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When a hazardous substance is diffused, it is necessary to identify the pollutant source and
respond immediately. However, there are many cases in which damage is caused without a clear
understanding of where the pollutant source is located. There are three groups of identifying
pollutant source information (Liu and Zhai, 2007): the probability method, forward method, and
backward method. In our previous study, we proposed reverse simulation, which is categorized as
a backwardmethod (Abe andKato, 2011). Numerical instability by negative diffusion is a principal
problem in the backward method. In order to improve the problem, we applied a low-pass filter
operation to the concentration flux in the RANS analysis. The simulation secured the numerical
stability. However, reverse simulation accuracy is expected to depend on the grid resolution and
filter width. In this paper, we introduce reverse simulation results in cavity flow. In particular,
we survey the dependence of reverse simulation accuracy on the grid resolution and filter width.
Moreover, we discuss the dependence of reverse simulation on the grid resolution and filter width
with a one-dimensional diffusion equation. As a result, we found that the simulated negative
diffusion varies greatly among the grid resolution and filter width.

1. Introduction

When a hazardous substance is diffused, it is necessary to identify the source of the pollutant
and respond immediately, for example, by cleaning up and evacuating people from the area.
However, there are many cases in which damage is caused without a clear understanding
of where the pollutant source is located. Many lives have been lost as a result of accidental
pollution from power stations and factories (e.g., Chernobyl in 1986, Bopal in 1984).
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In recent years, some researchers have studied techniques of identifying pollutant
sources either in the groundwater or air. The techniques are separated into three groups:
probability method, forward method, and backward method [1].

Probability methods determine the pollutant source information with probability
objective functions. Wagner developed nonlinear maximum likelihood estimation for
simultaneous model parameter estimation and source characterization [2]. The method
combines groundwater flow and contaminant transport simulation. Woodbury et al. applied
minimum relative entropy theory in order to recover the release history in groundwater flow
[3]. Neupauer et al. developed an adjoint method as a formal framework for predicting
groundwater contaminant source location and travel-time probabilities [4]. Sohn et al.
worked on rapidly locating and characterizing air pollutant releases and presented an
approach for estimating the source locations, the amounts released, and the dispersion
characteristics of indoor airborne pollutants [5]. They proposed a two-stage Bayesian data
interpretation approach.

The forward method identifies the pollutant source by trial-and-error algorithm. The
processes describe the match degree of measured and simulated results and can be used to
estimate the pollutant sources. Gorelick et al. applied minimizing normalized residual for
identifying the source and magnitude of groundwater pollutants in some two-dimensional
cases [6]. Alapati and Kabala applied the least squares function to predict the source release
history in a one-dimensional underground water problem [7]. In the forward method, there
are ways of applying the Tikhonov regularization method [8], which is the most commonly
employed method for an ill-posed problem. Skaggs and Kabala applied the regularization
method to recover the release history in one-dimensional simulation [9]. In atmospheric
gaseous dispersion, Seibert et al. used the Tikhonov regularization method [10], which is
the most useful method for an ill-posed problem to derive the source history from ambient
concentration measurement. These forward methods are good tools for identifying source
information. However, every forward method requires many calculations.

The backward method is the solution to the transport equation in negative time with
the end status as the input condition. The most important problem in the backward method
is the numerical instability from negative diffusion. Generically, CFD needs to define the
location with a finite grid resolution, and there are high wave numbers that cannot be
resolved in CFD. Here, wave number is expressed as “k = 2π/λ,” where λ is the wave
length. The high wave number region has rounding error. Meanwhile, the numerical solution
converges on a large space gradient when analyzing negative diffusion on CFD. This means
that the high wave number component amplifies more quickly than that of the resolved low
wave number region. Therefore, the numerical simulation breaks down due to the rounding
errors in the high wave number region [11].

The most useful method for improving numerical instability in backward method is
the quasi-reversible (QR) solution, which is developed by Skaggs and Kabala [12]. The QR
method adds a term to the diffusion term to improve the numerical stability. Equation (1.1)
shows the one-dimensional government equation in the QR method

∂C

∂t
= Γ

∂2C

∂x2
+ ε

∂4C

∂x4
, (1.1)

Γ represents the diffusion coefficient, and ε represents the stabilization coefficient. This
equation can solve with a negative time step. In Skaggs and Kabala’s research, the method
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was used to recover the time history and spatial distribution of a groundwater contaminant
plume.

