−1∣∣∣u(k)
∣∣∣
2
+
√
Td0

)2

+ Td0
(∣∣g(t, 0)

∣∣
∞ + |e|∞

)

+
1
2
T
√
T

(
T

2π

)k−1(∣∣g(t, 0)
∣∣
∞ + |e|∞

)
(∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt

)1/2

, where Λ = ∅,

(3.14)

which together with (H2) yield that (3.13) holds.
Using (3.9) and (3.13), it follows that there exists C2 such that

|u|∞ ≤ C2. (3.15)

Now, we shall estimate x(j) (j = 1, 2, . . . , 2k − 1), multiplying (3.4) by x(2k) and
integrating from 0 to T , we have

∫T

0

∣∣∣u(2k)(t)
∣∣∣
2
dt + λ

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣u(k+j)(t)
∣∣∣
2
dt = −λ

∫T

0
u(2k)(t)g(t, u(t))dt

+ λ

∫T

0
e(t)u(2k)(t)dt

(3.16)

Using (2.10), (3.15), and (3.16), we have

⎛

⎝1 +
∑

j∈Λ

(
T

2π

)2(k−j)
(−1)ja2j

⎞

⎠
∫T

0

∣∣∣u(2k)(t)
∣∣∣
2
dt

≤
∫T

0

∣∣∣u(2k)(t)
∣∣∣
2
dt + λ

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣u(k+j)(t)
∣∣∣
2
dt

= −λ
∫T

0
u(2k)(t)g(t, u(t))dt + λ

∫T

0
e(t)u(2k)(t)dt

≤
(√

T sup
|u|≤C2,t∈R

∣∣g(t, u)
∣∣ +

√
T |e|∞

)(∫T

0

∣∣∣u(2k)(t)
∣∣∣
2
dt

)1/2

, where Λ/= ∅,

∫T

0

∣∣∣u(2k)(t)
∣∣∣
2
dt

≤
∫T

0

∣∣∣u(2k)(t)
∣∣∣
2
dt + λ

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣u(k+j)(t)
∣∣∣
2
dt

≤
(√

T sup
|u|≤C2,t∈R

∣∣g(t, u)
∣∣ +

√
T |e|∞

)(∫T

0

∣∣∣u(2k)(t)
∣∣∣
2
dt

)1/2

, where Λ = ∅,

(3.17)
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which imply that there exists a positive constant C3 satisfying

∫T

0

∣∣∣u(2k)(t)
∣∣∣
2
dt ≤ C3,

∫T

0

∣∣∣u(2k)(t)
∣∣∣dt ≤

√
TC3. (3.18)

This implies the existence of a constant ρ > d0 such that (3.5) holds.
Now, to show that (ii) in Lemma 2.1 is satisfied, it suffices to remark that

F(x) =
∫T

0

[−g(t, x) + e(t)
]
dt, (x ∈ R). (3.19)

Hence, from (H1)
∗ (or (H2)

∗) and ρ > d0, it results that F(−ρ)F(ρ) < 0. Then, using
Lemma 2.1, it follows that (3.4) has at least one T -periodic solution u satisfying (3.5). This
completes the proof.

Similar to the proof of Theorem 3.1, from Lemma 2.6, one can prove the following
results.

Theorem 3.2. Let k be an odd number and n = 2k + 1. Assume that one of the following conditions
is satisfied:

(H1)
∗ let (H1) hold, and there exists a nonnegative constant d0 such that

(
g(t, u) − e(t)

)
u < 0, ∀t ∈ R, |u| ≥ d0, (3.20)

(H2)
∗ there exist nonnegative constants d0 and B such that (H2) holds,

(
g(t, u) − e(t)

)
u > 0, ∀t ∈ R, |u| ≥ d0, (3.21)

then (1.1) has a unique T -periodic solution.

Theorem 3.3. Let k be an even number and n = 2k + 1. Assume that one of the following conditions
is satisfied:

(H3)
∗ let (H3) hold, and there exists a nonnegative constant d0 such that

(
g(t, u) − e(t)

)
u > 0, ∀t ∈ R, |u| ≥ d0, (3.22)

(H4)
∗ there exist nonnegative constants d0 and B such that (H4) holds,

(
g(t, u) − e(t)

)
u < 0, ∀t ∈ R, |u| ≥ d0, (3.23)

then (1.1) has a unique T -periodic solution.
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Proof. From Lemma 2.7, together with (H3)
∗ (or (H4)

∗), it is easy to see that (1.1) has at most
one T -periodic solution. Thus, to prove Theorem 3.3, it suffices to show that (1.1) has at least
one T -periodic solution.

Multiplying (3.4) by u(i)(i = 0, 2k) and integrating from 0 to T , it follows that

λa2k

∫T

0

∣∣∣u(k)(t)
∣∣∣
2
dt + λ

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣u(j)(t)
∣∣∣
2
dt

= −λ
∫T

0
u(t)g(t, u(t))dt + λ

∫T

0
e(t)u(t)dt,

λa2k

∫T

0

∣∣∣u(2k)(t)
∣∣∣
2
dt + λ

k−1∑

j=1

(−1)ja2j

∫T

0

∣∣∣u(k+j)(t)
∣∣∣
2
dt

= −λ
∫T

0
u(2k)(t)g(t, u(t))dt + λ

∫T

0
e(t)u(2k)(t)dt.

