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In recent decades, several types of sets, such as fuzzy sets, interval-valued fuzzy sets, intuitionistic
fuzzy sets, interval-valued intuitionistic fuzzy sets, type 2 fuzzy sets, type n fuzzy sets, and hesitant
fuzzy sets, have been introduced and investigated widely. In this paper, we propose dual hesitant
fuzzy sets (DHFSs), which encompass fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets, and
fuzzy multisets as special cases. Then we investigate the basic operations and properties of DHFSs.
We also discuss the relationships among the sets mentioned above, use a notion of nested interval
to reflect their common ground, then propose an extension principle of DHFSs. Additionally, we
give an example to illustrate the application of DHFSs in group forecasting.

1. Introduction

Since Zadeh [1] introduced fuzzy sets (FSs) and gave intensive research [2–5], several famous
extensions have been developed, such as intuitionistic fuzzy sets (IFSs) [6], type 2 fuzzy sets
(T2FSs) [3, 7], type n fuzzy sets (TnFSs), fuzzymultisets (FMSs) [8–14], interval-valued fuzzy
sets (IVFSs) [3, 15], interval-valued intuitionistic fuzzy sets (IVIFSs) [16], and hesitant fuzzy
sets (HFSs) [17–20]. Actually, these sets have given various ways to assign the membership
degree or the nonmembership degree of an element to a given set characterized by different
properties.

IFSs, also known as IVFSs from a mathematical point of view, can be modeled with
two functions that define an interval to reflect some uncertainty on the membership function
of the elements. IVFSs are the generalization of FSs and can model uncertainty due to the lack
of information, in which a closed subinterval of [0, 1] is assigned to the membership degree.
Atanassov and Gargov [16] proved that IFSs and IVFSs are equipollent generalizations of
FSs, and proposed the notion of IVIFS, which has been studied and used extensively [21–25].

T2FSs, described by membership functions that are characterized by more parameters,
permit the fuzzy membership as a fuzzy set improving the modeling capability than the
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original one. Mathematically, IFSs can be seen as a particular case of T2FSs, where the
membership function returns a set of crisp intervals. Despite the wide applications of T2FSs
[26–29], they have difficulties in establishing the secondary membership functions and
difficulties in manipulation [30–32].

FMSs are another generalization of FSs that permit multiple occurrences of an element,
and correspond to the case where the membership degrees to the multisets are not Boolean
but fuzzy. Note that although the features of FMSs allow the application to information
retrieval on the world wide web, where a search engine retrieves multiple occurrences of the
same subjects with possible different degrees of relevance [10], they have problems with the
basic operations, such as the definitions for union and intersection, which do not generalize
the ones for FSs. Miyamoto [13] gave an alternative definition that emphasizes the usefulness
of a commutative property between a set operation and an α-cut, resolving this problem
[8–13].

HFSs were originally introduced by Torra [17, 18]. The motivation to propose the
HFSs is that when defining the membership of an element, the difficulty of establishing the
membership degree is not a margin of error (as in IFSs), or some possibility distribution (as
in T2FSs) on the possible values, but a set of possible values. Torra [17] reviewed IFSs and
FMSs, drew comparisons, and created inherent connections among them. He pointed out that
the operations for FMSs do not apply correctly to HFSs, although in some situations we can
use FMSs as a model. HFSs were deemed IFSs when the HFS is a nonempty closed interval.
Based on the relationships between IFSs andHFSs, Torra [17] gave a definition corresponding
to the envelope of HFS. Xu and Xia [19, 20] investigated the aggregation operators, distance,
and similarity measures for HFSs and applied them to decision making.