In our previous study, we introduced reverse simulation [13, 14], which was
categorized as a backward method. The method applies a lowpass filter operation to improve
the numerical stability (1.2)

F(x) =
∫∞

−∞
G(r)F(x − r)dr,

G(r) =

√
6

πΔ2
exp

−6r2
Δ2

,

(1.2)

F is a physical quantity that is applied in the filter operation. The filtered physical quantity is
shown with an overbar, and Δ is the filter width.

The most important problem when carrying out a transport equation with negative
time advancing in CFD is the numerical instability by analyzing negative diffusion. We made
a pass at applying the filter operation to a concentration field (1.3) in Reynolds averaged
numerical simulation (RANS) analysis [13]

F(x) = C(x), (1.3)

C means the concentration. This method improved the numerical stability, but there was a
big problem with the analysis results. The concentration distribution spread diffusely in an
analytical domain. This means that it is difficult to identify a pollutant source with reverse
simulation applying a filter operation to a concentration field. Therefore, we developed a
reverse simulation. We made a pass at applying the filter operation to a concentration flux
(1.5) to improve the numerical stability and solve the above problem [14]

Fi(x) = −〈u′
ic

′〉 = νt
σ3

∂C(x)
∂xi

, (1.4)

Fi(x) =
∂C(x)
∂xi

. (1.5)

In (1.3), −〈u′
ic

′〉 is turbulent concentration flux. Equation (1.4) means gradient diffusion
approximation, νt is the coefficient of turbulent diffusion, and σ3 is the turbulent Schmidt
number. In RANS analysis, it was necessary to apply the filter operation to (1.4) strictly.
However, νt is dependent on the position. This makes the filter operation cumbersome and
complicated. Therefore, we applied the filter operation to the differential part of only (1.5)
approximately. The simulation secured the numerical stability and solved the problem of
concentration spreading diffusely. However, the reverse simulation accuracy is expected to
depend on the grid resolution and filter width.

In this paper, we survey the dependence of reverse simulation accuracy on the grid
resolution and filter width in cavity flow, which forms a greatly bent and circulating flow.
The analysis can be carried out with three different grid resolutions. Each grid resolution
has three different filter widths. A total of 9 cases were analyzed in this study. In addition,
we discuss the dependence of reverse simulation on gird resolution and filter width with a
one-dimensional diffusion equation.
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2. Analysis Method

2.1. RANS Government Equation

In the present study, the equations formed to govern incompressible flow in RANS analysis
were mass conservation flow equation (2.1), the Navier-Stokes equation (2.2), turbulent
kinetic energy (K) equation (2.3), turbulent dissipation (ε) equation (2.4), and concentration
(C) transport equation (2.5). The concentration is passive scalar, assuming that the flow field
has no influence. The turbulence model in this paper is a two-equation Kato-Launder-type
model [15]

∂Ui

∂xi
= 0, (2.1)

∂Ui

∂t
+Uj

∂Ui

∂xj
= −1

ρ

∂

∂xi

(
P +

2
3
K

)
+

∂

∂xj

{
νt

(
∂Ui

∂xj
+
∂Uj

∂xi

)}
, (2.2)

∂K

∂t
+Ui

∂K

∂xi
=

∂

∂xi

(
νt
σ1

∂K

∂xi

)
+ PK − ε, (2.3)
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+Ui
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ε

K
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K
, (2.4)
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+Ui
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∂xi
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∂

∂xi

(
νt
σ3

∂C
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)
, (2.5)

νt = Cμ
K2

ε
,

Pk = νtSΩ,

S =

√√√√1
2

(
∂Ui

∂xj
+
∂Uj

∂xi

)2

,

Ω =

√√√√1
2

(
∂Ui

∂xj
+
∂Uj

∂xi

)2

,

σ1 = 1.0, σ2 = 1.3, σ3 = 1.0, Cμ = 0.09, C1 = 1.44, C2 = 1.92.

