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We discuss the existence of subharmonic solutions for nonautonomous second order differential
equations with singular nonlinearities. Simple sufficient conditions are provided enable us to
obtain infinitely many distinct subharmonic solutions. Our approach is based on a variational
method, in particular the saddle point theorem.

1. Introduction and Main Result

In this paper we discuss the problem of the existence of infinitely many subharmonic solu-
tions for nonautonomous second order differential equations with singular nonlinearities of
the form

u′′(t) + f(t, u(t)) = e(t), (1.1)

where f : R
2 → R is continuous, is T -periodic, in its first argument with T > 0, and presents

a singularity with respect to its second argument. Here by a subharmonic solution we mean a
kT -periodic solution for any integer k if T > 0 is the minimal period. When the solution is not
T -periodic we call it a true subharmonic. It was pointed out in [1] that singular differential
equations of the form (1.1) appear in the description ofmany phenomena in the applied scien-
ces, such as the Brillouin focusing system and nonlinear elasticity. Several authors have
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investigated the problem of existence of periodic solutions for second order differential
equations with singular nonlinearities (see [2–4] and the references therein). Topological and
variational methods are the two main techniques that have been developed for the study of
(1.1). We refer the interested reader to the paper [1] for details and references on the topo-
logical methods. In this work we shall rely on the saddle point theorem, see [5, 6], to prove
our main result. We use the truncation techniques introduced in [7] to modify our problem to
one without singularities. We assume that the nonlinearity f is monotone with respect to its
first variable t. When f is increasing, our result generalizes the result in [8]. We can obtain the
same result by considering the monotonicity of the potential function instead of the field f .
For more results on the subject and different techniques one can consult the papers [9–12].
We should point out some related recent articles, for instance [13, 14].

Throughout this paper we shall use the following notations. Let I = [0, T]. Lp(I) is the
classical Lebesgue space of functions u : I → R such that |u(·)|p is integrable, and for u ∈
Lp(I)we define its norm by

‖u‖Lp =
(∫T

0
|u(t)|pdt

)1/p

. (1.2)

Let ‖u‖∞ = sup{|u(t)|; t ∈ [0, kT]}. For T > 0 and k ∈ N we let H1
kT = {u ∈

W1,2([0, kT],R); u(0) = u(kT)} and for u ∈ H1
kT

we define its norm by

‖u‖H1
kT
=
(‖u‖L2 +

∥∥u′∥∥L2

)1/2
. (1.3)

H1
kT

endowed with the norm ‖ · ‖H1
kT
is a reflexive Banach space. AlsoH1

kT
= H+ ⊕H−,

orthogonal decomposition, where H+ is the subspace of constant functions in H1
kT and H−

denotes the subspace of functions inH1
kT

withmean value zero; so that u ∈ H1
kT

can bewritten
as u = u + ũwith u ∈ H+ and ũ ∈ H−.

We shall assume that e : R → R is a locally integrable T -periodic function. We denote
the mean value of e by e, that is, e = 1/T

∫T
0 e(t)dt. It follows that e, ‖e‖L1 and ‖e‖L2 are

bounded. Moreover, since e is T -periodic, we have
∫kT
0 e(t)dt =

∑k−1
j=0

∫T
0 e(t + jT)dt =∑k−1

j=0

∫T
0 e(t)dt = k

∫T
0 e(t)dt = kTe.

Let F(t, u) =
∫u
1 f(t, s)ds be an antiderivative of f defined for all u ∈ R and for all t ∈ I.

We introduce the following assumptions on the nonlinearity.

(H1) f : R×(0,+∞) → R is continuous, f(t+T, u) = f(t, u) for all (t, u) ∈ R×(0,+∞), and
such that

(i) t → f(t, u) is monotone for each fixed u in (0,+∞),
(ii) limu→ 0+f(t, u) = −∞, uniformly in t ∈ I,
(iii) f(0, u) = f(T, u) > e for all u > 1.

(H2)

(i) limu→+∞2F(t, u)/u2 = 0, uniformly in t ∈ I.
(ii) limu→+∞

∫T
0 [F(t, u) − eu]dt = +∞.
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Theorem 1.1. Assume that e is a locally integrable T -periodic function. If (H1) and (H2) are satisfied
then (1.1) has a sequence (uk)k≥1 of kT -periodic solutions whose amplitudes and minimal periods
tend to infinity. In particular, if T is the minimal period of e and of f with respect to t, (1.1) admits
solutions with minimal periods kT for every sufficiently Large Integer k.

2. Proof of Theorem 1.1

The proof of this result will be based on several auxiliary results.

2.1. Modification of the Problem

Define the truncation function fr : R
2 → R, 0 < r ≤ 1, by

fr(t, u) =

⎧⎨
⎩
f(t, u), u ≥ r,
f(t, r), u < r.

(2.1)

Note that condition (H1) implies that fr is continuous with respect to (t, u) ∈ I × R and
T -periodic with respect to its first variable t.

Lemma 2.1. Assume (H1) and (H2) (ii) are satisfied. Then there exists d > 1 such that for every
u ∈ (0, 1/d) ∪ (d,+∞)

(
f(t, u) − e)(u − 1) > 0, uniformly in t ∈ I. (2.2)

Proof. First, it follows from (H1)(ii) that for any A > 0, there is δA > 0 such that for every
u ∈ (0, δA) we have f(t, u) < −A, uniformly in t ∈ I.