In this paper, we introduce dual hesitant fuzzy set (DHFS), which is a new extension
of FS. As we know, in natural language, many categories cannot be distinguished clearly,
but can be represented by a matter of degree in the notion of fuzziness. For example,
when we talk about fish and monkeys, clear separation can be recognized between them.
However, the borderline may not be easy to be distinguished with respect to starfish or
bacteria. Although sometimes humans cannot recognize an object clearly, this class of fuzzy
recognition against preciseness plays a vital role in human thinking, pattern recognition,
and communication of information. The FS, which is stuck into the transition between the
membership and the nonmembership, is the gradualness of predication. Zadeh’s original
intuition [1] is to show the objectivity of truth as “gradual rather than abrupt.” Atanassov’s
IFS [6] used two functions to handle the membership and the nonmembership separately, as
it seems to be the case in the human brain, which is limited by the perception of shades. The
membership and the nonmembership represent the opposite epistemic degrees, apparently,
the membership comes to grips with epistemic certainty, and the nonmembership comes to
grips with epistemic uncertainty, they can reflect the gradual epistemic degrees respectively
to be the bipolar notions. Similar to HFSs, we can also use the nonmembership to deal with
a set of possible values manifesting either a precise gradual composite entity or an epistemic
construction refereeing to an ill-known object.

Furthermore, DHFSs consist of two parts, that is, the membership hesitancy function
and the nonmembership hesitancy function, supporting amore exemplary and flexible access
to assign values for each element in the domain, andwe have to handle two kinds of hesitancy
in this situation. The existing sets, including FSs, IFSs, HFSs, and FMSs, can be regarded as
special cases of DHFSs; we do not confront an interval of possibilities (as in IVFSs or IVIFSs),
or some possibility distributions (as in T2FSs) on the possible values, or multiple occurrences
of an element (as in FMSs), but several different possible values indicate the epistemic
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degrees whether certainty or uncertainty. For example, in a multicriteria decision-making
problem, some decision makers consider as possible values for the membership degree of x
into the set A a few different values 0.1, 0.2, and 0.3, and for the nonmembership degrees
0.4, 0.5 and 0.6 replacing just one number or a tuple. So, the certainty and uncertainty on the
possible values are somehow limited, respectively, which can reflect the original information
given by the decision makers as much as possible. Utilizing DHFSs can take much more
information into account, the more values we obtain from the decision makers, the greater
epistemic certainty we have, and thus, compared to the existing sets mentioned above, DHFS
can be regarded as a more comprehensive set, which supports a more flexible approach when
the decision makers provide their judgments.

We organize the remainder of the paper as follows. In Section 2, we review some basic
knowledge of the existing sets. Section 3 proposes DHFSs and investigates some of their basic
operations and properties. Then, in Section 4, we present an extension principle of DHFSs,
and give some examples to illustrate our results. Section 5 ends the paper with the concluding
remarks.

2. Preliminaries

2.1. FSs, T2FSs, TnFSs, and FMSs

In this section, we review some basic definitions and operations, necessary to understand the
proposal of the DHFS and its use.

Definition 2.1 (see [1]). Given a reference set X, a fuzzy set (FS) A on X is in terms of the
function μ: X → [0, 1].

Definition 2.2 (see [18]). Let M be the set of all fuzzy sets on μ: [0, 1] → [0, 1].

Definition 2.3 (see [18]). LetMi be the set of all fuzzy sets of type i on [0, 1]. That is, the set of
all μi: [0, 1] → Mi−1, where M1 is defined as M.

Apparently, if we use the functions μ2 or μn to replace the membership function μ, and
returns an FS, then we obtain the notions of type 2 fuzzy sets (T2FSs) and type n fuzzy sets
(TnFSs).

Yager [14] and Miyamoto [8–13] first studied FMSs and defined several basic
operations. FMSs generalize the multisets, which are also known as bags allowing multiple
occurrences of elements, associating with the membership degrees.

Definition 2.4 (see [14]). Let A and B be two multisets, and a the element in the reference set,
then

(1) addition: countA⊕B(a) = countA(a) + countB(a);

(2) union: countA∪B(a) = max(countA(a), countB(a));

(3) intersection: countA∩B(a) = min(countA(a), countB(a)).

However, this definition comes into conflict with FSs. Miyamoto [8–13] gave the
corresponding solutions. He proposed an alternative definition for FMSs. Using the
membership sequence SeqA(a) (themembership values a in a fuzzymultisetA) in decreasing
order to define the union and intersection operators.
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2.2. IFSs

Atanassov [6] gave the definition of IFSs as follows.