(2.6)

The process of negative time advancing in the transport equation is equivalent to that of
positive time advancing with negative time convection and diffusion (2.7)

∂C

∂t
−Ui

∂C

∂xi
= − ∂

∂xi

(
νt
σ3

∂C

∂xi

)
. (2.7)

But the equation is unstable with time advancing. Overall, in forward analysis, the diffusion
term has the effect of improving the numerical stability because the diffusion coefficients
(νt) are a positive value. However, in the backward method, the coefficients are a negative
value. A diffusion term that has a negative coefficient increases the intensity of the high wave
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number region and destabilizes the numerical simulation. For this, we apply lowpass filter
operation to (1.2) the concentration flux (1.5). Equation (2.7) is converted to (2.8) by the filter
operation

∂C

∂t
−Ui

∂C

∂xi
= − ∂

∂xi

(
νt
σ3

∂C

∂xi

)
. (2.8)

The idea is to simulate the negative diffusion played by the low wave number region and cut
that by the high wave number region. The lowpass filter operation to the concentration flux
is clearly beneficial in [14].

In the present stage, flow fluctuations are not considered. Essentially, it is good
to consider the flow fluctuation because the air flow characteristics are unsteady due to
fluctuation in both speed and direction. However, it is necessary for treating the unsteady
flow to solve the Navier-Stokes equation (2.2) in negative time (inverse analysis) or keep
full-time and space-series data. The former is impossible, because it is necessary to couple
the Navier-Stokes equation to the mass conservation equation (2.1). The latter requires huge
memory to store the time-series data. In addition, our purpose in this paper is to survey
and discuss the dependence of reverse simulation on the grid resolution and filter width. In
consideration of these circumstances, we treat the steady flow in the forward and reverse
analyses.

2.2. The Numerical Discretization, Simulation Method, and Analysis Model

Regarding a lowpass filter operation for reverse numerical calculations, the Gaussian filter is
given the Taylor expansion and discretization

F(x) = F(x) +
F ′′(x)
2

∫∞

−∞
r2G(r)dr +

F(4)(x)
24

∫∞

−∞
r4G(r)dr + · · ·, (2.9)

Fm = Fm +
Δ2

24
Fm−1 − 2Fm + Fm+1

Δx2
. (2.10)

Equation (2.8) is expressed as (2.11) when using (2.10)

∂C

∂t
−Ui

∂C

∂xi
= − ∂

∂xi

νt
σ3

{
∂C

∂xi
+
Δ2

24
∂2

∂x2
i

(
∂C

∂xi

)}
. (2.11)

The second term of the right-hand side of (2.11) is able to improve the numerical stability
in backward analysis. Table 1 shows a summary of the parameters used in the numerical
simulation. For spatial discretization in all governing equations, a second-order accurate
central difference scheme is used for the convection terms and diffusion terms. In addition,
when the concentration is below 0, it is replaced as 0 (clipping method). For time integration,
the convection and diffusion terms in the flow field are discretized using the Adams-
Bashforth schemes. Also, the convection and diffusion in the scalar fields (concentration,
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Table 1: Numerical simulation parameters.

Turbulent model Kato-Launder k-åmodel

Navier-Stokes equation Convection term: 2nd-order central difference scheme
Diffusion term: 2nd-order central difference scheme

Scalar transport equation (K, ε, C) Convection term: 2nd-order central difference scheme
Diffusion term: 2nd-order central difference scheme

Time advancing Convection term: Adams-Bashforth method
Diffusion term: Adams-Bashforth method

Algorithm ABMAC type

Table 2: Numerical grids and filter width in each case.

Analysis case Analysis condition (numerical grid resolution and filter width)