In particular for A > 2|e| + 1, there is δA > 0 such that for every u ∈ (0, δA) it holds

f(t, u) − e < −|e| − 1 < 0. (2.3)

Choose d1 > 1 such that 1/d1 < δA. Then for every u ∈ (0, 1/d1), we have f(t, u) − e < 0.
Therefore, condition (H1)(ii) implies that there exists d1 > 1 such that for every u ∈

(0, 1/d1) it holds (f(t, u) − e)(u − 1) > 0, uniformly in t ∈ I.
Next, condition (H2)(ii) implies that for any B > 1, sufficiently large, there is χB > 0,

large enough, such that for every u > χB we have

∫T
0
[F(t, u) − eu]dt > B. (2.4)

Hence, there exists d2, sufficiently large such that d2 > max(1, χB) and for every u > d2 it
holds ∫T

0
[F(t, u) − eu]dt > B. (2.5)

We show that for u > d2 we have f(t, u) − e > 0, uniformly in t ∈ I. Assume, on the contrary,
that there exists y > d2 for which f(t0, y) − e ≤ 0, for some t0 ∈ (0, T). By the continuity of
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f on I and ((H1)(iii)), there exists σ ∈ (0, T) such that f(σ, u) = maxt∈If(t, u). If t0 ≤ σ then
0 < f(0, y) − e < f(t0, y) − e ≤ 0, and this is a contradiction. Similarly, if t0 ≥ σ then 0 <
f(0, y) − e = f(T, y) − e < f(t0, y) − e ≤ 0, and we again arrive at a contradiction.

Hence we deduce that if (H1) and (H2)(ii) hold, then there exists d > max (d1, d2) such
that for any u ∈ (0, 1/d)∪(d,+∞)(f(t, u)−e)(u−1) > 0, uniformly in t ∈ I. This completes the
proof of Lemma 2.1.

Lemma 2.2. For every positive integer k, there exist rk and Rk with 0 < rk < 1/d < d < Rk such
that for any μ ∈ (0, rk] each kT -periodic solution u of

u′′(t) + fμ(t, u(t)) = e(t), (2.6)

satisfies

rk ≤ u(t) ≤ Rk, ∀t ∈ R. (2.7)

In particular, any kT -periodic solution of (2.6), with μ = rk is a solution of (1.1).

Proof. This is essentially Proposition 2.1 in [8]. We shall use some ideas from [8] (see also
[15]). Fix k ∈ N, and suppose, on the contrary, that for each integer n, there exist μn ∈ (0, 1/n)
and a kT -periodic solution un satisfying

u′′n(t) + fμn(t, un(t)) = e(t) (2.8)

and {un(t); t ∈ R}/⊆[1/n, n].

Claim 1. Let d be as in Lemma 2.1 and let un be as above. Then for every n there exists τn ∈
[0, kT] such that un(τn) ∈ [1/d, d].

Indeed, it follows from (2.8) that

∫kT
0
fμn(t, un(t))dt = kTe. (2.9)

Now, if un(t) > d for all t ∈ [0, kT], then Lemma 2.1 implies that fμn(t, un(t)) − e > 0, which in
turn yields

∫kT
0 fμn(t, un(t))dt > kTe.

This contradicts (2.9). On the other hand, if un(t) < 1/d for all t ∈ [0, kT], then
fμn(t, un(t)) − e < 0, so that

∫kT
0 fμn(t, un(t))dt < kTe. This is again a contradiction to (2.9).

Claim 2. There exists R > 0 such that Mn = maxt∈[0,kT]un(t) ≤ R for each integer n. To prove
the claim notice, there exists t1n ∈ [0, kT] such that un(t1n) =Mn. If un(t1n) =Mn ∈ [1/d, d] then
un(t) ≤ R for any R > d. So, assume that there exists a subsequence of (un)n, which we label
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the same, for which Mn → +∞ when n → +∞. So that Mn > d for n large enough. Since
un(τn) < d, there exists an interval [αn, βn], containing t1n, such that

βn − αn ≤ kT,
un(αn) = d = un

(
βn
)
,

d ≤ un(t) ≤ un
(
t1n

)
, for all t ∈ [

αn, βn
]
.

(2.10)

Equation (2.8) can be written as

u′n(t) = vn(t) +
∫ t
αn

[e(s) − e]ds,

v′
n(t) = −fμn(t, un(t)) + e.

(2.11)

Since for all t ∈ (αn, βn),un(t) > d and μn < 1/n, then the second equation in (2.11) is
equivalent to

v′
n(t) = −f(t, un(t)) + e. (2.12)

Lemma 2.1 implies that f(t, un(t)) − e > 0 for all t ∈ [αn, βn]. Then v′
n(t) < 0 for all

t ∈ [αn, βn] and hence vn is decreasing on [αn, βn]. The first equation in (2.11) implies

u′n(t) ≤ vn(αn) +
∫ t
αn

[e(s) − e]ds ∀t ∈ [
αn, βn

]
. (2.13)

This yields

u′n(t) ≤ vn(αn) + ‖e‖L1 + kT |e| ∀t ∈ [
αn, βn

]
. (2.14)

Integrating the above inequality over [αn, t1n] ⊂ [αn, βn] we obtain

un
(
t1n

)
− un(αn) =Mn − d ≤ kT[vn(αn) + ‖e‖L1 + kT |e|]. (2.15)

Equation (2.15) leads to

lim
n→+∞

(
1 − d

Mn

)
≤ kT lim

n→+∞

(
vn(αn) + ‖e‖L1 + kT |e|

Mn

)
. (2.16)

Hence

1 ≤ kT lim
n→+∞

vn(αn)
Mn

. (2.17)