Definition 2.5 (see [6]). Let X be a fixed set, an intuitionistic fuzzy set (IFS) A on X is
represented in terms of two functions μ: X → [0, 1] and ν: X → [0, 1], with the condition
0 ≤ μ(x) + ν(x) ≤ 1, for all x ∈ X.

We use 〈x, μA, νA〉 for all x ∈ X to represent IFSs considered in the rest of the paper
without explicitly mentioning it.

Furthermore, π(x) = 1 − μ(x) − ν(x) is called a hesitancy degree or an intuitionistic
index of x in A. In the special case π(x) = 0, that is, μ(x) + ν(x) = 1, the IFS A reduces to an
FS.

Atanassov [6] and De et al. [33] gave some basic operations on IFSs, which ensure that
the operational results are also IFSs.

Definition 2.6 (see [6]). Let a set X be fixed, and let A (represented by the functions μA and
νA), A1 (μA1 and νA1), A2 (μA2 and νA2), be three IFSs. Then the following operations are
valid:

(1) complement: A = {〈x, νA(x), μA(x)〉 | x ∈ X};
(2) union: A1 ∩A2 = {〈x,min{μA1(x), μA2(x)},max{νA1(x), νA2(x)}〉 | x ∈ X};
(3) intersection: A1 ∪A2 = {〈x,max{μA1(x), μA2(x)},min{νA1(x), νA2(x)}〉 | x ∈ X};
(4) ⊕-union: A1 ⊕A2 = {〈x, μA1(x) + μA2(x) − μA1(x)μA2(x), νA1(x)νA2(x)〉 | x ∈ X};
(5) ⊗-intersection:A1⊗A2 = {〈x, μA1(x)μA2(x), νA1(x)+νA2(x)−νA1(x)νA2(x)〉 | x ∈ X}.
De et al. [33] further gave another two operations of IFSs:

(6) nA = {〈x, 1 − (1 − μA(x))
n, (νA(x))

n〉 | x ∈ X};
(7) An = {〈x, (μA(x))

n, 1 − (1 − νA(x))
n〉 | x ∈ X}, where n is a positive integer,

Atanassov and Gargov [16] used the following:

(1) the map f assigns to every IVFS A(=[μAL(x), μAU(x)]) an IFS, B = f(A) given by
μB(x) = μAL(x), νA(x) = 1 − μAU(x);

(2) the map g assigns to every IFS B(=〈μA(x), νA(x)〉) an IVFS A = f(B) given
by μA(x) = [μA(x), 1 − νA(x)], to prove that IFSs and IVFSs are equipollent
generalizations of the notion of FSs.

Xu and Yager [34] called each pair (μA(x), νA(x)) an intuitionistic fuzzy number
(IFN), and, for convenience, denoted an IFN by α = (μα, να). Moreover, they gave a simple
method to rank any two IFNs, and introduced some of their operational laws as follows.

Definition 2.7 (see [34]). Let αi = (μαi , ναi)(i = 1, 2) be any two IFNs, sαi = μαi − ναi(i = 1, 2)
the scores of αi (i = 1, 2), respectively, and hαi = μαi + ναi(i = 1, 2) the accuracy degrees of
αi (i = 1, 2), respectively, then

(i) if sα1 > sα2 , then α1 is larger than α2, denoted by α1 > α2;

(ii) if sα1 = sα2 , then
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(1) if hα1 = hα2 , then α1 and α2 represent the same information, that is, μα1 = μα2

and να1 = να2 , denoted by α1 = α2;

(2) if hα1 > hα2 , then α1 is larger than α2, denoted by α1 > α2.

2.3. HFSs

Torra [17] defined the HFS in terms of a function that returns a set of membership values for
each element in the domain and in terms of the union of their memberships.

Definition 2.8 (see [17]). Let X be a fixed set, then we define hesitant fuzzy set (HFS) on X
is in terms of a function h applied to X returns a subset of [0, 1], and h(x) a hesitant fuzzy
element (HFE).