Case 1
Case 1-1
Case 1-2
Case 1-3

Δx/Hb = 0.2, Δy/Hb = 0.2, Δz/Hb = 0.1, Δ = 10.0Äxi

Δx/Hb = 0.2, Δy/Hb = 0.2, Δz/Hb = 0.1, Δ = 15.0Äxi

Δx/Hb = 0.2, Δy/Hb = 0.2, Δz/Hb = 0.1, Δ = 20.0Äxi

Case 2
Case 2-1
Case 2-2
Case 2-3

Δx/Hb = 0.1, Δy/Hb = 0.1, Δz/Hb = 0.05, Δ = 10.0Äxi

Δx/Hb = 0.1, Δy/Hb = 0.1, Δz/Hb = 0.05, Δ = 15.0Äxi

Δx/Hb = 0.1, Δy/Hb = 0.1, Δz/Hb = 0.05, Δ = 20.0Äxi

Case 3
Case 3-1
Case 3-2
Case 3-3

Δx/Hb = 0.05, Δy/Hb = 0.05, Δz/Hb = 0.05, Δ = 10.0Äxi

Δx/Hb = 0.05, Δy/Hb = 0.05, Δz/Hb = 0.05, Δ = 15.0Äxi

Δx/Hb = 0.05, Δy/Hb = 0.05, Δz/Hb = 0.05, Δ = 20.0Äxi

turbulent kinetic energy and turbulent dissipation fields) are discretized using the Adams-
Bashforth schemes. In terms of the Navier-Stokes equation and mass conservation equation,
the coupling algorithm of the velocity and pressure is based on the ABMAC type [16].

Regarding the grid number and filter width, Table 2 shows the analysis grid
resolutions and filter width in each case. Case 1 is the coarsest grid resolution, and case 3
is the finest grid resolution in all cases. Furthermore, we set three different filter widths in
each grid resolution.

The domain size is 2.0 Hb, 2.0 Hb, and 5.0 Hb (streamwise, spanwise, and vertical,
resp.). Here, Hb is the cavity height. The cavity size is 1.0 Hb, 2.0 Hb, and 1.0 Hb (Figure 1).
The streamwise, spanwise, and vertical directions are x(x1), y(x2), and z(x3), respectively.
Regarding the boundary conditions, in these analyses, the periodic boundary condition is
imposed on the streamwise direction for velocity field, turbulent kinetic energy, and turbulent
dissipation. The Neumann condition is imposed on the top boundary for all physical
quantities. The boundary conditions for bottom and walls are given by the generalized log-
law for the velocity field and the Neumann conditions for turbulent kinetic energy, turbulent
dissipation, and concentration field. In addition, the Neumann conditions are applied to all
boundary conditions for the filter operation.

Figure 2 shows the normalized analysis time and the normalized emission time of
concentration (tUb/Hb). The forward and reverse analysis times are, respectively, from 0
to 100 and from 100 to 200, which are normalized by Hb and Ub. Ub is the velocity at Hb.
As we developed a method of identifying the pollutant source, it is necessary to identify the
elapsed time since emission in addition to the source location. But this time, we assume that
the elapsed time is known. The emission time is from 0 to 20. The source point is 0.2 Hb,
below the head of the cavity and 0.2Hb downstream of the upper part of the cavity.
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2H
b

2Hb

1H
b

Figure 1: Analysis domain: the domain size of streamwise, span, and vertical directions is 2.0 Hb, 2.0 Hb,
and 5.5 Hb, respectively.Hb refers to the cavity height.
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tUb/Hb

Figure 2: Emission time and analysis time, forward analysis time: 0∼100, reverse analysis time: 100∼200.
Ub refers to the velocity atHb.

3. Analysis Results

3.1. Forward Analysis Results

Figure 3 shows the vector of the velocity fields in the cavity. In each analysis case, the velocity
fields form circulatory flows, and all cases are similar for the stagnation point. All analysis
cases have almost the same velocity field.

Figure 4 shows the results of forward analysis (tUb/Hb = 100). The results are to
show the input conditions for reverse simulation. These contours are normalized by the peak
concentration in each case. In Case 1, the location of peak concentration slightly shifts to
the center of the bottom due to a difference of grid resolution. However, the concentration
distributions of all cases are similar overall. With the forward analysis results, reverse
simulations are carried out.
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(a) (b) (c)

Figure 3: Side view of velocity vector: (a) Case 1, (b) Case 2, and (c) Case 3.

Source point

(a)

Source point

(b)

Source point

(c)

Figure 4: Input conditions for reverse simulation (tUb/Hb = 100): (a) Case 1, (b) Case 2, and (c) Case 3.