It is clear from (2.17) that vn(αn) → +∞when n → +∞. So that, for n large enough, we have

vn(αn) ≥ ‖e‖L1 + kT |e|. (2.18)
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SinceMn = un(t1n), we have u′n(t
1
n) = 0. It follows from the first equation in (2.11) that

∣∣∣vn(t1n)∣∣∣ =
∣∣∣∣∣
∫ t1n
αn

[e(s) − e]ds
∣∣∣∣∣ ≤ ‖e‖L1 + kT |e|. (2.19)

We see from (2.18) and (2.19) that for n large enough

vn(αn) ≥ ‖e‖L1 + kT |e| ≥ vn
(
t1n

)
. (2.20)

Since vn(·) is continuous on [αn, βn], then, for n large enough, there exists at least one t∗n ∈
(αn, t1n) such that vn(t∗n) = ‖e‖L1 + kT |e|. We denote by t2n, the first such t

∗
n. Then

vn
(
t2n

)
= ‖e‖L1 + kT |e|. (2.21)

We distinguish two cases.

Case 1. f(·, s) is increasing for each fixed s ∈ (0,+∞).
Consider the function B1 defined by

B1(t) = F
(
t2n, un(t)

)
− eun(t) + 1

2
(vn(t) − ‖e‖L1 − kT |e|)2. (2.22)

Then

B′
1(t) =

(
f
(
t2n, un(t)

)
− e

)
u′n(t) + (vn(t) − ‖e‖L1 − kT |e|)v′

n(t). (2.23)

Since v′
n(t) = −f(t, un(t)) + e, it follows from the first equation in (2.11)

B′
1(t) =

(
f
(
t2n, un(t)

)
− e

)(
vn(t) +

∫ t
αn

[e(s) − e]ds
)

+ (vn(t) − ‖e‖L1 − kT |e|)(−f(t, un(t)) + e)

=
(
f
(
t2n, un(t)

)
− e

)(
vn(t) +

∫ t
αn

[e(s) − e]ds + ‖e‖L1 + kT |e| − ‖e‖L1 − kT |e|
)

+ (vn(t) − ‖e‖L1 − kT |e|)(−f(t, un(t)) + e).

(2.24)

Hence

B′
1(t) =

(
f
(
t2n, un(t)

)
− e

)(∫ t
αn

[e(s) − e]ds + ‖e‖L1 + kT |e|
)

+
(
f
(
t2n, un(t)

)
− f(t, un(t))

)
(vn(t) − ‖e‖L1 − kT |e|)·

(2.25)
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Since, for all t ∈ [αn, βn]

∣∣∣∣∣
∫ t
αn

[e(s) − e]ds
∣∣∣∣∣ ≤ ‖e‖L1 + kT |e|, (2.26)

it follows that for all t ∈ [αn, βn]

∫ t
αn

[e(s) − e]ds + ‖e‖L1 + kT |e| ≥ 0. (2.27)

Also, Lemma 2.1 implies that f(t2n, un(t)) − e > 0 for all t ∈ [αn, βn]. Furthermore, the
monotonicity of f implies that f(t2n, un(t)) − f(t, un(t)) ≥ 0 for all t ∈ [αn, t2n]. Since vn(·)
is decreasing on [αn, t2n] and vn(t

2
n) = ‖e‖L1 + kT |e|, it follows that

vn(t) − ‖e‖L1 − kT |e| ≥ vn
(
t2n

)
− ‖e‖L1 − kT |e| = 0 (2.28)

for all t ∈ [αn, t2n]. Now, Lemma 2.1 combined with (2.27), (2.28), and the monotonicity of f
with respect to its first variable shows that

B′
1(t) ≥ 0, ∀ t ∈

[
αn, t

2
n

]
. (2.29)

Thus, the function B1 is increasing on [αn, t2n]. Since un(αn) = d,

B1(αn) = F
(
t2n, d

)
− ed +

1
2
(vn(αn) − ‖e‖L1 − kT |e|)2

≤ B1

(
t2n

)
= F

(
t2n, un

(
t2n

))
− eun

(
t2n

)
+
1
2

(
vn
(
t2n

)
− ‖e‖L1 − kT |e|

)2
.

(2.30)

Since vn(t2n) − ‖e‖L1 − kT |e| = 0, it follows that

B1(αn) = F
(
t2n, d

)
− ed ≤ F

(
t2n, un

(
t2n

))
− eun

(
t2n

)
. (2.31)

Notice that

F
(
t2n, un

(
t2n

))
− eun

(
t2n

)
=
∫d
1

(
f
(
t2n, s

)
− e

)
ds +

∫un(t2n)
d

(
f
(
t2n, s

)
− e

)
ds − e. (2.32)

Also, f(t2n, s) − e > 0 if s ∈ (d, un(t2n)] ⊂ [d, un(t1n)] (see Lemma 2.1). It follows that

∫un(t2n)
d

[
f
(
t2n, s

)
− e

]
ds ≤

∫un(t1n)
d

[
f
(
t2n, s

)
− e

]
ds. (2.33)
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Hence

B1(αn) ≤
∫d
1

[
f
(
t2n, s

)
− e

]
ds +

∫un(t1n)
d

[
f
(
t2n, s

)
− e

]
ds − e = F

(
t2n, un

(
t1n

))
− eun

(
t1n

)
. (2.34)

Set

ρn =
1
2

(
vn(αn) − ‖e‖L1 − kT |e|

Mn

)2

. (2.35)

Then

lim
n→+∞

ρn = 0. (2.36)