Then, Torra [17] gave an example to show several special sets for all x in X: (1) empty
set: h(x) = {0}; (2) full set: h(x) = {1}; (3) complete ignorance: h(x) = [0, 1]; (4) nonsense set:
h(x) = ∅.

Apparently, this definition encompasses IFSs as a particular case in the form of a
nonempty closed interval, and also a particular case of T2FSs from a mathematical point
of view.

Torra and Narukawa [18] and Torra [17] showed that the envelop of a HFE is an IFN,
expressed in the following definition.

Definition 2.9 (see [17, 18]). Given an HFE h, the pair of functions h− = μ(h− = min{γ | γ ∈ h})
and 1 − h+ = ν(h+ = max{γ | γ ∈ h}) define an intuitionistic fuzzy set (〈x, μ, ν〉), denoted by
Aenv(h).

According to this definition, IFSs can also be represented by HFSs, that is, for a given
IFS {〈x, μA(x), νA(x)〉}, the corresponding HFS is h(x) = [μA(x), 1 − νA(x)], if μA(x)/= 1 −
νA(x).

Torra [17] gave the complement of a HFS as the following.

Definition 2.10 (see [17]). Given an HFS represented by its membership function h, we define
its complement as hc(x) = ∪γ∈h(x){1 − γ}.

Additionally, Torra [17] considered the relationships between HFSs and fuzzy
multisets (FMSs). He proved that a HFS can be represented a FMS.

Definition 2.11 (see [17]). Given a HFS A on X, and h(x) for all x in X, then the HFS can be
defined as a FMS: FMSA = ⊕x∈X⊕γ∈h(x){(x, γ)}.

Torra [17] also proved that the union and the intersection of two corresponding FMSs
do not correspond to the union and the intersection of two HFSs.

Xia and Xu [19] gave a method to rank any two HFEs as the following.

Definition 2.12 (see [19]). For a HFE h, s(h) = (1/#h)
∑

γ∈h γ is called the score function of h,
where #h is the number of the elements in h. Moreover, for two HFEs h1 and h2, if s(h1) >
s(h2), then h1 > h2; if s(h1) = s(h2), then h1 = h2.
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3. DHFSs

3.1. The Notion of DHFS

We now define dual hesitant fuzzy set in terms of two functions that return two sets of
membership values and nonmembership values, respectively, for each element in the domain
as follows.

Definition 3.1. Let X be a fixed set, then a dual hesitant fuzzy set (DHFS)D on X is described
as:

D =
{〈
x, h(x), g(x)

〉
x ∈ X

}
, (3.1)

in which h(x) and g(x) are two sets of some values in [0, 1], denoting the possible
membership degrees and nonmembership degrees of the element x ∈ X to the set D,
respectively, with the conditions:

0 ≤ γ, η ≤ 1, 0 ≤ γ+ + η+ ≤ 1, (3.2)

where γ ∈ h(x), η ∈ g(x), γ+ ∈ h+(x) = ∪γ∈h(x) max{γ}, and η+ ∈ g+(x) = ∪η∈g(x) max{η} for all
x ∈ X. For convenience, the pair d(x) = (h(x), g(x)) is called a dual hesitant fuzzy element
(DHFE) denoted by d = (h, g), with the conditions: γ ∈ h, η ∈ g, γ+ ∈ h+ = ∪γ∈h max{γ},
η+ ∈ g+ = ∪η∈g max{η}, 0 ≤ γ, η ≤ 1, and 0 ≤ γ+ + η+ ≤ 1.

First we define some special DHFEs. Given a DHFE, d, then we have

(1) complete uncertainty: d = {{0}, {1}};
(2) complete certainty: d = {{1}, {0}};
(3) complete ill-known (all is possible): d = [0, 1];

(4) nonsensical element: d = ∅(h = ∅, g = ∅).