3.2. Reverse Analysis Results

3.2.1. The Influence of Grid Resolution

Figure 5 shows the results of reverse simulations for three different grid resolutions
(tUb/Hb = 200). These distributions are normalized by the peak concentrations of each case
at tUb/Hb = 100. In each case, numerical instabilities are improved by the filter operation.

However, regarding Case 1-1, which has the coarsest grid resolution (Case 1-1),
the concentration distribution spreads widely over the whole cavity. In addition, the high
concentration location is very far from the source point as the initial condition of forward
analysis because the lowpass filter effect is too strong. In other words, the numerical grid
resolution of Case 1 is too rough to carry out reverse simulation and it is difficult to identify
a pollutant source when using the grid resolution. Meanwhile, high concentration parts of
Case 2-1 and Case 3-1 are clearer than that of Case 1-1. In particular, that of Case 3-1 is the
clearest in these analyses.

To identify the pollutant source, we consider the high concentration distributions.
Figure 6 shows distributions of over 80 percent of peak concentration in Case 1-1, Case 2-
1, and Case 3-1, respectively. These figures are normalized by the peak concentrations in each
case at tUb/Hb = 100. The location of Case 1-1 is not appropriate, because the filter effect
is too strong. The peak locations of Case 2-1 and Case 3-1 are very near to the source point
as the initial condition of the forward analysis, especially the result of Case 3-1. Moreover,
the grid resolution is concerned with the peak values. The values of Case 1-1 and Case 2-1
are lower than those at tUb/Hb = 100, and the peak value of Case 3-1 is higher than that
at tUb/Hb = 100. These results suggest that reverse simulation can create negative diffusion
played by a certain level of wave number region.



Journal of Applied Mathematics 9

Source point

(a)

Source point

(b)

Source point

(c)

Figure 5: Reverse analysis results (tUb/Hb = 200): (a) Case 1-1, (b) Case 2-1, and (c) Case 3-1.
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Figure 6: Peak concentration (tUb/Hb = 200): (a) Case 1-1, (b) Case 2-1, and (c) Case 3-1.

3.2.2. The Influence of Filter Width

Figure 7 shows the results of Case 3-2 and Case 3-3, respectively. Comparing Case 3-1 with
Case 3-2 and Case 3-3 reveals that the high concentration parts wash out as the filter widths
are larger. This is because the high wave number region cut by a lowpass filter operation
expands and negative diffusion played by the wave number region cannot be simulated. The
results suggest that it is important for reverse simulation to decide on the filter width.

3.2.3. The Time Series of Concentration Center and Dispersion Width

The next figures concern the concentration center (Xic) and dispersion width (σi). The
concentration center and dispersion width are defined by (3.1) and (3.2), respectively.
Equation (3.1) explains the average location of the concentration distribution. Equation (3.2)
explains the average distance from the concentration center

Xic =

∫∫∫
xiC(x1, x2, x3)dx1dx2dx3∫∫∫
C(x1, x2, x3)dx1dx2dx3

, (3.1)

σ2
i =

∫∫∫
(xi −Xic)2C(x1, x2, x3)dx1dx2dx3∫∫∫

C(x1, x2, x3)dx1dx2dx3
. (3.2)

Figure 8 shows the time-lines of the concentration centers of the streamwise direction.
It shows the forward analysis from 0 to 100 and the reverse analysis from 100 to 200.
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Figure 7: Reverse analysis results (tUb/Hb = 200): (a) Case 3-2 and (b) Case 3-3.
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Figure 8: Time lines of concentration center of streamwise direction. (a) Case 1, (b) Case 2, and (c) Case 3.

The horizontal axes explain time that is normalized by Ub and Hb. The vertical axes explain
the concentration center that is normalized by Hx s, which is the emission point of the
streamwise direction. At tUb/Hb � 50, the concentration centers change greatly in all cases.
This is because the streamlines change greatly. When using the coarsest grid resolution (Case
1) in reverse simulation, the distribution cannot be caught. However, as the grid resolution is
finer, the distribution can be perceived. In addition, we can confirm that the time-line curves
become hardened with increase in filter width. In particular, the dependence on the grid
resolution and filter width has a greater impact at tUb/Hb � 150 (corresponding to tUb/Hb �
50 in forward analysis), at which the concentration centers change greatly. The great time-
variation at tUb/Hb � 150 cannot be simulated with Case 1-3, which has the coarsest grid
resolution and the broadest filter width. However, the variation can be simulated perceptively
with Case 3-1, which has the finest grid resolution and the narrowest filter width.