Indeed, sinceMn = un(t1n), we have

B1(αn) = F
(
t2n, d

)
− ed + ρnM2

n ≤ F
(
t2n, un

(
t1n

))
− eun

(
t1n

)
= F

(
t2n,Mn

)
− eMn. (2.37)

From (2.37) we deduce

lim
n→+∞

F
(
t2n, d

)
(Mn)2

+ lim
n→+∞

ρn ≤ lim
n→+∞

F
(
t2n,Mn

)
(Mn)2

. (2.38)

Notice that F(t2n, d) =
∫d
1 f(t

2
n, s)ds is bounded, so that

lim
n→+∞

F
(
t2n, d

)
(Mn)2

= 0. (2.39)

Also, (H2)(i) implies that

lim
n→+∞

F
(
t2n,Mn

)
(Mn)2

= 0. (2.40)

Therefore (2.36) holds; that is, limn→+∞ρn = 0. Since ‖e‖L1 and |e| are bounded, it follows that

lim
n→+∞

vn(αn)
Mn

= 0. (2.41)

It is clear that (2.41) contradicts (2.17).

Case 2. f(·, s) is decreasing for each fixed s ∈ (0,+∞).
In this case we consider the function B2 defined by

B2(t) = F(αn, un(t)) − eun(t) + 1
2
(vn(t) − ‖e‖L1 − kT |e|)2. (2.42)
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Then

B′
2(t) =

(
f(αn, un(t)) − e

)(∫ t
αn

[e(s) − e]ds + ‖e‖L1 + kT |e|
)

+
(
f(αn, un(t)) − f(t, un(t))

)
(vn(t) − ‖e‖L1 − kT |e|)

≥ 0 ∀t ∈
[
αn, t

2
n

]
. (2.43)

Repeating the same reasoning as in Case 1, we arrive at a contradiction.
Therefore, we deduce that there must exist R > 0 such thatMn = maxt∈[0,kT]un(t) ≤ R

for each n.
Next, we prove that there is r > 0 such that un(t) ≥ r for every t ∈ [0, kT]. Assuming

that this is not true we will obtain a contradiction.
Consider the following sets

I1/n =
{
t ∈ [0, kT];un(t) <

1
n

}
,

I1/n,1/d =
{
t ∈ [0, kT];

1
n
≤ un(t) < 1

d

}
,

I1/d,R =
{
t ∈ [0, kT];

1
d

≤ un(t) ≤ R
}
.

(2.44)

It is clear that for n ≥ R, un(t) ≤ R ≤ n. Also, we cannot have un(t) ≥ 1/n for every t ∈ [0, kT],
for otherwise we would have

1
n
≤ un(t) ≤ n ∀t ∈ [0, kT], (2.45)

which contradicts the assumption {un(t); t ∈ R}/⊆[(1/n), n]. Hence, for n ≥ R there exists
t3n ∈ [0, kT] such that un(t3n) < 1/n. This shows that I1/n /= ∅. The continuity of un implies that
I1/n is open, and someas(I1/n)/= 0.

Define

Ψn =
∫kT
0

[
fμn(t, un(t)) − e

]
dt, n ∈ N. (2.46)

It follows from (2.9) that Ψn = 0. On the other hand

Ψn =
∫
I1/n

[
fμn(t, un(t)) − e

]
dt +

∫
I1/n,1/d

[
fμn(t, un(t)) − e

]
dt +

∫
I1/d,R

[
fμn(t, un(t)) − e

]
dt. (2.47)

(i) Assume we are integrating positively on all subintervals of [0, kT].
If t ∈ I1/n,1/d, then un(t) ∈ [1/n, 1/d) ⊂ (0, 1/d). So that, by Lemma 2.1,∫

I1/n,1/d

[
fμn(t, un(t)) − e

]
dt < 0. (2.48)

For t ∈ I1/d,R we have un(t) ∈ [1/d,R]. This means that un(t) is bounded uniformly in t ∈
I1/d,R. Since fμn is continuous it is bounded on I1/d,R.
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Let

c = max
{∣∣fμn(t, x)∣∣; t ∈ [0, kT],

1
d

≤ x ≤ R
}

= max
I1/d,R

{∣∣fμn(t, x)∣∣}. (2.49)

Then

∣∣∣∣∣
∫
I1/d,R

[
fμn(t, un(t)) − e

]
dt

∣∣∣∣∣ ≤
∫
I1/d,R

[∣∣fμn(t, un(t))∣∣ + |e|]dt ≤ kT(c + |e|). (2.50)

It follows from (2.47), (2.48), and (2.50) that

Ψn <

∫
I1/n

[
fμn(t, un(t)) − e

]
dt + kT(c + |e|). (2.51)

Claim 3.

lim
n→∞

∫
I1/n

[
fμn(t, un(t)) − e

]
dt = −∞. (2.52)

Proof. Recall that μn ∈ (0, 1/n) and un(t) < 1/n for each t ∈ I1/n. Then, if un(t) < μn we have
fμn(t, un(t)) = f(t, μn), and if un(t) ∈ [μn, 1/n), we have fμn(t, un(t)) = f(t, un(t)). In both
cases condition (H1)(ii) and the continuity of f imply that limn→∞(fμn(t, un(t))− e) = −∞ for
every t ∈ I1/n.

Since e is bounded, then (2.51) implies that

lim
n→+∞

Ψn = −∞, (2.53)

which is a contradiction with (2.9).
(ii) If we integrate negatively on all subintervals of [0, kT]wewill obtain limn→+∞Ψn =

+∞, which, again, contradicts (2.9). Thus, the proof of Lemma 2.2 is complete.