Based on the background knowledge introduced in Section 2, we can obtain some
results in special cases. For a given d /= ∅, if h and g have only one value γ and η, respectively,
and γ + η < 1, then the DHFS reduces to an IFS. If h and g have only one value γ and
η respectively, and γ + η = 1, or h owns one value, and g = ∅, then the DHFS reduces
to an FS (also can be regarded as HFSs). If g = ∅ and h/= ∅, then the DHFS reduces to a
HFS, and according to Definition 2.11, DHFSs can be defined as FMSs. Thus the definition of
DHFSs encompasses these fuzzy sets above. Next we will discuss the DHFS in detail and use
γ−(γ− ∈ h− = ∪γ∈h(x) min{γ}), γ+, η−(η− ∈ g− = ∪η∈g(x) min{η}), η+ in the rest of the paper
without explicitly mentioning it.

Actually, for a typical DHFS, h and g can be represented by two intervals as:

h =
[
γ−, γ+

]
, g =

[
η−, η+]. (3.3)

Based on Definition 2.9, there is a transformation between IFSs and HFSs, we can also
transform g to h2, that is, the number 2 HFE h2(x) = [1 − η+, 1 − η−] denoting the possible
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membership degrees of the element x ∈ X. Thus, both h and h2 indicate the membership
degrees, we can use a “nested interval” to represent d(x) as:

d =
[[
γ−, γ+

]
,
[
1 − η+, 1 − η−]]. (3.4)

The common ground of these sets is to reflect fuzzy degrees to an object, according to
either fuzzy numbers or interval fuzzy numbers. Therefore, we use nonempty closed interval
as a uniform framework to indicate a DHFE d, which is divided into different cases as follows:

d =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if g = ∅, h = ∅,

(
γ
)
,

⎧
⎨

⎩

if g = ∅, h /= ∅, γ− = γ+ = γ,

if g /= ∅, h /= ∅, γ− = γ+ = γ = 1 − η− = 1 − η+ = 1 − η,
(
1 − η

)
, if g /= ∅, h = ∅, η− = η+ = η,

[
γ−, γ+

]
, if g = ∅, h /= ∅, γ− /= γ+,

[
1 − η+, 1 − η−], if g /= ∅, h = ∅, η− /=η+,
[
γ,
[
1 − η+, 1 − η−]], if g /= ∅, h /= ∅, η− /=η+, γ− = γ+ = γ,

[[
γ−, γ+

]
, η
]
, if g /= ∅, h /= ∅, γ− /= γ+, η− = η+ = η,

[[
γ−, γ+

]
,
[
1 − η+, 1 − η−]], if g /= ∅, h /= ∅, η− /=η+, γ− /= γ+,

(3.5)

which reflects the connections among all the sets mentioned above, and the merit of DHFS
is more flexible to be valued in multifold ways according to the practical demands than the
existing sets, taking much more information given by decision makers into account.

3.2. Basic Operations and Properties of DHFSs

Atanassov [6] and Torra [17] gave the complements of the IFSs and the HFSs, respectively,
according to Definitions 2.6 and 2.10. In the following, we define the complement of the DHFS
depending on different situations.

Definition 3.2. Given a DHFE represented by the function d, and d /= ∅, its complement is
defined as:

dc =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∪γ∈h,η∈g
{{

η
}
,
{
γ
}}

, if g /= ∅, h /= ∅,
∪γ∈h

{{
1 − γ

}
, {∅}}, if g = ∅, h /= ∅,

∪η∈g
{{∅}, {1 − η

}}
, if h = ∅, g /= ∅.

(3.6)

Apparently, the complement is involutive represented as (dc)c = d.

We now define the union and the intersection of DHFSs. For two DHFSs d1 and d2,
it is clear that the corresponding lower and upper bounds to h and g are h−, h+, g− and
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g+, respectively, where h− = ∪γ∈h min{γ}, h+ = ∪γ∈h max{γ}, g− = ∪η∈g min{η}, and g+ =
∪η∈g max{η} represent this group notations and no confusion will arise in the rest of this
paper.