Figure 9 shows the time lines of the concentration centers of the vertical direction.
The vertical axes explain the concentration center that is normalized by Hz s, which is the
emission point of the vertical direction. At tUb/Hb � 30, the concentration centers change
greatly in all cases. This is because the streamlines change greatly as with those of the
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Figure 9: Time lines of concentration center of vertical direction. (a) Case 1, (b) Case 2, and (c) Case 3.
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Figure 10: Time lines of concentration dispersion width of streamwise direction (a) Case 1, (b) Case 2, and
(c) Case 3.

streamwise direction. The distributions can be caught in reverse simulation, as the grid
resolution is higher and the filter width is narrower. This suggests that the dependence of
the reverse simulation accuracy on the grid resolution and filter width have a greater impact
at tUb/Hb � 170 (corresponding to tUb/Hb � 30 in forward analysis).

Figure 10 shows the time lines of the concentration dispersion widths of the
streamwise direction. We can see that the dispersion widths have maximum value at
tUb/Hb � 30 in all cases. The distributions cannot be caught adequately by reverse analysis
with Case 1 and Case 2. The analysis with Case 2-1, which has middle grid resolution, and
the narrowest filter width in Case 2, can only slightly catch the distribution. Meanwhile,
reverse analysis with Case 3, which has the highest grid resolution can catch the distribution
exactly, especially Case 3-1. In addition, no analysis case makes the dispersion width zero at
tUb/Hb = 200 because negative diffusion played by the high wave number is cut by the
lowpass filter operation. Figure 11 shows the time lines of the concentration dispersion
widths of the vertical direction. In forward analysis, the dispersion widths in all cases
monotonically increase until tUb/Hb � 50 and remain virtually constant until tUb/Hb = 100.
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Figure 11: Time lines of concentration dispersion width of vertical direction (a) Case 1, (b) Case 2, and (c)
Case 3.

Reverse simulation with Case 1 cannot catch the time series variation. Reverse simulation
with Case 2 also cannot catch the negative diffusion adequately. Regarding Case 3, reverse
simulation with Case 3-2 and Case 3-3 overestimate the time series variation at tUb/Hb � 150
(corresponding to tUb/Hb � 50 in forward analysis). On the other hand, the simulation with
Case 3-3, which has the highest grid resolution, can precisely catch the time series variation.
In addition, no analysis cases make the dispersion width zero at tUb/Hb = 200 as with that of
the streamwise direction because negative diffusion played by the high wave number is cut
by the lowpass filter operation.

Figure 12 shows the relationship between coefficients of filter operation and the
distance (L) between the concentration center and the real source point as the initial condition
normalized by Hb. The horizontal axis explains the coefficient of filter operation normalized
by Hb. The vertical axis explains the normalized distance. As the filter effect gets smaller,
the distance shrinks. This means that the reverse simulation accuracy is more sensitive with
the smaller filter effect. We can expect that reverse simulation accuracy can do better if the
simulation is carried out with finer grid resolution.

As shown above, the dependence of reverse simulation on the grid resolution is
stronger than that of forward analysis. In addition, the reverse simulation which uses high
grid resolution is a useful method for identifying a pollutant source.

4. Discussion

The dependence of reverse simulation on the grid resolution and filter width is higher than
that of forward analysis, as described above. The reason for this dependence is as follows.

Equation (4.1) shows a one-dimensional diffusion equation. For the sake of shorthand,
the diffusion coefficient (Γ) is a constant and positive value

∂C

∂t
= Γ

∂2C

∂x2
. (4.1)
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Figure 12: Relationship between coefficients of filter operation and the distance between the concentration
center and the real source point in each case.

Equation (4.1) is converted into (4.3) by (4.2) (Fourier transform). k shows the wave number,
and i shows the imaginary unit. C̃ shows the concentration intensity in each wave number

C(x, t) =
∫∞

−∞
C̃(k, t) exp(ikx)dki, (4.2)

∂C̃

∂t
= −Γk2C̃. (4.3)

Equation (4.3) explains that C̃ decays over time. Moreover, the decay effect grows strong with
progressing high wave number, because the coefficient of the right-hand side of (4.3) has −k2.