(3.24)

Then, from (3.24), by using similar arguments in proof of (3.15) and (3.18), we can obtain that
there exists a constant C5 such that

|u|∞ ≤ C5,

∫T

0

∣∣∣u(2k)(t)
∣∣∣dt ≤ C5, (3.25)

∫T

0

∣∣∣u(j)(t)
∣∣∣
2
dt ≤

(
T

2π

)2k−j ∫T

0

∣∣∣u(2k)(t)
∣∣∣
2
dt ≤ C5, j = 1, 2, . . . , 2k − 1. (3.26)

In view of (3.4), (3.25) and (3.26) yield that

∫T

0

∣∣∣u(2k+1)(t)
∣∣∣dt =

∫T

0

∣∣∣∣∣∣
−λ

2k∑

j=1

aju
(j) − λg(t, u(t)) + λe(t)

∣∣∣∣∣∣
dt

≤
2k∑

j=1

∣∣aj

∣∣√T

(∫T

0

∣∣∣u(j)
∣∣∣
2
dt

)1/2

+ T

(
sup

|u|≤C5,t∈R

∣∣g(t, u)
∣∣ + |e|∞

)

≤
2k∑

j=1

∣∣aj

∣∣√TC5 + T

(
sup

|u|≤C5,t∈R

∣∣g(t, u)
∣∣ + |e|∞

)
,

(3.27)

which together with (2.11) and (3.25) implies the existence of a constant ρ > d0 such that (3.5)
holds.

Now the proof proceeds in the same way as in Theorem 3.1.

Similar to the proof of Theorem 3.3, from Lemma 2.8, we obtain the following.
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Theorem 3.4. Let k be an odd number and n = 2k + 1. Assume that one of the following conditions
is satisfied:

(H3)
∗ let (H3) hold, and there exists a nonnegative constant d0 such that

(
g(t, u) − e(t)

)
u < 0, ∀t ∈ R, |u| ≥ d0, (3.28)

(H4)
∗ there exist nonnegative constants d0 and B such that (H4) holds,

(
g(t, u) − e(t)

)
u > 0, ∀t ∈ R, |u| ≥ d0, (3.29)

then (1.1) has a unique T -periodic solution.

Remark 3.5. If
∫T
0 e(t)dt = 0 and g(t, u) satisfies the following condition:

(H5) there exist d > 0 and ε ∈ {−1, 1} such that, for any continuous T -periodic function
u, we have

ε

∫T

0
g(t, u(t))dt < 0, if min

R
u ≥ d,

ε

∫T

0
g(t, u(t))dt > 0, if min

R
u ≤ −d.

(3.30)

Moreover, one of conditions (H1)–(H4) holds. Then, by using the methods similarly to those
used in Theorem 3.1, one may also establish the results similar to those in Theorems 3.1–3.4.

4. Examples and Remarks

Example 4.1. Let a, b, c : R → R be three continuous, strictly positive, and T -periodic
functions, and let e : R → R be continuous, T -periodic, then the fourth-order differential
equation

u′′′′(t) + 400u′′′(t) +
(
1.6π
T

)2

u′′(t) + 20u′(t) + a(t)u(t) + b(t)u3(t) + c(t)u5(t) = e(t) (4.1)

has a unique T -periodic solution. For the proof, it suffices to remark that the function g(t, u) ≡
a(t)u + b(t)u3 + c(t)u5 satisfies

(
g(t, u) − e(t)

)
u > 0, ∀t ∈ R, |u| ≥ d0, (4.2)

where d0 ∈ R is sufficiently large. Hence, p = −(1.6π/T)2 and g satisfy (H1)
∗, and the result

follows from Theorem 3.1.
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Example 4.2. Let β : R → R be continuous, strictly positive, and T -periodic, let δ, τ ∈ R
be constants, and let e : R → R be continuous, T -periodic, then the five-order differential
equations

u′′′′′(t) + 100000
√
3u′′′′(t) + δu′′′(t) − 20u′′(t) + τu′(t) + β(t)u3(t) = e(t) (4.3)

have a unique T -periodic solution. For the proof, it suffices to remark that the function
g(t, u) ≡ β(t)u3(t) with a4 = 100000

√
3, a3 = δ, a2 = −20, and a1 = τ satisfies (H3)

∗. Hence,
the result follows from Theorem 3.3.

Remark 4.3. Since g(t, u) in Examples 4.1 and 4.2 does not satisfy (H), the main results in [9–
11] and the references therein cannot be applicable to (4.1)–(4.3) to obtain the existence and
uniqueness of 2-periodic solutions. Moreover, all the results in this present paper avoid the
spectral conditions in [12, 13]. This implies that the results of this paper are new, and they
complement previously known results.
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