Definition 3.3. Let X be a fixed set, d1 and d2 two DHFEs, we define their union and
intersection, respectively, as:

(1) d1 ∪ d2 = {h ∈ (h1 ∪ h2) | h ≥ max(h−
1 , h

−
2 ), g ∈ (g1 ∩ g2) | g ≤ min(g+

1 , g
+
2 )};

(2) d1 ∩ d2 = {h ∈ (h1 ∩ h2) | h ≤ min(h+
1 , h

+
2 ), g ∈ (g1 ∪ g2) | g ≥ max(g−

1 , g
−
2 )},

the following operations are valid:

(1) ⊕-union: d1 ⊕ d2 = {hd1 ⊕ hd2 , gd1 ⊗ gd2} = ∪γd1∈hd1 ,ηd1∈gd1 ,γd2∈hd2 ,ηd2∈gd2 {{γd1 + γd2 −
γd1γd2}, {ηd1ηd2}};

(2) ⊕-intersection: d1 ⊗ d2 = {hd1 ⊗ hd2 , gd1 ⊕ gd2} = ∪γd1∈hd1 ,ηd1∈gd1 ,γd2∈hd2 ,ηd2∈gd2 {{γd1γd2},
{ηd1 + ηd2 − ηd1ηd2}};

(3) nd = ∪γd∈hd,ηd∈gd{1 − (1 − γd)
n, (ηd)

n};
(4) dn = ∪γd∈hd,ηd∈gd{(γd)n, 1−(1 − ηd)

n}, where n is a positive integral and all the results
are also DHFEs.

Example 3.4. Let d1 = {{0.1, 0.3, 0.4}, {0.3, 0.5}} and d2 = {{0.2, 0.5}, {0.1, 0.2, 0.4}} be two
DHFEs, then we have

(1) complement: dc
1 = {{0.3, 0.5}, {0.1, 0.3, 0.4}};

(2) union: d1 ∪ d2 = {{0, 2, 0.3, 0.4, 0.5}, {0.1, 0.2, 0.3, 0.4}};
(3) intersection: d1 ∩ d2 = {{0, 1, 0.2, 0.3, 0.4}, {0.3, 0.4, 0.5}}.

We can easily prove the following theorem according to Definition 3.3

Theorem 3.5. Let d, d1, and d2 be any three DHFEs, λ ≥ 0, then

(1) d1 ⊕ d2 = d2 ⊕ d1;

(2) d1 ⊗ d2 = d2 ⊗ d1;

(3) λ(d1 ⊗ d2) = λd1 ⊗ λd2;

(4) (d1 ⊗ d2)
λ = d1

λ ⊗ d2
λ.

To compare the DHFEs, and based on Definitions 2.7 and 2.12, we give the following
comparison laws.

Definition 3.6. Let di = {hdi , gdi}(i = 1, 2) be any two DHFEs, sdi = (1/#h)
∑

γ∈h γ −
(1/#g)

∑
η∈g η(i = 1, 2) the score function of di(i = 1, 2), and pdi = (1/#h)

∑
γ∈h γ +

(1/#g)
∑

η∈g η(i = 1, 2) the accuracy function of di(i = 1, 2), where #h and #g are the numbers
of the elements in h and g, respectively, then

(i) if sd1 > sd2 , then d1 is superior to d2, denoted by d1  d2;

(ii) if sd1 = sd2 , then

(1) if pd1 = pd2 , then d1 is equivalent to d2, denoted by d1 ∼ d2;
(2) If pd1 > pd2 , then d1 is superior than d2, denoted by d1  d2.

Example 3.7. Let d1 = {{0.1, 0.3}, {0.3, 0.5}} and d2 = {{0.2, 0.4}, {0.4, 0.6}} be two DHFEs,
then based on Definition 3.1, we obtain sd1 = sd2 = 0, pd2(0.8) > pd1(0.6), and thus, d2  d1.



Journal of Applied Mathematics 9

4. Extension Principle

Torra and Narukawa [18] introduced an extension principle applied to HFSs, which permits
us to export operations on fuzzy sets to new types of sets. The extension of an operator O
on a set of HFSs considers all the values in such sets and the application of O on them. The
definition is as the following.