Remark 2.3. Lemma 2.2 shows that any kT -periodic solution u of (2.6), with μ = rk is a
solution of (1.1), since it satisfies u(t) ≥ rk for all t ∈ R and frk(t, u(t)) = f(t, u(t)).

In the remainder of the paper we shall deal with (2.6), with μ = rk instead of (1.1). Let
Frk(t, u) =

∫u
1 frk(t, s)ds be a primitive of frk defined for all t ∈ I and u ∈ R.

Lemma 2.4. If (H1) and (H2) hold, then frk and Frk satisfy the following conditions.

(L1) frk is defined and continuous in (t, u) ∈ I × R and T -periodic with respect to t ∈ I.
(L2) lim inf|u|→+∞2Frk(t, u)/u

2 = 0, uniformly in t ∈ I.
(L3) ∃d > 1 such that for u ∈ (−∞, 1/d)∪ (d,+∞) it holds (frk(t, u)−e)(u−1) > 0 uniformly

in t ∈ I.
(L4) lim|u|→+∞

∫T
0 [Frk(t, u) − eu]dt = +∞.
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2.2. Existence of kT-Periodic Solutions for Equation (2.6), μ = rk

Using a variational method we shall show that equation (2.6), with μ = rk has infinitely many
kT -periodic solutions. In fact, we have the following.

Lemma 2.5. Assume that e is locally integrable T -periodic function and the conditions (L1), (L2),
(L3), (L4) hold. Then (2.6), with μ = rk admits a kT -periodic solution uk.

Proof. We shall rely on a variational method and more precisely on the saddle point theorem.
Define for each k ≥ 1 the action functional Jk : H1

kT → R by

Jk(u) =
∫kT
0

[
1
2
[
u′(t)

]2 − Frk(t, u(t)) + e(t)u(t)
]
dt. (2.54)

Jk is well defined on H1
kT
, weakly lower semicontinuous and continuously differentiable on

H1
kT
. Furthermore,

〈
J ′k(u), v

〉
=
∫kT
0

[
u′(t)v′(t) − frk(t, u(t))v(t) + e(t)v(t)

]
dt, ∀u, v ∈ H1

kT . (2.55)

The critical points of Jk are precisely the weak solutions of equation (2.6), with μ = rk.
First, we show that the functional Jk satisfies the Palais-Smale condition.
For this, let k ≥ 1 be fixed and let (un)n∈N

be a sequence inH1
kT

such that (Jk(un))n∈N
is

bounded and limn→+∞J ′k(un) = 0. Then (un)n∈N
has a convergent subsequence.

Suppose, on the contrary, that limn→+∞‖un‖H1
kT

= +∞. Condition (L2) implies that for
any ε > 0, small enough, there is Cε ≥ 0 such that

Frk(t, u) ≤ εu2 + Cε, ∀ u ∈ R. (2.56)

Writing un(t) = un + ũn(t) for t ∈ [0, kT], we obtain

−
∫kT
0
Frk(t, un(t))dt ≥ −εkT |un|2 − ε

∫kT
0

|ũn(t)|2dt − 2εun

∫kT
0
ũn(t)dt − CεkT. (2.57)

Since ũn ∈ H−, we have
∫kT
0 ũn(t)dt = kT ũn= 0, so that

−
∫kT
0
Frk(t, un(t))dt ≥ −ε‖ũn‖2L2 − εkT |un|2 − CεkT. (2.58)

Now, Hölder’s inequality gives

∫kT
0
e(t)un(t)dt = un

∫kT
0
e(t)dt +

∫kT
0
e(t)ũn(t)dt ≥ −|un|kT |e| − ‖e‖L2‖ũn‖L2 . (2.59)
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Since u′n(t) = ũn
′(t) for t ∈ [0, kT], it follows from (2.54), (2.58), and (2.59)

Jk(un) ≥ 1
2
∥∥ũn′∥∥2

L2 − ε‖ũn‖2L2 − εkT |un|2 − CεkT − kT
∣∣∣−e∣∣∣|un| − ‖e‖L2‖ũn‖L2 . (2.60)

Wirtinger’s inequality

∥∥ũn′∥∥2
L2 ≥

(
4π2

4π2 + (kT)2

)
‖ũn‖2

H1
kT

(2.61)

combined with the inequality ‖ũn‖L2 ≤ ‖ũn‖
H1
kT

give

Jk(un) +
(
εkT |un|2 + kT |e||un|

)
+ CεkT ≥ ‖ũn‖

H1
kT

([
2π2

4π2 + (kT)2
− ε

]
‖ũn‖

H1
kT

− ‖e‖L2

)
.

(2.62)

This leads to

lim
n→+∞

|un| = +∞. (2.63)

Indeed, if (2.63) does not hold then there would exist a subsequence of (un)n∈N
, still

denoted the same, which is bounded. Since (Jk(un))n∈N
and e are bounded and ε is chosen

arbitrarily small, then (2.62) implies that ‖ũn‖
H1
kT

is bounded. It follows from the inequality

‖un‖
H1
kT

≤
√
kT |un| + ‖ũn‖

H1
kT

(2.64)

that ‖un‖H1
kT

is bounded, but this contradicts our assumption limn→+∞‖un‖H1
kT

= +∞.
Therefore, (2.63) holds.