In reverse simulation, (4.3) is converted to (4.4). The sign of the right hand side of (3.2)
is opposite to that of (3.2) (−k2 → k2)

∂C̃

∂t
= Γk2C̃. (4.4)

This equation explains that C̃ increases over time and the increase effect in the high wave
number region is stronger than that in the low wave number region. However, when
analyzing the diffusion equation with CFD, there are rounding errors in the unresolved high
wave number region. For this reason, C̃ in the high wave number region grows excessively
and the numerical simulation breaks down.

Next, (4.5) shows the lowpass-filtered diffusion equation by (2.8)

∂C

∂t
= −Γ

(
∂2C

∂x2
+
Δ2

24
∂4C

∂x4

)
. (4.5)



14 Journal of Applied Mathematics

30

20

10

0

−10

−20

−30

0 5 10

No-filter (reverse)
Case 1-1
Case 2-1

Case 3-1
No-filter (forward)

(k
2 −

(∆
/

24
)k

4 )

k·Hb

H
b

2

Figure 13: Coefficients of right-hand side of (4.1), (4.2), and (4.4) in each wave number (Case 1-1, Case 2-1,
Case 3-1).

Equation (4.5) is converted into (4.6) by (4.2)

∂C̃

∂t
= Γ

(
k2 − Δ2

24
k4

)
C̃. (4.6)

The second term of the right-hand side added by filter operation can be seen.
Figure 13 shows coefficients of the right-hand side of (4.3), (4.4), and (4.6). The

horizontal axis explains the wave number normalized by Hb, and the vertical axis explains
the coefficient of the right side of the equations normalized by Hb in each analysis case
(Case 1-1, Case 2-1, Case 3-1). This figure shows the dependence of reverse simulation on
the grid resolution. The figure suggests that the negative diffusion played by the low wave
number can be simulated even in case of filtered equations. However, coefficients of filtered
equations in the high wave number region decline. In particular, above a certain weave
number, the coefficients become of negative value. This suggests that C̃ in the wave number
region decays over time. For this, the lowpass filter operation can suppress the increase of
rounding errors and the numerical stability improves in reverse simulation. In addition, the
wave number regions that negative diffusion can simulate are different in each grid resolution
(see Table 2). The wave number becomes very low when using the lowest grid resolution
(Case 1). Meanwhile, when using the highest grid resolution (Case 3), the simulated wave
number is extended to the high wave number region.

Figure 14 shows coefficients of the right-hand side of (4.3), (4.4), and (4.6). The
vertical axis explains the coefficients normalized by Hb in each case (Case 3-1, Case 3-2,
Case 3-3). This figure shows the dependence on filter width. This suggests that the wave
number regions that can be simulated by negative diffusion are different in each filter width
(see Table 2). When using the largest filter width (Case 3-3), the simulated wave number
region becomes very low. Meanwhile, when using the narrowest filter width (Case 3-1), the
simulated wave number is extended to the high wave number region.

That is the reason for the dependence of reverse simulation on the grid resolution and
filter width.
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Figure 14: Coefficients of right-hand side of (4.1), (4.2), and (4.4) in each wave number (Case 3-1, Case 3-2,
Case 3-3).

5. Conclusion

Reverse simulation is a method of identifying the source of a pollutant and is categorized
as a backward method. This paper introduces the result of reverse simulation using RANS
analysis in a cavity flow. With a low grid resolution or an excessively large filter width,
the concentration distribution of the simulation result spreads widely. This means that the
reverse simulation is less accurate and cannot be applied for identifying the pollutant source.
Nevertheless, with a fine grid resolution and appropriate filter width, reverse simulation is
applicable for identifying the source location.

Furthermore, this paper discusses the dependence of reverse simulation on the
grid resolution and filter width with a one-dimensional diffusion equation. The simulated
negative diffusion varies greatly according to the grid resolution and filter width. This is
important knowledge for applying reverse simulation to practical problems.

In future, reverse simulation should be tried in various comprehensive flows and the
applicability surveyed.
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