Definition 4.1 (see [18]). Let O be a function O: [0, 1]N → [0, 1], and H a set of N HFSs on
the reference set X (i.e., H = {h1, h2, . . . , hN} is a HFS on X). Then, the extension of O on H
is defined for each x in X by

OH(x) = ∪γ∈{h1(x)×h2(x)×···×hN(x)}
{
O
(
γ
)}

. (4.1)

Mesiar and Mesiarova-Zemankova [35] investigated the ordered modular average
(OMA), which generalizes the ordered weighted average (OWA) operator, with the
replacement of the additivity property by the modularity. The linear interpolating functions
of the OWA operator were replaced by rather general nondecreasing functions in the OMA,
which can be used to aggregate any finite number of input arguments.

Definition 4.2 (see [35]). Let A: [0, 1]N → [0, 1] be a modular aggregation function (modular
average), A(x) =

∑n
i=1 fi(xi). Then, its symmetrization SA is called the OMA, that is, SA =

OMA is given by

OMA(x) =
n∑

i=1

fi
(
xσ(i)

)
, (4.2)

where f1, f2, . . . , fn: [0, 1] → [0, 1] are the nondecreasing functions satisfying
∑n

i=1 fi = id
(identity on [0, 1]).

Motivated by the extension principle of HFSs and the OMA, we propose an extension
principle based on the OMA so as to develop basic operators and aggregation operations of
DHFS. With respect to DHFSs, the new extension of an operator Z considers all the values in
the DHFSs and the application of Z on them, which is defined as follows.

Definition 4.3. Let the functions C: [0, 1]N → [0, 1] and N: [0, 1]N → [0, 1], and let
D be a set of ndual hesitant fuzzy sets on the reference set X represented as D =
{d1, d2, . . . , dn} = {〈x, {h(x)}, {g(x)}〉}. Then, the extension of Z on D is defined for each
x in X by

ZD(x) = ∪γ1∈h1(x),γ2∈h2(x),...,γn∈hn(x);η1∈g1(x),η2∈g2(x),...,ηn∈gn(x)

=
{
C
(
f1
(
γ1
)
, f2

(
γ2
)
, . . . , fn

(
γn
))
,N

(
f1
(
η1
)
, f2

(
η2
)
, . . . , fn

(
ηn

))}
,

(4.3)

where fi(x): [0, 1] → [0, 1], i = 1, 2, . . . n.

If we let fi(x) = x(i = 1, 2, . . . n), some basic operations can be obtained according to
this extension principle in Example 4.4.
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Example 4.4. Let d1 and d2 be two DHFEs such that

d1 = {{0.1, 0.3, 0.4}, {0.3, 0.5}}, d2 = {{0.2, 0.5}, {0.1, 0.2, 0.4}}. (4.4)

If C = (γ1, γ2)max(γ1, γ2) and N(η1, η2) = min(η1, η2), then

d1 ∪ d2 = Zd1∪d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2
{
max

(
γ1, γ2

)
,min

(
η1, η2

)}

= {{0, 2, 0.3, 0.4, 0.5}, {0.1, 0.2, 0.3, 0.4}}.
(4.5)

Similarly, we have

d1 ∩ d2 = Zd1∩d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2
{
min

(
γ1, γ2

)
,max

(
η1, η2

)}

= {{0, 1, 0.2, 0.3, 0.4}, {0.3, 0.4, 0.5}}.
(4.6)

In particular, if γ1 = γ2, then min(γ1, γ2) is a real number; if η1 = η2, then max(η1, η2) is
a real number:

dc
1 = Zdc

1
= ∪γ1∈h1,η1∈g1

{{
η
}
,
{
γ
}}

= {{0.3, 0.5}, {0.1, 0.3, 0.4}};
d1 ⊕ d2 = Zd1⊕d2 = ∪γ1∈h1,γ2∈h2,η1∈g1,η2∈g2

{(
γ1 ⊕ γ2

)
,
(
η1 ⊗ η2

)}

= {{0.28, 0.55, 0.44, 0.65, 0.52, 0.70}, {0.05, 0.10, 0.20, 0.03, 0.06, 0.12}};
d1 ⊗ d2 = Zd1⊗d2 = ∪γ1

{(
γ1 ⊗ γ2

)
,
(
η1 ⊕ η2

)}

= {{0.02, 0.05, 0.06, 0.15, 0.08, 0.20}, {0.37, 0.44, 0.05, 0.55, 0.03, 0.19}}.