Using Wirtinger’s inequality

‖ũn‖L2 ≤ kT

2π
∥∥ũn′∥∥L2 (2.65)

in (2.60), we get

∥∥ũn′∥∥L2

|un|

([
1
2
− ε

(
kT

2π

)2
]∥∥ũn′∥∥L2

|un|
−
(
kT

2π

)‖e‖L2

|un|

)
≤ Jk(un)

|un|2
+ εkT +

kT |e|
|un|

+
CεkT

|un|2
. (2.66)

It follows from (2.63) that

lim
n→+∞

∥∥ũn′∥∥L2

|un|
= 0. (2.67)
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Using Sobolev’s inequality we obtain

lim
n→+∞

‖ũn‖∞
|un|

≤
√
kT

12
lim

n→+∞

∥∥ũn′∥∥L2

|un|
= 0. (2.68)

The identity un(t) = un(1 + (ũn(t)/un)) for all t ∈ [0, kT] and (2.63) imply that

lim
n→+∞

min
t∈[0,kT]

|un(t)| = +∞. (2.69)

Assume that limn→+∞mint∈[0,kT]un(t) = +∞ (the other case can be treated similarly). Then for
n large enough, un(t) > d uniformly in t ∈ [0, kT]. By (L3) we have for all t ∈ [0, kT]

frk(t, un(t)) − e > 0. (2.70)

Consequently, for n large enough

∫kT
0

∣∣frk(t, un(t)) − e∣∣dt =
∫kT
0

[
frk(t, un(t)) − e

]
dt =

∣∣∣∣∣
∫kT
0

[
frk(t, un(t)) − e

]
dt

∣∣∣∣∣. (2.71)

Since limn→+∞J ′k(un) = 0, then for all v ∈ H1
kT

and for n large enough

∣∣∣∣∣
∫kT
0

[
u′n(t)v

′(t) − frk(t, un(t))v(t) + e(t)v(t)
]
dt

∣∣∣∣∣ ≤ εn‖v‖H1
kT
, (2.72)

where εn > 0 for every n, and limn→+∞εn = 0. In particular, if we take v(t) = −1 in the above
inequality we obtain for every n ∈ N

∣∣∣∣∣
∫kT
0

[
frk(t, un(t)) − e

]
dt

∣∣∣∣∣ ≤ εn
√
kT, (2.73)

which infer

∫kT
0

∣∣frk(t, un(t))∣∣dt ≤
∫kT
0

∣∣frk(t, un(t)) − e∣∣dt +
∫kT
0

|e|dt

=

∣∣∣∣∣
∫kT
0

[
frk(t, un(t)) − e

]
dt

∣∣∣∣∣ +
∫kT
0

|e|dt ≤ εn
√
kT + kT |e|.

(2.74)

Now, taking v = ũn in (2.72) we obtain

εn‖ũn‖H1
kT
≥ ∥∥ũn′∥∥2

L2
−
∣∣∣∣∣
∫kT
0

[
frk(t, un(t)) − e(t)

]
ũn(t)dt

∣∣∣∣∣. (2.75)
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Obviously, we have for n large enough

∣∣∣∣∣
∫kT
0

[
frk(t, un(t)) − e(t)

]
ũn(t)dt

∣∣∣∣∣ ≤ sup
t∈[0,kT]

|ũn(t)|
(∫kT

0

∣∣frk(t, un(t))∣∣dt +
∫kT
0

|e(t)|dt
)

≤ ‖ũn‖∞
(
εn
√
kT + kT |e| + ‖e‖L1

)
.

(2.76)

Thus, for n large enough, (2.75) implies that

εn‖ũn‖H1
kT
≥ ∥∥ũn′∥∥2

L2 − ‖ũn‖∞
(
εn
√
kT + kT |e| + ‖e‖L1

)
. (2.77)

Sobolev’s inequality

‖ũn‖∞ ≤
√
kT

12
∥∥ũn′∥∥L2 ≤

√
kT

12
‖ũn‖H1

kT
(2.78)

and Wirtinger’s inequality combined with (2.77) give, for n large enough,

εn‖ũn‖H1
kT
≥
(

4π2

4π2 + (kT)2

)
‖ũn‖2H1

kT
−
√
kT

12
‖ũn‖H1

kT

(
εn
√
kT + kT |e| + ‖e‖L1

)
. (2.79)

So, for n large enough, we deduce that

‖ũn‖H1
kT
≤ � :=

(
4π2 + (kT)2

4π2

)⎛
⎝1 +

√
kT

12

[√
kT + kT |e| + ‖e‖L1

]⎞⎠. (2.80)

Hence (ũn)n is bounded in H1
kT
. Consequently ‖u′n‖L2 = ‖ũn′‖L2 ≤ ‖ũn‖H1

kT
≤ �. Since

(Jk(un))n∈N
is bounded, it follows that

∫kT
0

[Frk(t, un(t)) − e(t)un(t)]dt (2.81)

is bounded. Hölder’s inequality gives

∣∣∣∣∣
∫kT
0
e(t)ũn(t)dt

∣∣∣∣∣ ≤ ‖e‖L2‖ũn‖L2 ≤ ‖e‖L2‖ũn‖H1
kT
≤ �‖e‖L2 . (2.82)

Since

∫kT
0
Frk(t, un(t))dt−

−
un

∫kT
0
e(t)dt =

∫kT
0

[Frk(t, un(t)) − e(t)un(t)]dt +
∫kT
0
e(t)ũn(t)dt,

(2.83)
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it follows that

∫kT
0
Frk(t, un(t))dt−

−
un

∫kT
0
e(t)dt, (2.84)

is bounded. But,

−
un

∫kT
0
e(t)dt = kTe

−
un= kTe

1
kT

∫kT
0
un(t)dt =

∫kT
0
eun(t)dt. (2.85)