(4.7)

Furthermore, we can get lots of aggregation operators by this extension principle. For
example, if we let fi(xi) = ωixi,

∑n
i=1 ωi = 1 and C(f1(γ1), f2(γ2), . . . , fn(γn)) = ⊕n

i=1ωiγi, then
we can obtain the weighted dual hesitant fuzzy averaging (WDHFA) operator, which will
not be discussed in this paper.

We now give another example, an application of DHFSs to group forecasting. In a
traditional forecasting problem, the probability of uncertain event is often used to obtain
expectations, however, it cannot reflect opinions from all decision makers, nor can it depict
epistemic degrees of certainty and uncertainty in the same time. So, the DHFSs are employed
to replace the probability in next example.

Example 4.5. Several directors of a pharmaceutical company need to decide the additional
investment priorities to three subsidiaries in the next quarter based on the net income
foresting of them. Assume that the epistemic degrees of three subsidiaries yi(i = 1, 2, 3) with
respect to the predictive values of the net incomes cj(j = 1, 2, 3) are represented by the DHFEs
dij = ∪γij∈hij ,ηij∈gij{{γij}, {ηij}}, where γij indicates the degree that the alternative yi satisfies the
criterion cj , ηij indicates the degree that the alternative yi does not satisfy the criterion cj ,
such that γij ∈ [0, 1], ηij ∈ [0, 1], γ+ij + η+

ij ≤ 1, for details see Table 1.
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Table 1: The DHFEs for group forecasting.

Subsidiaries cj
Predictive values

(million) dij

y1

c1 90 {{0.3, 0.4}, {0.5}}
c2 100 {{0.3}, {0.4, 0.5, 0.6}}
c3 50 {{0.4}, {0.4}}

y2

c1 100 {{0.5}, {∅}}
c2 70 {{0.3, 0.4}, {0.4, 0.5, 0.6}}
c3 60 {{0.7}, {0.1, 0, 2}}

y3

c1 70 {{∅}, {0.5, 0.6}}
c2 100 {{0.5, 0.6, 0.7}, {∅}}
c3 80 {{0.4}, {0.3, 0.4}}

Table 2

b11 b12 b13 b21 b22 b23 b31 b32 b33

0.515 0.485 0 0.385 0.318 0.297 0.145 0.516 0.339

Table 3

e1 e2 e3

94.85 78.58 88.87

Inwhat follows, we give an approach for group foresting in terms of DHFEs as follows.

Step 1. Utilize the score function of DHFEs (Definition 3.6) to obtain the score of each DHFE,
and transform the results into the normalizations by the method given as fi =

∑3
j=1(s(dij) +

1)/2, bij = (s(dij) + 1)/2fi where bij ∈ [0, 1], i, j = 1, 2, 3as shown in Table 2.

Step 2. Use ei = cij × bij (i, j = 1, 2, 3) to obtain the expectations of net incomes as shown in
Table 3.

Thus, e1 > e3 > e2, and then y1  y3  y2, that is, y1 is the optimal choice of
additional investment. Obviously, the DHFS is an effective and convenient tool applied to
group forecasting. A transparent result can be obtained by utilizing the DHFS, which reflects
the epistemic degree to the predictive values of net incomes. Comparing with other types of
FSs, the DHFSs can take the information from the decision makers (directors) into account as
much as possible, and it is more flexible in practical applications.

5. Concluding Remarks

In this paper, we have introduced the dual hesitant fuzzy set (DHFS), which is a
comprehensive set encompassing several existing sets, and whose membership degrees and
nonmembership degrees are represented by a set of possible values. The common ground on
the existing sets and the DHFS has been found out. Although in special cases, the DHFS can
be reduced to some existing ones, it has the desirable characteristics and advantages of its
own and appears to be a more flexible method to be valued in multifold ways according to
the practical demands than the existing fuzzy sets, taking much more information given by
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decision makers into account. We have investigated some basic operations and properties of
DHFSs, and an extension principle for DHFSs has also been developed for further study of
basic operations and aggregation operators. Our results have been illustrated by a practical
example of group forecasting.
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