Consequently, there exists C > 0 such that

∫kT
0

[Frk(t, un(t)) − eun(t)]dt ≤ C. (2.86)

On the other hand, extending Frk by T -periodicity we obtain

∫kT
0

[Frk(t, un(t)) − eun(t)]dt =
k−1∑
j=0

∫T
0

[
Frk

(
t + jT, un

(
t + jT

)) − eun(t + jT)]dt

=
k−1∑
j=0

∫T
0

[
Frk

(
t, un

(
t + jT

)) − eun(t + jT)]dt.
(2.87)

Setting xn = un(t + jT) for t ∈ [0, T], we get

∫kT
0

[Frk(t, un(t)) − eun(t)]dt =
k−1∑
j=0

∫T
0
[Frk(t, xn) − exn]dt = k

∫T
0
[Frk(t, xn) − exn]dt. (2.88)

From (2.75) |xn| = |un(t + jT)| → +∞ when n → +∞ uniformly in t ∈ [0, kT]. By (L4) we
have

lim
n→+∞

∫kT
0

[Frk(t, un(t)) − eun(t)]dt = k lim
|x|→+∞

∫T
0
[Frk(t, x) − ex]dt = +∞. (2.89)

This is a clear contradiction to (2.86). Therefore, (un)n∈N
is bounded in H1

kT
, and so it has a

convergent subsequence. This shows that Jk satisfies the Palais-Smale condition. Next, we
show that Jk has a geometry of a Saddle. For, let u ∈ H− then we have u = ũn and u = 0, so
that

Jk(ũn) =
1
2
∥∥ũn′∥∥2

L2 −
∫kT
0

[Frk(t, ũn(t)) − e(t)ũn(t)]dt. (2.90)
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Proceeding as before, we get an inequality similar to (2.72) by replacing un by ũn and un by
0,

Jk(ũn) ≥ ‖ũn‖
H1
kT

([
2π2

4π2 + (kT)2
− ε

]
‖ũn‖

H1
kT

− ‖e‖L2

)
− CεkT. (2.91)

Since ε is chosen arbitrary small, we obtain

lim
‖ũn‖H1

kT
→+∞

Jk(ũn) = +∞, (2.92)

which shows that Jk is coercive. Hence, Jk admits a bounded minimizing sequence. Fur-
thermore, Jk is weakly lower semicontinuous onH1

kT
, then

inf
H−
Jk > −∞. (2.93)

For s, a constant function, we have ‖s‖
H1
kT

= |s|
√
kT → +∞ if and only if |s| → +∞. Then

Jk(s) = −
∫kT
0

[Frk(t, s) − e(t)s]dt. (2.94)

Extending Frk by T -periodicity we obtain

Jk(s) = −
∫kT
0

[Frk(t, s) − es]dt = −
k−1∑
i=0

∫T
0
[Frk(t + iT, s) − es]dts

= −k
∫T
0
[Frk(t, s) − es]dt.

(2.95)

Condition (L4) implies that

lim
|s|→+∞

[−Jk(s)] = k lim
|s|→+∞

∫T
0
[Frk(t, s) − es]dt = +∞. (2.96)

Hence, for each k ≥ 1, (−Jk) is coercive on the space of constant functions. Then for each
k ≥ 1, there exists ηk > 0, large enough, such that

Jk
(
ηk
) → −∞, and Jk

(−ηk) → −∞. (2.97)

Thus,

max
(
Jk
(−ηk), Jk(ηk)) → −∞ when ηk → +∞. (2.98)
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Therefore,

max
(
Jk
(−ηk), Jk(ηk)) < inf

H−
Jk. (2.99)

Let Iηk be the open interval of R centered at 0 and with radius ηk. SinceH+ = R it is clear that

∂Iηk ∩H+ =
{−ηk, ηk}. (2.100)

Therefore, we have

max
∂Iηk∩ H+

Jk < inf
H−
Jk, (2.101)

withH+ ⊕H− = H1
kT
. Thus Jk has a geometry of Saddle.

Finally, all conditions of the Saddle point theorem are satisfied. Then for each k ≥ 1, Jk
admits a critical point βk, which is characterized by

Jk
(
βk
)
= inf

ψ∈Γk
max

s∈[−ηk,ηk]
Jk
(
ψ(s)

)
, (2.102)

where

Γk =
{
ψ ∈ C

([−ηk, ηk],H1
kT

)
; ψ

(−ηk) = −ηk, ψ
(
ηk
)
= ηk

}
. (2.103)

Thus for each k ≥ 1, βk is a weak kT -periodic solution of (2.6) with μ = rk If, fur-
thermore, e is assumed continuous, then βk is a classical solution of (2.6) with μ = rk.

This completes the proof of Lemma 2.5.

Remark 2.6. As a consequence of Lemmas 2.2, 2.5 and the Remark 2.3, we conclude that if
(H1) and (H2) are satisfied, then (1.1) admits a sequence (uk)k≥1 of kT -periodic solutions.

2.3. Existence of Distinct Subharmonic Solutions for
(2.6) with μ = rk

Note that Jk = Jm onH1
kT

∩H1
mT for each k and m. This justifies the following definition (see

[10, Definition 2.1 page 653]).

Definition 2.7. The level of u ∈ ∪kH1
kT

is defined by Jm(u)when u ∈ H1
mT .

Every functional Jk admits at least a critical level which is given by βk = minH1
kT
Jk.

Note that nondistinct subharmonic solutions have the same level. Thenwe deduce that
in order to find the multiplicity of distinct subharmonic solutions, we have to search the mul-
tiple critical levels. The sequence (βk)k≥1 is not always increasing, which means that there ex-
istsm ∈ N such that if k ∈ mN then βk ≤ βm.

If βk < β1 for an integer k, then βk is not a level for the T -periodic functions and every
global minimum of Jk is in fact a subharmonic solution of (2.6).
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In our case Jk(uk) is not necessary a global minimum for Jk and then even if the con-
dition above is verified, it is still insufficient to deduce the existence of true subharmonic sol-
utions. This is why we prove also that the amplitudes and the minimal periods tend to in-
finity.

Lemma 2.8. The minimal periods of the solutions uk of (2.6), with μ = rk tend to infinity.

Proof. Let uk be a weak solution of (2.6) with μ = rk Then uk is a critical point of Jk. We show
that

lim
k→+∞

1
k
Jk(uk) = −∞. (2.104)

Let ηk ≥ k and let ϕk ∈ Γk be defined for all s ∈ [−ηk, ηk] and for all t ∈ [0, kT] by

(
ϕk(s)

)
(t) = s +

(
ηk − |s|). (2.105)

We have (ϕk(ηk))(t) = ηk and (ϕk(−ηk))(t) = −ηk for all t ∈ [0, kT]. (ϕk(s))(·) is constant with
respect to t for all s ∈ [−ηk, ηk] and ϕk(s) ∈ H1

kT
. Let sk ∈ [−ηk, ηk] be such that

Jk
(
ϕk(sk)

)
= max

s∈[−ηk,ηk]
Jk
(
ϕk(s)

)
. (2.106)

We have

Jk(uk) ≤ Jk
(
ϕk(sk)

)
. (2.107)

Since (ϕk(sk))
/(t) = 0 for all t ∈ [0, kT], (2.54) implies that

Jk
(
ϕk(sk)

)
= −

∫kT
0

[
Frk

(
t,
(
ϕk(sk)

)
(t)
) − e(t)(ϕk(sk))(t)]dt. (2.108)

Extending Frk by T -periodicity, we obtain for k ≥ 2

1
k
Jk(uk) ≤ 1

k
Jk
(
ϕk(sk)

)
= − 1

k

k−1∑
j=0

∫kT
0

[
Frk

(
t + jT,

(
ϕk(sk)

)(
t + jT

)) − e(ϕk(sk))(t + jT)]dts

= −
∫T
0

[
Frk

(
t,
(
ϕk(sk)

)
(t)
) − e(ϕk(sk))(t)]dt.

(2.109)

We have limk→+∞|(ϕk(sk))(t)| = +∞ for all t ∈ [0, kT]. Apply (L4) with u = (ϕk(sk))(t) to
obtain

lim
k→+∞

1
k
Jk(uk) ≤ − lim

|u|→+∞

∫T
0
[Frk(t, u) − eu]dt = −∞. (2.110)

Hence (2.104) holds.
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Now, assume by contradiction that we can extract from the sequence (uk)k≥1, of
solutions of (2.6) with μ = rk a subsequence whose minimal periods are bounded. Then for
this subsequencewe can find a common period k0T . The sequence (un)n≥1 of the critical points
of Jk0 satisfies

Jk0(un) =
1
n
Jn(un). (2.111)

Assuming limn→+∞‖un‖∞ = +∞ and proceeding as before we arrive at the conclusion
(Jk0(un))n is bounded and this contradicts (2.104). This completes the proof of Lemma 2.8.

Lemma 2.9. The amplitudes Ak := (max[0,kT]uk − min[0,kT]uk) of the the solutions uk of equation
(2.6) with μ = rk tend to infinity.

Proof. We have to show that limk→+∞Ak = +∞. First, we have

lim
k→+∞

‖uk‖∞ = +∞. (2.112)

Otherwise, we can extract from (uk)k≥1 a subsequence converging to some u∗ with period
n0T , for some n0 > 0. But, this would contradict Lemma 2.8. Next, we must prove that
limk→+∞ ‖ũk‖∞ = +∞. Assume, on the contrary, that ‖ũk‖∞ is bounded. If we suppose further
that (|ũk|)k≥1 is bounded, then ‖uk‖∞ would be bounded and this contradicts (2.112). Hence
there exists a subsequence of (uk)k≥1, which we label the same, such that limk→+∞ |uk| = +∞.
This implies limk→+∞min[0,kT]|uk(t)| = +∞. Then, for k sufficiently large and each j =
0, 1, . . . , k − 1, uk(t + jT) > d, uniformly in t ∈ (0, T). It follows from (L3) that for k large
enough frk(t, uk(t + jT)) − e > 0, uniformly in t ∈ (0, T). Equation (2.6)with μ = rk and the T -
periodicity of frk with respect to t give

∫T
0

⎡
⎣ 1
k

k−1∑
j=0

frk
(
t, uk

(
t + jT

)) − e
⎤
⎦dt = 0. (2.113)

Hence we can use Fatou’s Lemma to obtain

0 =
∫T
0
lim inf
k→+∞

[
1
k

k−1∑
i=0

frk(t, uk(t + iT)) − e
]
dt =

∫T
0
lim inf
x→+∞

[
frk(t, x) − e

]
dt > 0. (2.114)

This is a contradiction. Hence limk→+∞‖ũk‖∞ = +∞, and the proof of Lemma 2.9 is complete.

From the above auxiliary results we deduce that equation (2.6) with μ = rk, and con-
sequently (1.1), admits a sequence (uk)k≥1 of distinct kT -periodic solutions whose amplitudes
and minimal periods tend to infinity. Thus, the proof of Theorem 1.1 is complete.
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